Low-angle grain boundaries(LAGBs)are one of the solidification defects in single-crystal nickel-based superalloys and are detrimental to the mechanical properties.The formation of LAGBs is related to dendrite deformat...Low-angle grain boundaries(LAGBs)are one of the solidification defects in single-crystal nickel-based superalloys and are detrimental to the mechanical properties.The formation of LAGBs is related to dendrite deformation,while the mechanism has not been fully understood at the mesoscale.In this work,a model coupling dendrite growth,thermal-solutal-fluid flow,thermal stress and flow-induced dendrite deformation via cellular automaton-finite volume method and finite element method is developed to study the formation of LAGBs in single crystal superalloys.Results reveal that the bending of dendrites is primarily attributed to the thermal-solutal convection-induced dendrite deformation.The mechanical stress of dendrite deformation develops and stabilises as solidification proceeds.As the width of the mushy zone gets stable,stresses are built up and then dendritic elastoplastic bending occurs at some thin primary dendrites with the wider inter-dendritic space.There are three characteristic zones of stress distribution along the solidification direction:(i)no stress concentration in the fully solidified regions;(ii)stress developing in the primary dendrite bridging region,and(iii)stress decrease in the inter-dendritic uncontacted zone.The stresses reach maximum near the initial dendrite bridging position.The lower temperature gradients,the finer primary dendritic trunks and sudden reductions in local dendritic trunk radius jointly promote the elastoplastic deformation of the dendrites.Corresponding measures are suggested to reduce LAGBs.展开更多
The precipitation sequence of η(MgZn2) phase along low-angle grain boundaries in Al-Zn-Mg-Cu alloy was investigated by examining samples aged at 135 ℃ for various times from 5 min to 6 h. High resolution transmiss...The precipitation sequence of η(MgZn2) phase along low-angle grain boundaries in Al-Zn-Mg-Cu alloy was investigated by examining samples aged at 135 ℃ for various times from 5 min to 6 h. High resolution transmission electron microscopy (HRTEM) observations and energy dispersive X-ray spectroscopy (EDX) analysis indicate that the precipitation sequence of η phase along low-angle grain boundaries should be supersaturated solid solution (SSS)→vacancy-rich clusters (VRC)→GP Ⅱ zones→η'→η. Based on the theory of non-equilibrium grain boundary segregation (NGS) and non-equilibrium grain boundary co-segregation (NGCS), the excessive solute elements gradually segregate to the grain boundaries by the diffusion of the solute-vacancy complex during aging treatment. The grain boundary segregation plays an important role in the nucleation and growth of VRC, GP Ⅱ zones, η' phase as well as η phase.展开更多
Low-angle normal faults(dip<30°,LANFs)are widespread in the northern margin of the South China Sea where the maximum crust thickness is approximately 30.0 km.Based on 3 D seismic survey data and drilling wells...Low-angle normal faults(dip<30°,LANFs)are widespread in the northern margin of the South China Sea where the maximum crust thickness is approximately 30.0 km.Based on 3 D seismic survey data and drilling wells in the Enping sag,evidences for LANFs that initially formed at high-angles are discussed.After a detailed investigation of extensional fault system and description of 3 D fault geometry,the initial fault dips under the model of distributed vertical simple shear are also calculated.The results indicate that the present-day dip angles of the LANFs are in the range of 12°to 29°,and the initial fault dip angles are in the range of 39°to 49°.Deep seismic imaging suggests that the upper crust in the footwall block of the LANFs was tilted at an angle of ~14°to 22°due to the isostatic rebound during rifting.Moreover,the temporal and spatial sequences of the lateral growth of the LANFs have been investigated by the seismic interpretation of four isochronous stratigraphic interfaces,which demonstrates that two individual fault segments propagated towards each other and subsequently,were hard-linked during the Early Eocene.展开更多
High-resolution X-ray diffractometry(HRXRD)was used to assess the quality of 6H-SiC crystals grown by sublimation method.The results show the occurrence of low-angle grain boundaries(LB)is close relative to the inclin...High-resolution X-ray diffractometry(HRXRD)was used to assess the quality of 6H-SiC crystals grown by sublimation method.The results show the occurrence of low-angle grain boundaries(LB)is close relative to the inclination of the crystal interface.At the central faceted region with 0°inclination the crystal is of high structural perfection.However,at the region close to the facet with less than 5°inclination LB occurs slightly and at the region close to the peripheral polytype ring with more than 5°inclination LB defect occurs heavily.The density of LB can be drastically reduced by decreasing radial temperature gradient that determines the shape of the crystal growth interface.展开更多
