This study explores the mechanisms by which China’s pilot carbon emissions trading schemes(ETS)facilitate industrial low-carbon transitions.We construct a theoretical model and conduct an empirical analysis using pro...This study explores the mechanisms by which China’s pilot carbon emissions trading schemes(ETS)facilitate industrial low-carbon transitions.We construct a theoretical model and conduct an empirical analysis using provincial panel data from seven pilot provinces spanning 2006-2021.Applying a multi-period difference-in-differences(DID)approach,we evaluate the environmental and economic impacts of the pilot ETS policies.The findings yield three key insights:(1)The pilot ETS significantly reduces carbon emission intensity and improves low-carbon total factor productivity(TFP),thereby promoting China’s industrial low-carbon transition.(2)Mechanism analysis indicates that the ETS primarily operates through cost constraints and industrial structural upgrading,while the effect of technological progress has yet to fully materialize.(3)Heterogeneity analysis reveals that the policy’s effects are more significant in regions with higher levels of economic development and R&D investment,leading to greater carbon intensity reductions and productivity gains.In addition,regions with higher foreign direct investment(FDI)experience more substantial improvements in low-carbon TFP,possibly reflecting technology spillover effects.展开更多
A low-carbon lifestyle presents new opportunities for sustainable urban development.While previous studies have verified the impact of the built environment and socioeconomic status(SES)on low-carbon lifestyles,they h...A low-carbon lifestyle presents new opportunities for sustainable urban development.While previous studies have verified the impact of the built environment and socioeconomic status(SES)on low-carbon lifestyles,they have primarily focused on direct effects.At present,there is still a lack of analysis on the interaction effects on low-carbon lifestyles,and limited attention has been given to the peer effect in low-carbon lifestyles,especially in the context of residential differentiation.Therefore,we take Zhengzhou city as the case area and first calculate the low-carbon lifestyle of 1485 families from three dimensions:low-carbon action(A),low-carbon interest(I)and low-carbon opinion(O).We then analyze the direct and interactive impacts of the built environment and SES on low-carbon lifestyles and explore the peer effect.Our findings indicate that families with higher SES have higher levels of low-carbon interest and low-carbon opinion,but relatively low levels of low-carbon action.This suggests an interest-action bias in the low-carbon lifestyles of high-SES families.POI density,road network density and accessibility positively affect low-carbon lifestyles—that is,residents living in areas with well-developed infrastructure and convenient transportation tend to be green in their daily behavior.The peer effect influences low-carbon action,interest,and opinion by 54.6%,34.9%,and 16%,respectively,indicating that the peer effect is most evident in low-carbon action.That is,the peer effect is more obvious in low-carbon action.In addition,the built environment affects the low-carbon lifestyles of different SES groups.Land-use mix positively increases low-carbon action and low-carbon interest among high-SES groups but reduces low-carbon opinion.Road network density positively affects the low-carbon action of high-SES groups and the low-carbon interest and low-carbon opinion of low-SES groups.This study explores low-carbon lifestyles from a situational perspective,providing a practical basis for policies aimed at accelerating a transition to sustainable living.展开更多
Measuring the lifecycle of low-carbon energy technologies is critical to better understanding the innovation pattern.However,previous studies on lifecycle either focus on technical details or just provide a general ov...Measuring the lifecycle of low-carbon energy technologies is critical to better understanding the innovation pattern.However,previous studies on lifecycle either focus on technical details or just provide a general overview,due to the lack of connection with innovation theories.This article attempts to fill this gap by analyzing the lifecycle from a combinatorial innovation perspective,based on patent data of ten low-carbon energy technologies in China from 1999 to 2018.The problem of estimating lifecycle stages can be transformed into analyzing the rise and fall of knowledge combinations.By building the international patent classification(IPC)co-occurrence matrix,this paper demonstrates the lifecycle evolution of technologies and develops an efficient quantitative index to define lifecycle stages.The mathematical measurement can effectively reflect the evolutionary pattern of technologies.Additionally,this article relates the macro evolution of lifecycle to the micro dynamic mechanism of technology paradigms.The sign of technology maturity is that new inventions tend to follow the patterns established by prior ones.Following this logic,this paper identifies different trends of paradigms in each technology field and analyze their transition.Furthermore,catching-up literature shows that drastic transformation of technology paradigms may open“windows of opportunity”for laggard regions.From the results of this paper,it is clear to see that latecomers can catch up with pioneers especially when there is a radical change in paradigms.Therefore,it is important for policy makers to capture such opportunities during the technology lifecycle and coordinate regional innovation resources.展开更多
Corrosion is an essential issue limiting the application of high-strength low-carbon steel in seawater environment. The impact of retained austenite on its corrosion behavior with immersion experiments and related cor...Corrosion is an essential issue limiting the application of high-strength low-carbon steel in seawater environment. The impact of retained austenite on its corrosion behavior with immersion experiments and related corrosion sensor technology was explored. A model that clarifies the micro-galvanic effect and the heat-induced changes to the shape and composition of retained austenite was used to discuss the findings. The results indicated that retained austenite was generated following an intercritical process and demonstrated approximately 48 mV higher Volta potential than the matrix. The retained austenite content first increased and then decreased with increasing intercritical temperatures, while reaching the maximum value of 8.5% at 660℃. With the increase in retained austenite content, the corrosion rate was increased by up to 32.8% compared to “quenching + tempering” (QT) specimen. The interfaces between the retained austenite and matrix were the priority nucleation sites for corrosion. Moreover, the retained austenite reduced the corrosion resistance of the steel by increasing the micro-galvanic effect and reducing rust layer compactness.展开更多
Green development and the low-carbon economy in China have operated as parallel,distinct systems,with interactions limited to energy,industry,and technology.Guided by the concept of high-quality growth,green developm...Green development and the low-carbon economy in China have operated as parallel,distinct systems,with interactions limited to energy,industry,and technology.Guided by the concept of high-quality growth,green development—centered on sustainability principles and green targets—has focused on green living,production,industrial optimization,system-building,land-use planning,and global ecological objectives,thereby forming a uniquely Chinese green development framework.Similarly,the low-carbon economy,structured around carbon emission goals,development drivers,models of growth,management mechanisms,and international carbon responsibilities,has also developed a distinct framework.Introducing digital intelligence as a new dimension can serve as a coupling point to foster interactive mechanisms between green development and the low-carbon economy.These interactive mechanisms are reflected through smart green cloud collaboration systems and intelligent low-carbon governance platforms,using digital intelligence technology to enhance the synergy between green and low-carbon efforts in energy,carbon management,technology,innovation,governance,and the economy.Through analyzing these mechanisms,and returning to sustainability principles while responding to China's modern development philosophy,a uniquely Chinese theory and framework for green and low-carbon development can be constructed.展开更多
With the severe challenges brought by global climate change,exploring and developing clean and renewable energy systems to upgrade the energy structure has become an inevitable trend in related research.The comprehens...With the severe challenges brought by global climate change,exploring and developing clean and renewable energy systems to upgrade the energy structure has become an inevitable trend in related research.The comprehensive park systems integrated with photovoltaic,energy storage,direct current,and flexible loads(PEDF)is able to play an important role in promoting energy transformation and achieving sustainable development.In order to fully understand the advantages of PEDF parks in energy conservation and carbon reduction,this paper summarizes existing studies and prospects future research directions on the low-carbon operation of the PEDF park.This paper first introduces carbon emission monitoring and evaluation methods,and then analyzes bi-level optimal dispatch strategies for flexible loads.Meanwhile,the paper provides a prospective analysis of the innovations that can be brought by advanced technologies to the PEDF park.Finally,this paper puts forward the challenges faced by current research and provides prospects for future research directions.This paper emphasizes that related research should focus on collaborating key technologies of PEDF systems and integrating advanced innovations to address challenges and fully leverage the advantages of PEDF technology in energy saving and carbon reduction.This paper aims to provide systematic theoretical guidance and supplements for the research and practice of the PEDF technology.展开更多
With increasingly severe global climate change,a low-carbon economy has become an inevitable trend in the development of the international community.Low-carbon economy is not only related to environmental protection b...With increasingly severe global climate change,a low-carbon economy has become an inevitable trend in the development of the international community.Low-carbon economy is not only related to environmental protection but also has a profound impact on international trade.The purpose of this paper is to explore the impact of a low-carbon economy on the development of international trade and put forward corresponding strategy suggestions.By analyzing the connotation,characteristics,and mechanism of the low-carbon economy on international trade,this paper reveals the important role of the low-carbon economy in promoting the optimization of international trade structure,promoting green technology innovation,and strengthening international cooperation.At the same time,given the challenges brought by a low-carbon economy,this paper puts forward strategies such as strengthening policy guidance,promoting green technology innovation,and improving international trade rules to provide a reference for the sustainable development of international trade[1,2].展开更多
With the intensification of the energy crisis and the worsening greenhouse effect,the development of sustainable integrated energy systems(IES)has become a crucial direction for energy transition.In this context,this ...With the intensification of the energy crisis and the worsening greenhouse effect,the development of sustainable integrated energy systems(IES)has become a crucial direction for energy transition.In this context,this paper proposes a low-carbon economic dispatch strategy under the green hydrogen certificate trading(GHCT)and the ladder-type carbon emission trading(CET)mechanism,enabling the coordinated utilization of green and blue hydrogen.Specifically,a proton exchange membrane electrolyzer(PEME)model that accounts for dynamic efficiency characteristics,and a steam methane reforming(SMR)model incorporating waste heat recovery,are developed.Based on these models,a hydrogen production–storage–utilization framework is established to enable the coordinated deployment of green and blue hydrogen.Furthermore,the gas turbine(GT)unit are retrofitted using oxygenenriched combustion carbon capture(OCC)technology,wherein the oxygen produced by PEME is employed to create an oxygen-enriched combustion environment.This approach reduces energy waste and facilitates low-carbon power generation.In addition,the GHCT mechanism is integrated into the system alongside the ladder-type CET mechanism,and their complementary effects are investigated.A comprehensive optimization model is then formulated to simultaneously achieve carbon reduction and economic efficiency across the system.Case study results show that the proposed strategy reduces wind curtailment by 7.77%,carbon emissions by 65.98%,and total cost by 12.57%.This study offers theoretical reference for the low-carbon,economic,and efficient operation of future energy systems.展开更多
Supply chain partnerships are an essential component of business innovations.This study uses data on A-share listed companies on the Shanghai and Shenzhen stock exchanges from 2012 to 2022 to conduct a multi-period di...Supply chain partnerships are an essential component of business innovations.This study uses data on A-share listed companies on the Shanghai and Shenzhen stock exchanges from 2012 to 2022 to conduct a multi-period difference-in-differences analysis based on a list of green supply chain management(GSM)companies.We find that GSM significantly promotes low-carbon technology innovations(LCT)of upstream enterprises.The mechanism analysis indicates that GSM has a resource effect and signal effect that generate LCT spillovers.In terms of the resource effect,GSM companies offer green credit and support green procurement,thereby providing financial support for green investments in upstream LCT.In terms of a signaling effect,GSM strengthens the effectiveness of institutional investors,the public,and online media in supervising upstream suppliers’green credentials,thereby promoting upstream LCT.A heterogeneity analysis shows that when midstream companies are state-owned enterprises or industry leaders,and when the concentration and stability of supply chain purchase relationships are higher,the LCT spillover effects of GSM are more pronounced.Further analysis reveals that GSM has bidirectional horizontal spillover effects and that upstream unidirectional vertical spillover effects are limited to first-level suppliers.Additionally,under the premise of not compromising economic benefits and stability,GSM shows an emerging trend of transitioning from environmentally compliant“light green”supply chains to“deep green”supply chains focused on pollution reduction,carbon reduction,and energy conservation.展开更多