The low-angle tracking in multipath interference is a challenging problem for the Very High Frequency(VHF)radar.The colocated Multi-Input Multi-Output(MIMO)technique can remedy such a defect.In this paper,a Joint Beam...The low-angle tracking in multipath interference is a challenging problem for the Very High Frequency(VHF)radar.The colocated Multi-Input Multi-Output(MIMO)technique can remedy such a defect.In this paper,a Joint Beam-Target Assignment and Power Allocation(JBTAPA)strategy is proposed for the VHF-MIMO radar network tracking low-angle targets.The core of the JBTAPA strategy is to improve the worst tracking accuracy among multiple targets by assigning appropriate beams to targets and allocating the power resource in each beam using the feedback information in the tracking cycle.Taking into account the transmit multipath and receive multipath,we derive the Cramer-Rao Lower Bound(CRLB)on angle estimate,which is then incor-porated in the Predicted Conditional CRLB(PC-CRLB).A more accurate and consistent lower bound is provided as the optimization metric since the PC-CRLB is based on the most recently real-ized measurements.A two-stage-based technique is proposed to solve the JBTAPA problem,which is originally NP-hard.Simulation results verify the effectiveness and efficiency of the proposed method.The results also imply that the target reflectivity plays one of the important roles in resource allocation.展开更多
In the signal processing for metrewave radar, the reflection paths of target echoes can cause severe error in the elevation estimation for the low-angle target tracking. The exact angles of the reflection paths are un...In the signal processing for metrewave radar, the reflection paths of target echoes can cause severe error in the elevation estimation for the low-angle target tracking. The exact angles of the reflection paths are unknown beforehand, and therefore, the reflection paths can not be suppressed easily. Therefore, in this article, an improved reflection paths suppression approach is presented. A block matrix aggregate is constructed based on the possible angles of the reflection paths. Combined with the beamforming-like processing, a generalized maximum likelihood estimation is derived to optimize the estimation. Moreover, the noise reduction method based on the Toeplitz covariance matrix is used for better performance. This approach is applied to the real data collected by the low-angle tracking radar with 8-channel vertical array. The experiment results show that the reflection effects are reduced and the accuracy of the elevation estimate is improved.展开更多
Abstract Low-angle faults include those occurring in thrust-nappe structures in a compressive setting and the detachment of metamorphic core complexes in an extensional setting. All low-angle faults have their own par...Abstract Low-angle faults include those occurring in thrust-nappe structures in a compressive setting and the detachment of metamorphic core complexes in an extensional setting. All low-angle faults have their own particularities. The low-angle fault plays an important role in controlling over some endogenetic metallic ore deposits. Based on studies of the Xiaoban gold deposit, Xinzhou gold deposit, and Longfengchang polymetallic ore deposit, and comparisons with other mines, the authors conclude the ore-controlling implications of low-angle faults as follows. (1) Because of high temperature and high pressure, as well as strong ductile deformation, the internal energy of the elements rises in the large-scale deep ductile low-angle faults, which causes the elements to activate and differentiate from the source rocks, forming ore-bearing hydrothermal solution, and bring mineralization to happen. (2) When rising from depths and flowing along the low-angle faults, the ore-bearing hydrothermal solution will alter and replace the tectonites in the fault zone. The rocks of the hanging side and the heading side differ in lithology, texture and structure, which results in changes or dissimilarities of the physical-chemical conditions. This destroys the balance of the hydrothermal solution system and causes the dissolved ore-forming elements to precipitate; as a result, a deposit is formed. Therefore, the meso-shallow ductile-brittle low-angle faults play the role of a geochemical interface in the process of mineralization. (3) Low-angle faults are often one of the important host structures.展开更多
Low elevation estimation,which has attracted wide attention due to the presence of specular multipath,is essential for tracking radars.Frequency agility not only has the advantage of strong anti-interference ability,b...Low elevation estimation,which has attracted wide attention due to the presence of specular multipath,is essential for tracking radars.Frequency agility not only has the advantage of strong anti-interference ability,but also can enhance the performance of tracking radars.A frequency-agile refined maximum likelihood(RML)algorithm based on optimal fusion is proposed.The algorithm constructs an optimization problem,which minimizes the mean square error(MSE)of angle estimation.Thereby,the optimal weight at different frequency points is obtained for fusing the angle estimation.Through theoretical analysis and simulation,the frequency-agile RML algorithm based on optimal fusion can improve the accuracy of angle estimation effectively.展开更多