Low carbon development of blast furnaces is one of the key technological directions in the current development of ironmaking.Owing to the differences in the physical and chemical properties of hydrogen and carbon,hydr...Low carbon development of blast furnaces is one of the key technological directions in the current development of ironmaking.Owing to the differences in the physical and chemical properties of hydrogen and carbon,hydrogen-rich media entering a blast furnace will change the heat distribution,thus affecting the stability of production.Accordingly,a heat distribution model was proposed to study the temperature distribution in a blast furnace,simultaneously considering gas-solid heat exchange,slag and iron melting,and chemical reactions.The model was used to analyze the temperature distribution of a 2300 m^(3) blast furnace and was verified via comparison with actual production data.Subsequently,the effects of the injection rate of hydrogen-rich media,H2 concentration,and oxygen enrichment rate of the blast on the temperature distribution were investigated.Results indicated that the increase in the injection rate of the hydrogen-rich media decreased the amount of direct reduction and led to an increase in the furnace temperature.Furthermore,an increase in the oxygen enrichment rate led to a decrease in the furnace temperature,but could reduce the solid fuel ratio,while the change in H2 concentration had less effect on the temperature distribution.The combination of hydrogen-rich media injection and the increase in the oxygen enrichment rate would help to adjust the temperature distribution to the same level as the conventional blast furnace conditions.展开更多
The synthesis of degradable polymers with easy-to-break in-chain carbon-oxygen bonds has attracted much attention.This minireview introduces the synthesis of a variety of degradable polymers from the(co)polymerization...The synthesis of degradable polymers with easy-to-break in-chain carbon-oxygen bonds has attracted much attention.This minireview introduces the synthesis of a variety of degradable polymers from the(co)polymerizations of several typical oxygenated monomers such as epoxides,cyclic carbonates,cyclic esters,carbon dioxide(CO_(2)),carbonyl sulfide(COS),and cyclic anhydrides.We highlight the catalysts and mechanisms for these(co)polymerizations.The ring-opening copolymerization of five-membered carbonate with cyclic anhydride or COS has been introduced.We also highlight the synthesis of block copolymers and cyclic copolymers with well-defined sequences by the method of growing center switching.We hope that these new polymerization systems can provide new ideas for the development of degradable low-carbon polymers in the future.展开更多
Carbon dioxide(CO_(2))emissions have become an important factor limiting the high-quality development of the Chinese steel industry.To achieve the goal of carbon peak and carbon neutrality,the strategic planning and t...Carbon dioxide(CO_(2))emissions have become an important factor limiting the high-quality development of the Chinese steel industry.To achieve the goal of carbon peak and carbon neutrality,the strategic planning and technological layout of low-carbon development have been carried out by the Chinese steel industry and enterprises.Based on the summary and analysis of the technology roadmap of low-carbon development in the steel industry and an evaluation of the current research progress of low-carbon technologies,the prospects for the low-carbon development of the steel industry in the future were provided.The results indicate that some steel enterprises in China have already released their low-carbon development roadmaps with a focus on achieving carbon neutrality,which will be realized through advancements in system energy efficiency improvement,resource recycling,process optimization and innovation,breakthrough in smelting technology,product iteration and upgrading,and carbon capture,utilization,and storage(CCUS).The technology development of hydrogen metallurgy and CCUS has shown rapid progress.In the future,the Chinese steel industry must continue to prioritize low-carbon technology and promote the utilization of clean energy.The ratio of electric arc furnace steel should be increased gradually,and the development and application of CCUS technology should be promoted,to ensure the achievement of the“carbon peak and carbon neutrality”goal.展开更多
The welding characteristics of 5052 aluminum alloy and Q235 low-carbon steel sheet were systematically studied by the refilled friction stir spot welding.The effects of rotation speed and pressure speed on weld formin...The welding characteristics of 5052 aluminum alloy and Q235 low-carbon steel sheet were systematically studied by the refilled friction stir spot welding.The effects of rotation speed and pressure speed on weld forming,tensile strength,and welded joint structure were analyzed in different welding modes.The results indicated two different connection modes:the chimeric mode and the non-chimeric mode.The corresponding depression depth are 2 and 2.4 mm,respectively.In the non-chimeric connection mode,the steel/aluminum metallurgical interface is a smooth transition,the hook structure is obvious,and the welding mechanism mainly depends on the mutual diffusion between atoms.However,in the chimeric mode,a hook structure will be formed at the metallurgical interface of steel and aluminum.The connection mechanism is determined by mechanical interlocking and mutual diffusion.The maximum strength value is 7.48 kN in non-chimeric mode.At this time,the spindle speed is 1300 r/min and the pressure speed is 1 mm/s.There were two types of fractures:the button fracture mode and the peel fracture mode.展开更多
Conventional MgO-C bricks(graphite content>14 wt.%)produce a great deal of greenhouse gas emission,while low-carbon MgO-C bricks have serious thermal shock resistance during high-temperature service.To enhance the ...Conventional MgO-C bricks(graphite content>14 wt.%)produce a great deal of greenhouse gas emission,while low-carbon MgO-C bricks have serious thermal shock resistance during high-temperature service.To enhance the high-temperature mechanical property and thermal shock resistance of low-carbon MgO-C bricks,a novel route of introducing ZrSiO_(4) powder into low-carbon MgO-C bricks was reported in such refractories with 2 wt.% flaky graphite.The results indicate that the low-carbon MgO-C brick with 0.5 wt.%ZrSiO_(4) addition has the maximum hot modulus of rupture at 1400℃ and the corresponding specimen fired in the carbon embedded atmosphere has the maximum residual strength ratio(98.6%)after three thermal shock cycles.It is found that some needle-like AlON and plate-like Al_(2)O_(3)-ZrO_(2) composites were in situ formed in the matrices after the low-carbon MgO-C bricks were coked at 1400℃,which can enhance the high-temperature mechanical property and thermal shock resistance due to the effect of fiber toughening and particle toughening.Moreover,CO_(2) emission of the newly developed low-carbon MgO-C bricks is reduced by 58.3% per ton steel after using them as the working lining of a 90 t vacuum oxygen decarburization ladle.展开更多
To solve the problem of poor high-temperature service performance caused by low carbonization of MgO-C refractories,low-carbon MgO–C refractories with excellent thermal shock,oxidation and corrosion resistances were ...To solve the problem of poor high-temperature service performance caused by low carbonization of MgO-C refractories,low-carbon MgO–C refractories with excellent thermal shock,oxidation and corrosion resistances were successfully designed by using SiC whiskers as reinforcing phases and introducing micro-Al_(2)O_(3) powders as additives.The results indicated that the addition of micro-Al_(2)O_(3) powders optimized the internal structure of the material,like the columnar β-Si_(3)N_(4) with a stepped distribution and the mosaic structure formed between granular and flaky Mg_(2)SiO_(4),which synergistically strengthened and toughened the material and gave the material excellent mechanical properties and thermal shock resistance.Specifically,the cold modulus of rupture and cold crushing strength after thermal shock were increased by 4.1 and 20.3 MPa,respectively.Moreover,the addition of micro-Al_(2)O_(3) powders promoted the formation of fine particles of Mg_(2)SiO_(4),MgAl_(2)O_(4) and MgO,as well as a dense protective layer of Mg_(2)SiO_(4) in the material under high-temperature environment.Furthermore,spinel and high-temperature solid solution were formed in the corrosion environment.The oxidation and corrosion resistances were greatly improved by 41%and 15%,respectively.展开更多
Heavy oil millisecond gas-phase in-line catalytic dehydrogenation over bifunctional catalysts was adopted to produce low-carbon olefins.In this study,the effect of the uncatalyzed reaction composition and distribution...Heavy oil millisecond gas-phase in-line catalytic dehydrogenation over bifunctional catalysts was adopted to produce low-carbon olefins.In this study,the effect of the uncatalyzed reaction composition and distribution of atmosphere residue(AR)pyrolysis vapor at 650℃ was investigated for the first time.In the pyrolysis vapor,the yield of low-carbon olefins was only 15.2%.The yield of 1-olefin and n-alkanes,which are the primary products of rapid heavy oil pyrolysis,reached approximately 54.0%.To achieve further catalytic dehydrogenation,AR pyrolysis volatiles were catalyzed over single calcium aluminate(C_(12)A_(7)),ZSM-5,and C_(12)A_(7)-ZSM-5(CZ)catalysts at 650℃,which possess different pore structures,and acid-base properties.The ZSM-5 catalyst obtained the highest low-carbon olefin yield after catalytic dehydrogenation of pyrolysis volatiles.Finally,the C_(12)A_(7) and CZ stepwise coupling bifunctional catalysts increased the catalytic activity,and thus increased the higher low-carbon olefin yield but reduced the yields of alkanes and aromatics fraction.Notably,the yields of propylene and butane were important sources of the low-carbon olefins.Thus,heavy oil millisecond gas-phase in-line catalytic dehydrogenation could achieve the maximum conversion of these residues to produce low-carbon olefins.展开更多
To address the issues of reduced performance and shortened lifespan during the low-carbonizating process of Al_(2)O_(3)-C refractories,nano-crystalline ZrC modified graphite was prepared using Zr powder and flake grap...To address the issues of reduced performance and shortened lifespan during the low-carbonizating process of Al_(2)O_(3)-C refractories,nano-crystalline ZrC modified graphite was prepared using Zr powder and flake graphite as raw materials,with NaCl and NaF mixed salt serving as the medium.The flake graphite was gradually replaced by ZrC modified graphite in the preparation of Al_(2)O_(3)-C refractories,and its impact on the material’s structure and properties was investigated.The results indicate that,compared to samples with only flake graphite,the introduction of 1 mass%to 5 mass%nano-crystalline ZrC modified graphite can significantly enhance the mechanical performance of low-carbon Al_(2)O_(3)-C refractories.When 5 mass%ZrC modified graphite is added,the mechanical properties of the samples are optimal,with the cold modulus of rupture and elastic modulus reaching 22.5 MPa and 65.0 GPa,respectively.展开更多
This work was devoted to the study of the physico-chemical properties of two clay minerals from the Mountain District (West Côte d'Ivoire) referenced ME1 and ME2. These samples were characterized by the exper...This work was devoted to the study of the physico-chemical properties of two clay minerals from the Mountain District (West Côte d'Ivoire) referenced ME1 and ME2. These samples were characterized by the experimental techniques, such as X-ray diffraction (XRD), Infrared spectroscopy (IR), Inductively Coupled Plasma Atomic Emission Spectrometry (ICP-AES), Differential Thermal Analysis and Thermogravimetry (DTA-TG), Brunauer, Emett and Teller method (BET), laser particle size analysis and Scanning Electron Microscope (SEM). The main results of these analyses reveal that the two clay samples mainly contain quartz (52.91% for ME1 and 51.72% for ME2), kaolinite (36.60% for ME1 and 41.6% for ME2) and associated phases, namely goethite and hematite (13.47% for ME1 and 11.00% for ME2). The specific surface values obtained for samples ME1 and ME2 are 34.78 m2/g and 29.18 m2/g respectively. The results obtained show that the samples studied belong to the kaolinite family. After calcination, they could have good pozzolanic activity and therefore be used in the manufacture of low-carbon cements.展开更多
The digital economy,as a new emerging economic form,has become an important power for realizing Chinese-style modernization and promoting green development in China.This paper measures the digital economy and low-carb...The digital economy,as a new emerging economic form,has become an important power for realizing Chinese-style modernization and promoting green development in China.This paper measures the digital economy and low-carbon transition index based on the data of 30 provinces in China from 2013 to 2020 and analyzes the mechanism and path of the digital economy affecting low-carbon transition using the fixed effect panel data model and the threshold effect model.It is found that,(1)The digital economy and low-carbon transition in China are various in different regions,with characteristics of being unbalanced and insufficient.(2)The digital economy significantly promotes low-carbon transition,with the greatest influence in the Central region,followed by the Eastern region and the Western region.Under different dimensions,the development of informatization and digital transactions promote low-carbon transition,but the development of the internet plays an inhibiting role.(3)The higher the degree of urbanization and environmental regulation,the greater the influence of the digital economy on low-carbon transition.展开更多
In China,the oversupply of coal occurred in 2009,and from that year onwards,China’s coal economy began a low-carbon and clean transformation.Evaluating transformation performance is the research goal of this paper.Th...In China,the oversupply of coal occurred in 2009,and from that year onwards,China’s coal economy began a low-carbon and clean transformation.Evaluating transformation performance is the research goal of this paper.The data collection for this paper includes data on deep processing of Chinese coal products from 2009 to 2020,as well as data on asset structure evolution and financial performance of 34 listed companies in the Chinese coal mining.Entropy value method is used to calculate the entropy value of low-carbon transformation,and the regression analysis is used to study the performance of cleaner transformation,the conclusion is as follows:(1)From 2009 to 2020,in China’s total energy consumption,coal consumption accounted for 71.6%in 2009 and 56.8%in 2020,the goals set by the state have been achieved.(2)The national goal of reducing the proportion of coal consumption and reducing carbon emissions has forced the transformation of deep processing of coal products.The transformation of coal enterprises towards low-carbon and clean production has achieved remarkable results.(3)From 2009 to 2020,the non coal industry income of 34 listed companies in China’s coal mining industry increased by 8.21%annually.At the same time,the asset structure was adjusted,and nearly 80%of the asset structure evolution showed an orderly development trend.(4)The regression analysis results show that the entropy value of coal deep processing products and the entropy value of asset structure adjustment are significantly related to transformation performance.The paper proposes to summarize the successful experience of China’s coal energy economic transformation,lay a foundation for achieving the carbon peak and carbon neutral goals in the future,further increase the intensity of coal deep processing,increase the proportion of clean energy in total energy consumption,and strive to control asset operation towards the goal of increasing the proportion of non coal industry income.展开更多
基金Major Project of the National Social Science Foundation of China(NSSFC)-“Study on the Construction of China’s Unified Carbon Market and the Realization Mechanism of the‘Dual Carbon’Goal”(Grant No.24VRC003).