In order to realize the elevation angle estimation for low-altitude targets at a low computational cost, a generalized multiple signal classification (GMUSIC) algorithm based on unitary transform is proposed, i.e., ...In order to realize the elevation angle estimation for low-altitude targets at a low computational cost, a generalized multiple signal classification (GMUSIC) algorithm based on unitary transform is proposed, i.e., the DU-GMUSlC algorithm. Firstly, the covariance matrix of received data is used to construct the Centro- Hermitian matrix. Then, the real-domain GMUSIC algorithm is used to implement the initial angle estimation, and the multipath attenuation coefficient is calculated in succession. Finally, the attenuation coefficient is taken into account in the GMUSIC method to carry out the secondary angle estimation which is beneficial to further improvement of the angle estimation accuracy. This method can meet requirements of low-angle accuracy as well as lower computational burden. Simulation results prove the correctness and effectiveness of the proposed algorithm. Moreover, field experiment data are used to further validate the effectiveness of this method.展开更多
The effect of dislocation structure evolution on low-angle grain boundary formation in 7050 aluminum alloy during aging was studied by using optical microscopy, transmission electron microscopy, and electron backscatt...The effect of dislocation structure evolution on low-angle grain boundary formation in 7050 aluminum alloy during aging was studied by using optical microscopy, transmission electron microscopy, and electron backscatter diffraction analysis of misorientation angle distribution, cumulative misorientation and geometrically necessary dislocation (GND) density. Experimental results indicate that coarse spindle-shaped grains with the dimension of 200 μm- 80 μm separate into fine equiaxed grains of 20μm in size as a result of newborn low-angle grain boundaries formed during the aging process. More specifically, the dislocation arrays, which are rearranged and formed due to scattered dislocations during earlier quenching, transform into low-angle grain boundaries with aging time. The relative frequency of 3°-5° low-angle grain boundaries increases to over 30%. The GND density, which describes low-angle grain boundaries with the misorientation angle under 3°, tends to decrease during initial aging. The inhomogeneous distribution of GNDs is affected by grain orientation. A decrease in GND density mainly occurs from 1.83 × 10^13 to 4.40 × 10^11 m^-2 in grains with 〈111〉 fiber texture. This is consistent with a decrease of unit cumulative misorientation. Precipitation on grain boundaries and the formation of a precipitation free zone (PFZ) are facilitated due to the eroding activity of the Graft etchant. Consequently, low-angle grain boundaries could be readily viewed by optical microscopy due to an increase in their electric potential difference.展开更多
It is always a challenging issue for radar systems to estimate the height of a low-angle target in the multipath propagation environment.The highly deterministic maximum likelihood estimator has a high accuracy,but th...It is always a challenging issue for radar systems to estimate the height of a low-angle target in the multipath propagation environment.The highly deterministic maximum likelihood estimator has a high accuracy,but the errors of the ground reflection coefficient and the reflecting surface height have serious influence on the method.In this paper,a robust es-timation method with less computation burden is proposed based on the compound reflection coefficient multipath model for low-angle targets.The compound reflection coefficient is es-timated from the received data of the array and then a one-di-mension generalized steering vector is constructed to estimate the target height.The algorithm is robust to the reflecting sur-face height error and the ground reflection coefficient error.Fi-nally,the experiment and simulation results demonstrate the validity of the proposed method.展开更多
The Louzidian low-angle ductile shear detachment zone at the south of Chifeng is a SE-dipping, low-angle normal fault system. It is composed mainly of ductile shear zone, ductile-brittle shear zone and brittle fault z...The Louzidian low-angle ductile shear detachment zone at the south of Chifeng is a SE-dipping, low-angle normal fault system. It is composed mainly of ductile shear zone, ductile-brittle shear zone and brittle fault zone. The ductile shear zone consists of, from bottom to top, mylonitic rocks, protomylonites and mylonites. Finite strain measurement of feldspar strain markers from those rocks using the Rf /φ method shows that strain intensities (Es) of the mylonite at core of the ductile shear zone (Es=0.65-0.96) are higher than those of the mylonitic rocks close to the granite intrusions (Es=0.59-0.62) and of the protomylonites at top of the ductile shear zone (Es= 0.47-0.70), and the strain types of the protomylonites and mylonties are elongate strain and plane-flattening strain, respectively. The kinematic vorticity values (Wk) estimated by the Polar Mohr diagram and the Rigid Grain Net range from 0.81 to 0.90 with an average of 0.85 for the protomylonites, and from 0.53 to 0.80 with 0.66 on average for the mylonites; Wk values of the extensional crenulation cleavage, i.e., C′, estimated by C′ method range from 0.63 to 0.37 with an average of 0.50. The angles between the maximum principal stress and shearing direction determined using the Maximum effective moment criterion evolved from 61° to 69° and to 75°, and finally normal to shearing direction. The results of strain and kinematic vorticity measurements suggest that high strain corresponds to low kinematic vorticity. Kinematic vorticity measurements show that the Louzidian low-angle ductile shear detachment zone is a result of a combination of simple-dominated general shearing at the early stage and pure-dominated general shearing at the late stage. All these, together with isotope geochronology and regional tectonic background, suggest that the Louzidian ductile shear detachment zone resulted from a combination of crust extension and magma intrusion. The model of simple shear at the early stage and pure shear at the late stage in the formation of metamorphic core complex has probably general significance.展开更多