文摘This study explores the mechanisms by which China’s pilot carbon emissions trading schemes(ETS)facilitate industrial low-carbon transitions.We construct a theoretical model and conduct an empirical analysis using provincial panel data from seven pilot provinces spanning 2006-2021.Applying a multi-period difference-in-differences(DID)approach,we evaluate the environmental and economic impacts of the pilot ETS policies.The findings yield three key insights:(1)The pilot ETS significantly reduces carbon emission intensity and improves low-carbon total factor productivity(TFP),thereby promoting China’s industrial low-carbon transition.(2)Mechanism analysis indicates that the ETS primarily operates through cost constraints and industrial structural upgrading,while the effect of technological progress has yet to fully materialize.(3)Heterogeneity analysis reveals that the policy’s effects are more significant in regions with higher levels of economic development and R&D investment,leading to greater carbon intensity reductions and productivity gains.In addition,regions with higher foreign direct investment(FDI)experience more substantial improvements in low-carbon TFP,possibly reflecting technology spillover effects.
基金National Natural Science Foundation of China,No.42171295,No.42401380Outstanding Youth Science Fund of Henan Province,No.242300421144+1 种基金The Postgraduate Cultivating Innovation and Quality Improvement Action Plan of Henan University,No.SYLYC2022013Henan Science and Technology Innovation Talent Project,No.24HASTIT050。
文摘A low-carbon lifestyle presents new opportunities for sustainable urban development.While previous studies have verified the impact of the built environment and socioeconomic status(SES)on low-carbon lifestyles,they have primarily focused on direct effects.At present,there is still a lack of analysis on the interaction effects on low-carbon lifestyles,and limited attention has been given to the peer effect in low-carbon lifestyles,especially in the context of residential differentiation.Therefore,we take Zhengzhou city as the case area and first calculate the low-carbon lifestyle of 1485 families from three dimensions:low-carbon action(A),low-carbon interest(I)and low-carbon opinion(O).We then analyze the direct and interactive impacts of the built environment and SES on low-carbon lifestyles and explore the peer effect.Our findings indicate that families with higher SES have higher levels of low-carbon interest and low-carbon opinion,but relatively low levels of low-carbon action.This suggests an interest-action bias in the low-carbon lifestyles of high-SES families.POI density,road network density and accessibility positively affect low-carbon lifestyles—that is,residents living in areas with well-developed infrastructure and convenient transportation tend to be green in their daily behavior.The peer effect influences low-carbon action,interest,and opinion by 54.6%,34.9%,and 16%,respectively,indicating that the peer effect is most evident in low-carbon action.That is,the peer effect is more obvious in low-carbon action.In addition,the built environment affects the low-carbon lifestyles of different SES groups.Land-use mix positively increases low-carbon action and low-carbon interest among high-SES groups but reduces low-carbon opinion.Road network density positively affects the low-carbon action of high-SES groups and the low-carbon interest and low-carbon opinion of low-SES groups.This study explores low-carbon lifestyles from a situational perspective,providing a practical basis for policies aimed at accelerating a transition to sustainable living.
基金supported by the Natural Science Foundation of China(Grants No.42122006,42471187).
文摘Measuring the lifecycle of low-carbon energy technologies is critical to better understanding the innovation pattern.However,previous studies on lifecycle either focus on technical details or just provide a general overview,due to the lack of connection with innovation theories.This article attempts to fill this gap by analyzing the lifecycle from a combinatorial innovation perspective,based on patent data of ten low-carbon energy technologies in China from 1999 to 2018.The problem of estimating lifecycle stages can be transformed into analyzing the rise and fall of knowledge combinations.By building the international patent classification(IPC)co-occurrence matrix,this paper demonstrates the lifecycle evolution of technologies and develops an efficient quantitative index to define lifecycle stages.The mathematical measurement can effectively reflect the evolutionary pattern of technologies.Additionally,this article relates the macro evolution of lifecycle to the micro dynamic mechanism of technology paradigms.The sign of technology maturity is that new inventions tend to follow the patterns established by prior ones.Following this logic,this paper identifies different trends of paradigms in each technology field and analyze their transition.Furthermore,catching-up literature shows that drastic transformation of technology paradigms may open“windows of opportunity”for laggard regions.From the results of this paper,it is clear to see that latecomers can catch up with pioneers especially when there is a radical change in paradigms.Therefore,it is important for policy makers to capture such opportunities during the technology lifecycle and coordinate regional innovation resources.
文摘Corrosion is an essential issue limiting the application of high-strength low-carbon steel in seawater environment. The impact of retained austenite on its corrosion behavior with immersion experiments and related corrosion sensor technology was explored. A model that clarifies the micro-galvanic effect and the heat-induced changes to the shape and composition of retained austenite was used to discuss the findings. The results indicated that retained austenite was generated following an intercritical process and demonstrated approximately 48 mV higher Volta potential than the matrix. The retained austenite content first increased and then decreased with increasing intercritical temperatures, while reaching the maximum value of 8.5% at 660℃. With the increase in retained austenite content, the corrosion rate was increased by up to 32.8% compared to “quenching + tempering” (QT) specimen. The interfaces between the retained austenite and matrix were the priority nucleation sites for corrosion. Moreover, the retained austenite reduced the corrosion resistance of the steel by increasing the micro-galvanic effect and reducing rust layer compactness.
基金supported by the National Natural Science Foundation of China(Grant No.23FJYB011).
文摘Green development and the low-carbon economy in China have operated as parallel,distinct systems,with interactions limited to energy,industry,and technology.Guided by the concept of high-quality growth,green development—centered on sustainability principles and green targets—has focused on green living,production,industrial optimization,system-building,land-use planning,and global ecological objectives,thereby forming a uniquely Chinese green development framework.Similarly,the low-carbon economy,structured around carbon emission goals,development drivers,models of growth,management mechanisms,and international carbon responsibilities,has also developed a distinct framework.Introducing digital intelligence as a new dimension can serve as a coupling point to foster interactive mechanisms between green development and the low-carbon economy.These interactive mechanisms are reflected through smart green cloud collaboration systems and intelligent low-carbon governance platforms,using digital intelligence technology to enhance the synergy between green and low-carbon efforts in energy,carbon management,technology,innovation,governance,and the economy.Through analyzing these mechanisms,and returning to sustainability principles while responding to China's modern development philosophy,a uniquely Chinese theory and framework for green and low-carbon development can be constructed.
基金This work was supported by National Key R&D Program of China for International S&T Cooperation Projects(Grant No.2019YFE0118700)which was provided by the Ministry of Science and Technology of the People’s Republic of China(https://www.most.gov.cn/(accessed on 1 January 2025))+2 种基金the grant was received by Yun Zhao.This work was supported by Science and Technology Project of CSG Electric Power Research Institute(Grant No.SEPRIK23B052)which was provided by CSG Electric Power Research Institute(http://www.sepri.csg.cn/(accessed on 1 January 2025))the grant was received by Ziwen Cai.
文摘With the severe challenges brought by global climate change,exploring and developing clean and renewable energy systems to upgrade the energy structure has become an inevitable trend in related research.The comprehensive park systems integrated with photovoltaic,energy storage,direct current,and flexible loads(PEDF)is able to play an important role in promoting energy transformation and achieving sustainable development.In order to fully understand the advantages of PEDF parks in energy conservation and carbon reduction,this paper summarizes existing studies and prospects future research directions on the low-carbon operation of the PEDF park.This paper first introduces carbon emission monitoring and evaluation methods,and then analyzes bi-level optimal dispatch strategies for flexible loads.Meanwhile,the paper provides a prospective analysis of the innovations that can be brought by advanced technologies to the PEDF park.Finally,this paper puts forward the challenges faced by current research and provides prospects for future research directions.This paper emphasizes that related research should focus on collaborating key technologies of PEDF systems and integrating advanced innovations to address challenges and fully leverage the advantages of PEDF technology in energy saving and carbon reduction.This paper aims to provide systematic theoretical guidance and supplements for the research and practice of the PEDF technology.
文摘With increasingly severe global climate change,a low-carbon economy has become an inevitable trend in the development of the international community.Low-carbon economy is not only related to environmental protection but also has a profound impact on international trade.The purpose of this paper is to explore the impact of a low-carbon economy on the development of international trade and put forward corresponding strategy suggestions.By analyzing the connotation,characteristics,and mechanism of the low-carbon economy on international trade,this paper reveals the important role of the low-carbon economy in promoting the optimization of international trade structure,promoting green technology innovation,and strengthening international cooperation.At the same time,given the challenges brought by a low-carbon economy,this paper puts forward strategies such as strengthening policy guidance,promoting green technology innovation,and improving international trade rules to provide a reference for the sustainable development of international trade[1,2].
基金supported by National Natural Science Foundation of China(52477101)Natural Science Foundation of Jiangsu Province(BK20210932).
文摘With the intensification of the energy crisis and the worsening greenhouse effect,the development of sustainable integrated energy systems(IES)has become a crucial direction for energy transition.In this context,this paper proposes a low-carbon economic dispatch strategy under the green hydrogen certificate trading(GHCT)and the ladder-type carbon emission trading(CET)mechanism,enabling the coordinated utilization of green and blue hydrogen.Specifically,a proton exchange membrane electrolyzer(PEME)model that accounts for dynamic efficiency characteristics,and a steam methane reforming(SMR)model incorporating waste heat recovery,are developed.Based on these models,a hydrogen production–storage–utilization framework is established to enable the coordinated deployment of green and blue hydrogen.Furthermore,the gas turbine(GT)unit are retrofitted using oxygenenriched combustion carbon capture(OCC)technology,wherein the oxygen produced by PEME is employed to create an oxygen-enriched combustion environment.This approach reduces energy waste and facilitates low-carbon power generation.In addition,the GHCT mechanism is integrated into the system alongside the ladder-type CET mechanism,and their complementary effects are investigated.A comprehensive optimization model is then formulated to simultaneously achieve carbon reduction and economic efficiency across the system.Case study results show that the proposed strategy reduces wind curtailment by 7.77%,carbon emissions by 65.98%,and total cost by 12.57%.This study offers theoretical reference for the low-carbon,economic,and efficient operation of future energy systems.
文摘Supply chain partnerships are an essential component of business innovations.This study uses data on A-share listed companies on the Shanghai and Shenzhen stock exchanges from 2012 to 2022 to conduct a multi-period difference-in-differences analysis based on a list of green supply chain management(GSM)companies.We find that GSM significantly promotes low-carbon technology innovations(LCT)of upstream enterprises.The mechanism analysis indicates that GSM has a resource effect and signal effect that generate LCT spillovers.In terms of the resource effect,GSM companies offer green credit and support green procurement,thereby providing financial support for green investments in upstream LCT.In terms of a signaling effect,GSM strengthens the effectiveness of institutional investors,the public,and online media in supervising upstream suppliers’green credentials,thereby promoting upstream LCT.A heterogeneity analysis shows that when midstream companies are state-owned enterprises or industry leaders,and when the concentration and stability of supply chain purchase relationships are higher,the LCT spillover effects of GSM are more pronounced.Further analysis reveals that GSM has bidirectional horizontal spillover effects and that upstream unidirectional vertical spillover effects are limited to first-level suppliers.Additionally,under the premise of not compromising economic benefits and stability,GSM shows an emerging trend of transitioning from environmentally compliant“light green”supply chains to“deep green”supply chains focused on pollution reduction,carbon reduction,and energy conservation.
基金support from the National Key R&D Program of China(Grant No.2019YFC1905701)the Chongqing Young Talent Program(Grant No.cstc2022ycjh-bgzxm0172).
文摘Low carbon development of blast furnaces is one of the key technological directions in the current development of ironmaking.Owing to the differences in the physical and chemical properties of hydrogen and carbon,hydrogen-rich media entering a blast furnace will change the heat distribution,thus affecting the stability of production.Accordingly,a heat distribution model was proposed to study the temperature distribution in a blast furnace,simultaneously considering gas-solid heat exchange,slag and iron melting,and chemical reactions.The model was used to analyze the temperature distribution of a 2300 m^(3) blast furnace and was verified via comparison with actual production data.Subsequently,the effects of the injection rate of hydrogen-rich media,H2 concentration,and oxygen enrichment rate of the blast on the temperature distribution were investigated.Results indicated that the increase in the injection rate of the hydrogen-rich media decreased the amount of direct reduction and led to an increase in the furnace temperature.Furthermore,an increase in the oxygen enrichment rate led to a decrease in the furnace temperature,but could reduce the solid fuel ratio,while the change in H2 concentration had less effect on the temperature distribution.The combination of hydrogen-rich media injection and the increase in the oxygen enrichment rate would help to adjust the temperature distribution to the same level as the conventional blast furnace conditions.