Grain boundaries(GBs),as a prevalent structural characteristic,play a crucial role in the deformation of nanoporous metals with nanosized grains and ligaments.However,the fundamental understanding of GB-mediated defor...Grain boundaries(GBs),as a prevalent structural characteristic,play a crucial role in the deformation of nanoporous metals with nanosized grains and ligaments.However,the fundamental understanding of GB-mediated deformation is still lacking because the plastic behavior of discrete ligaments involving GBs remains to be unknown.Here,we report atomic scale visualizations of coupled GB dislocation climb and glide in nanoporous gold ligaments with low-angle GBs via in situ tensile straining inside a Cs-corrected transmission electron microscope.The zig-zag motion paths of GB dislocations are precisely determined by real-time tracking of the movements of dislocation cores.The concurrent climb and glide of the dislocation arrays are confined to a narrow GB region,greatly enhancing GB diffusion in the bicrystal ligament.Our findings of coupled dislocation climb and glide shine a light on the room-temperature deformation of nanoporous metals and provide a time-dependent atomic-level physical image for GB engineering.展开更多
The phase field method was applied to study the microstructure evolution of Ni4Ti3 precipitates during stress-free and stress-assisted aging of bi-crystalline NiTi shape memory alloys (SAMs) with two different initi...The phase field method was applied to study the microstructure evolution of Ni4Ti3 precipitates during stress-free and stress-assisted aging of bi-crystalline NiTi shape memory alloys (SAMs) with two different initial Ni-contents of 51.5% and 52.5% (mole fraction), respectively. The simulation results show that, during stress-free aging of the NiTi alloy with a low supersaturation of Ni (i.e., Ti-51.5%Ni), the Ni4Ti3 precipitates exhibit a heterogeneous distribution with a high number density of particles at the grain boundary, leaving most of the grain interiors free of precipitates; while for the NiTi alloy with a high supersaturation of Ni (i.e., Ti-52.5%Ni), the Ni4Ti3 precipitates show a homogeneous distribution across the entire simulation system. The stress-assisted aging can give rise to homogeneous distribution of the precipitates, regardless of the initial Ni-content; however, the distribution of variant type within the two grains is heterogeneous.展开更多
The MohroCoulomb criterion has been widely used to explain formation of fractures. However, it fails to explain large strain deformation that widely occurs in nature. There is presently a new theory, the MEMC, which i...The MohroCoulomb criterion has been widely used to explain formation of fractures. However, it fails to explain large strain deformation that widely occurs in nature. There is presently a new theory, the MEMC, which is mathematically expressed as Meff = ((σ1-σ3) L.sin 2α sin α)/2, where σ1-σ3 represents the yield strength of the related rock, L is a unit length and a is the angle between σ1 and deformation bands. This criterion demonstrates that the maximum value appears at angles of ±54.7° to σ1 and there is a slight difference in the moment in the range of 55°±10°. The range covers the whole observations available from nature and experiments. Its major implications include: (1) it can be used to determine the stress state when the related deformation features formed; (2) it provides a new approach to determine the Wk of the related ductile shear zone if only the ratio of the vorticity and strain rate remains fixed; (3) It can be used to explain (a) the obtuse angle in the contraction direction of conjugate kink-bands and extensional crenulation cleavages, (b) formation of low-angle normal faults and high-angle reverse faults, (c) lozenge ductile shear zones in basement terranes, (d) some crocodile structures in seismic profiles and (e) detachment folds in foreland basins.展开更多
Nanolaminated structures composed of low-angle grain boundaries(LAGBs) possess high thermal stability. In this paper, a gradient nanolaminated(GNL) surface layer with smooth finish was fabricated on an interstitial-fr...Nanolaminated structures composed of low-angle grain boundaries(LAGBs) possess high thermal stability. In this paper, a gradient nanolaminated(GNL) surface layer with smooth finish was fabricated on an interstitial-free steel by means of surface mechanical rolling treatment. Microstructural observations demonstrated that the average lamellar thickness is about 80 nm in the topmost surface layer and increases with increasing depth. High thermal stability was confirmed in the GNL surface layer after annealing at 500℃. Diffusion measurements showed that effective diffusivity of Cr in GNL layer is 4–6 orders of magnitude higher than lattice diffusivity within the temperature range from 400 to 500℃. This might be attributed to numerous LAGBs or dislocation structures with a higher energy state in the GNL surface layer. This work demonstrates the possibility to advanced chromizing(or other surface alloying)processes of steels with formation of GNL surface layer, so that a thicker alloyed surface layer with a stable nanostructure is achieved.展开更多
Refining grains into nanoscale can significantly strengthen and harden metallic materials;however,nanograined metals generally exhibit low thermal stability,hindering their practical applications.In this work,we explo...Refining grains into nanoscale can significantly strengthen and harden metallic materials;however,nanograined metals generally exhibit low thermal stability,hindering their practical applications.In this work,we exploit the superposition of the contribution of nanotwins,low-angle grain boundaries,and microalloying to tailor superior combinations of high hardness and good thermal stability in Ni and Ni alloys.For the nanotwinned Ni having a twin thickness of∼2.9 nm and grain size of 28 nm,it exhibits a hardness over 8.0 GPa and an onset coarsening temperature of 623 K,both of which are well above those of nanograined Ni.Re/Mo microalloying can further improve the onset coarsening temperature to 773 K without comprising hardness.Our analyses reveal that high hardness is achieved via strengthen-ing offered by extremely fine nanotwins.Meanwhile,the superior thermal stability is mainly ascribed to the low driving force for grain growth induced by the low-angle columnar boundary architecture and to the additional pinning effect on the migration of twin/columnar boundaries provided by minor Re/Mo solutes.The present work not only reveals a family of nanotwinned metals possessing the combination of ultra-high hardness and high thermal stability but also provides a strategy for tailoring properties of metallic materials by pairing low-angle grain boundaries and twin boundaries.展开更多
The laser surface remelting (LSR) treatment was performed to Al-2.0 wt% Fe alloy with a 2 kW Yb-fiber laser (IPG YLR-2000S). The substrate and laser-treated material characterization were executed using different tech...The laser surface remelting (LSR) treatment was performed to Al-2.0 wt% Fe alloy with a 2 kW Yb-fiber laser (IPG YLR-2000S). The substrate and laser-treated material characterization were executed using different techniques. Among them, the microstructure was analyzed by optical microscope, SEM, low-angle X-ray diffraction (LAXRD) and the corrosion test was made in aerated solution of 0.1 M H2SO4 at a temperature of 25°C ± 0.5°C. As result was shown, the micrograph of LSR-treated material displaying can be a fine cellular structure and the existence of certain nano-porosities and a similar to a nano-dendritic growth was observed too. The characteristic of melted zone was constituted of metastable phases according to the result of x-rays and the behavior corrosion as a result of the LSR-treated sample, which it was shown to be more resistant to corrosion than the untreated sample. A comparative study was carried out of the cyclic polarization of the laser-treated and untreated samples, demonstrating that the reduction and oxidation reverse peaks were not observed and being the cyclic polarization behavior was of irreversible character in both samples, however, the LSR-treated sample propitious the passivity on the surface also reduced the corrosion phenomena. Wherefore, this type of laser-treated alloy can be applied in the aerospace, aeronautic and automobilist industries.展开更多
Amphiphilic complexes of N-octadecyl-8-hydroxy-2-quinoline carboxamide, M (OQ)(2), form stable monolayer on pure water subphase and can be easily fabricated as highly ordered and uniform LB films, which were character...Amphiphilic complexes of N-octadecyl-8-hydroxy-2-quinoline carboxamide, M (OQ)(2), form stable monolayer on pure water subphase and can be easily fabricated as highly ordered and uniform LB films, which were characterized by absorption spectra and low-angle X-ray diffraction measurements.展开更多
The amphiphilic porphyrin, 5, 10, 15, 20-tetra-(4-hexadecylpyridiniumyl) porphyrin bromide (TC 16PyP), has good film-forming property on the air/water interface. The structure of TC 16PyP Langmuir-Blodgett films was c...The amphiphilic porphyrin, 5, 10, 15, 20-tetra-(4-hexadecylpyridiniumyl) porphyrin bromide (TC 16PyP), has good film-forming property on the air/water interface. The structure of TC 16PyP Langmuir-Blodgett films was characterized by UV-Vis absorption spectra, fluorescence spectra and low-angle X-ray diffraction (LAXD). It is indicated that TC 16PyP LB films have good stability and structure homogeneity. The photoelectric behavior of electrochemical cell of TC 16PyP LB films deposited on SnO 2 optically transparent electrodes (SnO 2 OTE) were investigated by using the system of bicell and bielectrode. The experimental results show that the photocell can generate large and stable photocurrent and photovoltage, the photoelectric device made from TC 16PyP LB films has a potential application value.展开更多
基金sponsored by the National Natural Science Foundation of China(Grant Nos.52074182,52304406 and U23A20612)the Natural Science Foundation of Shanghai(Grant Nos.22ZR1430700 and 23TS1401900)+1 种基金the National Science and Technology Major Project(No.2017-VII-0008-0102)Neng Ren acknowledges the Startup Fund for Young Faculty at SJTU.