基金the National Science Foundation of China(Nos.52203129,51973190)Zhejiang Provincial Department of Science and Technology(No.2020R52006).
文摘The synthesis of degradable polymers with easy-to-break in-chain carbon-oxygen bonds has attracted much attention.This minireview introduces the synthesis of a variety of degradable polymers from the(co)polymerizations of several typical oxygenated monomers such as epoxides,cyclic carbonates,cyclic esters,carbon dioxide(CO_(2)),carbonyl sulfide(COS),and cyclic anhydrides.We highlight the catalysts and mechanisms for these(co)polymerizations.The ring-opening copolymerization of five-membered carbonate with cyclic anhydride or COS has been introduced.We also highlight the synthesis of block copolymers and cyclic copolymers with well-defined sequences by the method of growing center switching.We hope that these new polymerization systems can provide new ideas for the development of degradable low-carbon polymers in the future.
基金This research was funded by the Ministry of Science and Technology of the People’s Republic of China with Grant number 2020YFB1712801 for study on material flow,energy flow,cost flow,information flow,control flow and their coupling mechanism in steel production.
文摘Carbon dioxide(CO_(2))emissions have become an important factor limiting the high-quality development of the Chinese steel industry.To achieve the goal of carbon peak and carbon neutrality,the strategic planning and technological layout of low-carbon development have been carried out by the Chinese steel industry and enterprises.Based on the summary and analysis of the technology roadmap of low-carbon development in the steel industry and an evaluation of the current research progress of low-carbon technologies,the prospects for the low-carbon development of the steel industry in the future were provided.The results indicate that some steel enterprises in China have already released their low-carbon development roadmaps with a focus on achieving carbon neutrality,which will be realized through advancements in system energy efficiency improvement,resource recycling,process optimization and innovation,breakthrough in smelting technology,product iteration and upgrading,and carbon capture,utilization,and storage(CCUS).The technology development of hydrogen metallurgy and CCUS has shown rapid progress.In the future,the Chinese steel industry must continue to prioritize low-carbon technology and promote the utilization of clean energy.The ratio of electric arc furnace steel should be increased gradually,and the development and application of CCUS technology should be promoted,to ensure the achievement of the“carbon peak and carbon neutrality”goal.
基金National Natural Science Foundation of China(No.52275306)Beijing Municipal Natural Science Foundation(No.3232021)for their support.
文摘The welding characteristics of 5052 aluminum alloy and Q235 low-carbon steel sheet were systematically studied by the refilled friction stir spot welding.The effects of rotation speed and pressure speed on weld forming,tensile strength,and welded joint structure were analyzed in different welding modes.The results indicated two different connection modes:the chimeric mode and the non-chimeric mode.The corresponding depression depth are 2 and 2.4 mm,respectively.In the non-chimeric connection mode,the steel/aluminum metallurgical interface is a smooth transition,the hook structure is obvious,and the welding mechanism mainly depends on the mutual diffusion between atoms.However,in the chimeric mode,a hook structure will be formed at the metallurgical interface of steel and aluminum.The connection mechanism is determined by mechanical interlocking and mutual diffusion.The maximum strength value is 7.48 kN in non-chimeric mode.At this time,the spindle speed is 1300 r/min and the pressure speed is 1 mm/s.There were two types of fractures:the button fracture mode and the peel fracture mode.
基金Enterprise Research and Development Project of Beijing Lirr High-Temperature Materials Co.,Ltd.(2020-02)Key Scientific Research Project for Universities and Colleges in Henan Province(19A430028)+1 种基金the Excellent Youth Research Project of Anhui Province(2022AH030135)the PhD Research Funding of Suzhou University(2021BSK041).
文摘Conventional MgO-C bricks(graphite content>14 wt.%)produce a great deal of greenhouse gas emission,while low-carbon MgO-C bricks have serious thermal shock resistance during high-temperature service.To enhance the high-temperature mechanical property and thermal shock resistance of low-carbon MgO-C bricks,a novel route of introducing ZrSiO_(4) powder into low-carbon MgO-C bricks was reported in such refractories with 2 wt.% flaky graphite.The results indicate that the low-carbon MgO-C brick with 0.5 wt.%ZrSiO_(4) addition has the maximum hot modulus of rupture at 1400℃ and the corresponding specimen fired in the carbon embedded atmosphere has the maximum residual strength ratio(98.6%)after three thermal shock cycles.It is found that some needle-like AlON and plate-like Al_(2)O_(3)-ZrO_(2) composites were in situ formed in the matrices after the low-carbon MgO-C bricks were coked at 1400℃,which can enhance the high-temperature mechanical property and thermal shock resistance due to the effect of fiber toughening and particle toughening.Moreover,CO_(2) emission of the newly developed low-carbon MgO-C bricks is reduced by 58.3% per ton steel after using them as the working lining of a 90 t vacuum oxygen decarburization ladle.
基金the Scientific Research Fund of Hunan Provincial Education Department(22B0856)the Hengyang"Xiaohe"Science and Technology Talent Special Project([2023]45)+3 种基金the Guidance Plan Project of Hengyang City([2023]40)the National Natural Science Foundation of China(U20A20239)the College Students'Innovation and Entrepreneurship Training Project(S202311528055)the Characteristic Application Discipline of Material Science Engineering in Hunan Province([2022]351).
文摘To solve the problem of poor high-temperature service performance caused by low carbonization of MgO-C refractories,low-carbon MgO–C refractories with excellent thermal shock,oxidation and corrosion resistances were successfully designed by using SiC whiskers as reinforcing phases and introducing micro-Al_(2)O_(3) powders as additives.The results indicated that the addition of micro-Al_(2)O_(3) powders optimized the internal structure of the material,like the columnar β-Si_(3)N_(4) with a stepped distribution and the mosaic structure formed between granular and flaky Mg_(2)SiO_(4),which synergistically strengthened and toughened the material and gave the material excellent mechanical properties and thermal shock resistance.Specifically,the cold modulus of rupture and cold crushing strength after thermal shock were increased by 4.1 and 20.3 MPa,respectively.Moreover,the addition of micro-Al_(2)O_(3) powders promoted the formation of fine particles of Mg_(2)SiO_(4),MgAl_(2)O_(4) and MgO,as well as a dense protective layer of Mg_(2)SiO_(4) in the material under high-temperature environment.Furthermore,spinel and high-temperature solid solution were formed in the corrosion environment.The oxidation and corrosion resistances were greatly improved by 41%and 15%,respectively.