文摘Low-angle grain boundaries(LAGBs)are one of the solidification defects in single-crystal nickel-based superalloys and are detrimental to the mechanical properties.The formation of LAGBs is related to dendrite deformation,while the mechanism has not been fully understood at the mesoscale.In this work,a model coupling dendrite growth,thermal-solutal-fluid flow,thermal stress and flow-induced dendrite deformation via cellular automaton-finite volume method and finite element method is developed to study the formation of LAGBs in single crystal superalloys.Results reveal that the bending of dendrites is primarily attributed to the thermal-solutal convection-induced dendrite deformation.The mechanical stress of dendrite deformation develops and stabilises as solidification proceeds.As the width of the mushy zone gets stable,stresses are built up and then dendritic elastoplastic bending occurs at some thin primary dendrites with the wider inter-dendritic space.There are three characteristic zones of stress distribution along the solidification direction:(i)no stress concentration in the fully solidified regions;(ii)stress developing in the primary dendrite bridging region,and(iii)stress decrease in the inter-dendritic uncontacted zone.The stresses reach maximum near the initial dendrite bridging position.The lower temperature gradients,the finer primary dendritic trunks and sudden reductions in local dendritic trunk radius jointly promote the elastoplastic deformation of the dendrites.Corresponding measures are suggested to reduce LAGBs.
基金Project(51071122)supported by the National Natural Science Foundation of ChinaProject(B08040)supported by the Program of Introducing Talents of Discipline to Universities,China("111"Project)
文摘The precipitation sequence of η(MgZn2) phase along low-angle grain boundaries in Al-Zn-Mg-Cu alloy was investigated by examining samples aged at 135 ℃ for various times from 5 min to 6 h. High resolution transmission electron microscopy (HRTEM) observations and energy dispersive X-ray spectroscopy (EDX) analysis indicate that the precipitation sequence of η phase along low-angle grain boundaries should be supersaturated solid solution (SSS)→vacancy-rich clusters (VRC)→GP Ⅱ zones→η'→η. Based on the theory of non-equilibrium grain boundary segregation (NGS) and non-equilibrium grain boundary co-segregation (NGCS), the excessive solute elements gradually segregate to the grain boundaries by the diffusion of the solute-vacancy complex during aging treatment. The grain boundary segregation plays an important role in the nucleation and growth of VRC, GP Ⅱ zones, η' phase as well as η phase.
基金supported by the Major National Science and Technology Programs,China (Nos. 2016ZX05026-003-001 and 2011ZX05023-001-015)
文摘Low-angle normal faults(dip<30°,LANFs)are widespread in the northern margin of the South China Sea where the maximum crust thickness is approximately 30.0 km.Based on 3 D seismic survey data and drilling wells in the Enping sag,evidences for LANFs that initially formed at high-angles are discussed.After a detailed investigation of extensional fault system and description of 3 D fault geometry,the initial fault dips under the model of distributed vertical simple shear are also calculated.The results indicate that the present-day dip angles of the LANFs are in the range of 12°to 29°,and the initial fault dip angles are in the range of 39°to 49°.Deep seismic imaging suggests that the upper crust in the footwall block of the LANFs was tilted at an angle of ~14°to 22°due to the isostatic rebound during rifting.Moreover,the temporal and spatial sequences of the lateral growth of the LANFs have been investigated by the seismic interpretation of four isochronous stratigraphic interfaces,which demonstrates that two individual fault segments propagated towards each other and subsequently,were hard-linked during the Early Eocene.
基金Project supported National Natural Science Foundation of China(60025409 and 50472068)National"863"High Technology Plan(2001AA311080)
文摘High-resolution X-ray diffractometry(HRXRD)was used to assess the quality of 6H-SiC crystals grown by sublimation method.The results show the occurrence of low-angle grain boundaries(LB)is close relative to the inclination of the crystal interface.At the central faceted region with 0°inclination the crystal is of high structural perfection.However,at the region close to the facet with less than 5°inclination LB occurs slightly and at the region close to the peripheral polytype ring with more than 5°inclination LB defect occurs heavily.The density of LB can be drastically reduced by decreasing radial temperature gradient that determines the shape of the crystal growth interface.
基金supported by the National Nature Science Foundation of China(No.62001506).
文摘The low-angle tracking in multipath interference is a challenging problem for the Very High Frequency(VHF)radar.The colocated Multi-Input Multi-Output(MIMO)technique can remedy such a defect.In this paper,a Joint Beam-Target Assignment and Power Allocation(JBTAPA)strategy is proposed for the VHF-MIMO radar network tracking low-angle targets.The core of the JBTAPA strategy is to improve the worst tracking accuracy among multiple targets by assigning appropriate beams to targets and allocating the power resource in each beam using the feedback information in the tracking cycle.Taking into account the transmit multipath and receive multipath,we derive the Cramer-Rao Lower Bound(CRLB)on angle estimate,which is then incor-porated in the Predicted Conditional CRLB(PC-CRLB).A more accurate and consistent lower bound is provided as the optimization metric since the PC-CRLB is based on the most recently real-ized measurements.A two-stage-based technique is proposed to solve the JBTAPA problem,which is originally NP-hard.Simulation results verify the effectiveness and efficiency of the proposed method.The results also imply that the target reflectivity plays one of the important roles in resource allocation.
文摘In the signal processing for metrewave radar, the reflection paths of target echoes can cause severe error in the elevation estimation for the low-angle target tracking. The exact angles of the reflection paths are unknown beforehand, and therefore, the reflection paths can not be suppressed easily. Therefore, in this article, an improved reflection paths suppression approach is presented. A block matrix aggregate is constructed based on the possible angles of the reflection paths. Combined with the beamforming-like processing, a generalized maximum likelihood estimation is derived to optimize the estimation. Moreover, the noise reduction method based on the Toeplitz covariance matrix is used for better performance. This approach is applied to the real data collected by the low-angle tracking radar with 8-channel vertical array. The experiment results show that the reflection effects are reduced and the accuracy of the elevation estimate is improved.
文摘Abstract Low-angle faults include those occurring in thrust-nappe structures in a compressive setting and the detachment of metamorphic core complexes in an extensional setting. All low-angle faults have their own particularities. The low-angle fault plays an important role in controlling over some endogenetic metallic ore deposits. Based on studies of the Xiaoban gold deposit, Xinzhou gold deposit, and Longfengchang polymetallic ore deposit, and comparisons with other mines, the authors conclude the ore-controlling implications of low-angle faults as follows. (1) Because of high temperature and high pressure, as well as strong ductile deformation, the internal energy of the elements rises in the large-scale deep ductile low-angle faults, which causes the elements to activate and differentiate from the source rocks, forming ore-bearing hydrothermal solution, and bring mineralization to happen. (2) When rising from depths and flowing along the low-angle faults, the ore-bearing hydrothermal solution will alter and replace the tectonites in the fault zone. The rocks of the hanging side and the heading side differ in lithology, texture and structure, which results in changes or dissimilarities of the physical-chemical conditions. This destroys the balance of the hydrothermal solution system and causes the dissolved ore-forming elements to precipitate; as a result, a deposit is formed. Therefore, the meso-shallow ductile-brittle low-angle faults play the role of a geochemical interface in the process of mineralization. (3) Low-angle faults are often one of the important host structures.
基金supported by the Fund for Foreign Scholars in University Research and Teaching Programs(the 111 Project)(B18039).
文摘Low elevation estimation,which has attracted wide attention due to the presence of specular multipath,is essential for tracking radars.Frequency agility not only has the advantage of strong anti-interference ability,but also can enhance the performance of tracking radars.A frequency-agile refined maximum likelihood(RML)algorithm based on optimal fusion is proposed.The algorithm constructs an optimization problem,which minimizes the mean square error(MSE)of angle estimation.Thereby,the optimal weight at different frequency points is obtained for fusing the angle estimation.Through theoretical analysis and simulation,the frequency-agile RML algorithm based on optimal fusion can improve the accuracy of angle estimation effectively.
基金supported by the National Natural Science Foundation of China(61101224)the Research on the Altitude Measurement Method for VHF Radar under the Complicated Environment
文摘In order to realize the elevation angle estimation for low-altitude targets at a low computational cost, a generalized multiple signal classification (GMUSIC) algorithm based on unitary transform is proposed, i.e., the DU-GMUSlC algorithm. Firstly, the covariance matrix of received data is used to construct the Centro- Hermitian matrix. Then, the real-domain GMUSIC algorithm is used to implement the initial angle estimation, and the multipath attenuation coefficient is calculated in succession. Finally, the attenuation coefficient is taken into account in the GMUSIC method to carry out the secondary angle estimation which is beneficial to further improvement of the angle estimation accuracy. This method can meet requirements of low-angle accuracy as well as lower computational burden. Simulation results prove the correctness and effectiveness of the proposed algorithm. Moreover, field experiment data are used to further validate the effectiveness of this method.
文摘The effect of dislocation structure evolution on low-angle grain boundary formation in 7050 aluminum alloy during aging was studied by using optical microscopy, transmission electron microscopy, and electron backscatter diffraction analysis of misorientation angle distribution, cumulative misorientation and geometrically necessary dislocation (GND) density. Experimental results indicate that coarse spindle-shaped grains with the dimension of 200 μm- 80 μm separate into fine equiaxed grains of 20μm in size as a result of newborn low-angle grain boundaries formed during the aging process. More specifically, the dislocation arrays, which are rearranged and formed due to scattered dislocations during earlier quenching, transform into low-angle grain boundaries with aging time. The relative frequency of 3°-5° low-angle grain boundaries increases to over 30%. The GND density, which describes low-angle grain boundaries with the misorientation angle under 3°, tends to decrease during initial aging. The inhomogeneous distribution of GNDs is affected by grain orientation. A decrease in GND density mainly occurs from 1.83 × 10^13 to 4.40 × 10^11 m^-2 in grains with 〈111〉 fiber texture. This is consistent with a decrease of unit cumulative misorientation. Precipitation on grain boundaries and the formation of a precipitation free zone (PFZ) are facilitated due to the eroding activity of the Graft etchant. Consequently, low-angle grain boundaries could be readily viewed by optical microscopy due to an increase in their electric potential difference.