基金the financial sponsored by the CNPC Innovation Found(No.2022DQ02-0402)the Natural Science Basic Research Program of Shaanxi(No.2024JC-YBMS-085)+2 种基金Shandong Provincial Postdoctoral Science Foundation(No.SDCX-ZG-202303044)the State Key Laboratory of Heavy Oil Processing(No.SKLHOP202201004,No.SKLHOP202403001)the Graduate Student Innovation and Practical Ability Training Program of Xi'an Shiyou University(No.YCS23213078).
文摘Heavy oil millisecond gas-phase in-line catalytic dehydrogenation over bifunctional catalysts was adopted to produce low-carbon olefins.In this study,the effect of the uncatalyzed reaction composition and distribution of atmosphere residue(AR)pyrolysis vapor at 650℃ was investigated for the first time.In the pyrolysis vapor,the yield of low-carbon olefins was only 15.2%.The yield of 1-olefin and n-alkanes,which are the primary products of rapid heavy oil pyrolysis,reached approximately 54.0%.To achieve further catalytic dehydrogenation,AR pyrolysis volatiles were catalyzed over single calcium aluminate(C_(12)A_(7)),ZSM-5,and C_(12)A_(7)-ZSM-5(CZ)catalysts at 650℃,which possess different pore structures,and acid-base properties.The ZSM-5 catalyst obtained the highest low-carbon olefin yield after catalytic dehydrogenation of pyrolysis volatiles.Finally,the C_(12)A_(7) and CZ stepwise coupling bifunctional catalysts increased the catalytic activity,and thus increased the higher low-carbon olefin yield but reduced the yields of alkanes and aromatics fraction.Notably,the yields of propylene and butane were important sources of the low-carbon olefins.Thus,heavy oil millisecond gas-phase in-line catalytic dehydrogenation could achieve the maximum conversion of these residues to produce low-carbon olefins.
文摘To address the issues of reduced performance and shortened lifespan during the low-carbonizating process of Al_(2)O_(3)-C refractories,nano-crystalline ZrC modified graphite was prepared using Zr powder and flake graphite as raw materials,with NaCl and NaF mixed salt serving as the medium.The flake graphite was gradually replaced by ZrC modified graphite in the preparation of Al_(2)O_(3)-C refractories,and its impact on the material’s structure and properties was investigated.The results indicate that,compared to samples with only flake graphite,the introduction of 1 mass%to 5 mass%nano-crystalline ZrC modified graphite can significantly enhance the mechanical performance of low-carbon Al_(2)O_(3)-C refractories.When 5 mass%ZrC modified graphite is added,the mechanical properties of the samples are optimal,with the cold modulus of rupture and elastic modulus reaching 22.5 MPa and 65.0 GPa,respectively.
文摘This work was devoted to the study of the physico-chemical properties of two clay minerals from the Mountain District (West Côte d'Ivoire) referenced ME1 and ME2. These samples were characterized by the experimental techniques, such as X-ray diffraction (XRD), Infrared spectroscopy (IR), Inductively Coupled Plasma Atomic Emission Spectrometry (ICP-AES), Differential Thermal Analysis and Thermogravimetry (DTA-TG), Brunauer, Emett and Teller method (BET), laser particle size analysis and Scanning Electron Microscope (SEM). The main results of these analyses reveal that the two clay samples mainly contain quartz (52.91% for ME1 and 51.72% for ME2), kaolinite (36.60% for ME1 and 41.6% for ME2) and associated phases, namely goethite and hematite (13.47% for ME1 and 11.00% for ME2). The specific surface values obtained for samples ME1 and ME2 are 34.78 m2/g and 29.18 m2/g respectively. The results obtained show that the samples studied belong to the kaolinite family. After calcination, they could have good pozzolanic activity and therefore be used in the manufacture of low-carbon cements.
基金supported by the Fund of Fujian Provincial Xi Jinping Thought on Socialism with Chinese Characteristics for a New Era(Grant No.FJ2023XZB057)Major Project Fund of Fujian Provincial Social Science Research Base(Grant No.FJ2023JDZ021).
文摘The digital economy,as a new emerging economic form,has become an important power for realizing Chinese-style modernization and promoting green development in China.This paper measures the digital economy and low-carbon transition index based on the data of 30 provinces in China from 2013 to 2020 and analyzes the mechanism and path of the digital economy affecting low-carbon transition using the fixed effect panel data model and the threshold effect model.It is found that,(1)The digital economy and low-carbon transition in China are various in different regions,with characteristics of being unbalanced and insufficient.(2)The digital economy significantly promotes low-carbon transition,with the greatest influence in the Central region,followed by the Eastern region and the Western region.Under different dimensions,the development of informatization and digital transactions promote low-carbon transition,but the development of the internet plays an inhibiting role.(3)The higher the degree of urbanization and environmental regulation,the greater the influence of the digital economy on low-carbon transition.
基金fund major project“Research on China’s Natural Resources Capitalization and Corresponding Market Construction”(No.:15zdb163)Construction project of key disciplines of business administration in Jiangsu Province during the 14th five-year plan(SJYH2022-2/285).
文摘In China,the oversupply of coal occurred in 2009,and from that year onwards,China’s coal economy began a low-carbon and clean transformation.Evaluating transformation performance is the research goal of this paper.The data collection for this paper includes data on deep processing of Chinese coal products from 2009 to 2020,as well as data on asset structure evolution and financial performance of 34 listed companies in the Chinese coal mining.Entropy value method is used to calculate the entropy value of low-carbon transformation,and the regression analysis is used to study the performance of cleaner transformation,the conclusion is as follows:(1)From 2009 to 2020,in China’s total energy consumption,coal consumption accounted for 71.6%in 2009 and 56.8%in 2020,the goals set by the state have been achieved.(2)The national goal of reducing the proportion of coal consumption and reducing carbon emissions has forced the transformation of deep processing of coal products.The transformation of coal enterprises towards low-carbon and clean production has achieved remarkable results.(3)From 2009 to 2020,the non coal industry income of 34 listed companies in China’s coal mining industry increased by 8.21%annually.At the same time,the asset structure was adjusted,and nearly 80%of the asset structure evolution showed an orderly development trend.(4)The regression analysis results show that the entropy value of coal deep processing products and the entropy value of asset structure adjustment are significantly related to transformation performance.The paper proposes to summarize the successful experience of China’s coal energy economic transformation,lay a foundation for achieving the carbon peak and carbon neutral goals in the future,further increase the intensity of coal deep processing,increase the proportion of clean energy in total energy consumption,and strive to control asset operation towards the goal of increasing the proportion of non coal industry income.