基金supported by the National Natural Science Foundation of China(61771367)the Science and Technology on Communication Networks Laboratory(6142104190204).
文摘It is always a challenging issue for radar systems to estimate the height of a low-angle target in the multipath propagation environment.The highly deterministic maximum likelihood estimator has a high accuracy,but the errors of the ground reflection coefficient and the reflecting surface height have serious influence on the method.In this paper,a robust es-timation method with less computation burden is proposed based on the compound reflection coefficient multipath model for low-angle targets.The compound reflection coefficient is es-timated from the received data of the array and then a one-di-mension generalized steering vector is constructed to estimate the target height.The algorithm is robust to the reflecting sur-face height error and the ground reflection coefficient error.Fi-nally,the experiment and simulation results demonstrate the validity of the proposed method.
基金supported by National Natural Science Foundation of China (Grant Nos.90714006 and 40672146)the Deep Exploration Technology and Experimentation Program of China (Grant No.SinoProbe-08-01-03)
文摘The Louzidian low-angle ductile shear detachment zone at the south of Chifeng is a SE-dipping, low-angle normal fault system. It is composed mainly of ductile shear zone, ductile-brittle shear zone and brittle fault zone. The ductile shear zone consists of, from bottom to top, mylonitic rocks, protomylonites and mylonites. Finite strain measurement of feldspar strain markers from those rocks using the Rf /φ method shows that strain intensities (Es) of the mylonite at core of the ductile shear zone (Es=0.65-0.96) are higher than those of the mylonitic rocks close to the granite intrusions (Es=0.59-0.62) and of the protomylonites at top of the ductile shear zone (Es= 0.47-0.70), and the strain types of the protomylonites and mylonties are elongate strain and plane-flattening strain, respectively. The kinematic vorticity values (Wk) estimated by the Polar Mohr diagram and the Rigid Grain Net range from 0.81 to 0.90 with an average of 0.85 for the protomylonites, and from 0.53 to 0.80 with 0.66 on average for the mylonites; Wk values of the extensional crenulation cleavage, i.e., C′, estimated by C′ method range from 0.63 to 0.37 with an average of 0.50. The angles between the maximum principal stress and shearing direction determined using the Maximum effective moment criterion evolved from 61° to 69° and to 75°, and finally normal to shearing direction. The results of strain and kinematic vorticity measurements suggest that high strain corresponds to low kinematic vorticity. Kinematic vorticity measurements show that the Louzidian low-angle ductile shear detachment zone is a result of a combination of simple-dominated general shearing at the early stage and pure-dominated general shearing at the late stage. All these, together with isotope geochronology and regional tectonic background, suggest that the Louzidian ductile shear detachment zone resulted from a combination of crust extension and magma intrusion. The model of simple shear at the early stage and pure shear at the late stage in the formation of metamorphic core complex has probably general significance.
基金supported by the National Natural Science Foundation of China(Nos.52173224,52130105,and 51821001)Natural Science Foundation of Shanghai(No.21ZR1431200)the Program for Professor of Special Appointment(Eastern Scholar)at Shanghai Institutions of Higher Learning.
文摘Grain boundaries(GBs),as a prevalent structural characteristic,play a crucial role in the deformation of nanoporous metals with nanosized grains and ligaments.However,the fundamental understanding of GB-mediated deformation is still lacking because the plastic behavior of discrete ligaments involving GBs remains to be unknown.Here,we report atomic scale visualizations of coupled GB dislocation climb and glide in nanoporous gold ligaments with low-angle GBs via in situ tensile straining inside a Cs-corrected transmission electron microscope.The zig-zag motion paths of GB dislocations are precisely determined by real-time tracking of the movements of dislocation cores.The concurrent climb and glide of the dislocation arrays are confined to a narrow GB region,greatly enhancing GB diffusion in the bicrystal ligament.Our findings of coupled dislocation climb and glide shine a light on the room-temperature deformation of nanoporous metals and provide a time-dependent atomic-level physical image for GB engineering.
基金Project (50871039) supported by the National Natural Science Foundation of ChinaProject (2011ZB0007) supported by the Fundamental Research Funds for Central Universities of ChinaProject (201104090881) support by China Postdoctoral Science Foundation
文摘The phase field method was applied to study the microstructure evolution of Ni4Ti3 precipitates during stress-free and stress-assisted aging of bi-crystalline NiTi shape memory alloys (SAMs) with two different initial Ni-contents of 51.5% and 52.5% (mole fraction), respectively. The simulation results show that, during stress-free aging of the NiTi alloy with a low supersaturation of Ni (i.e., Ti-51.5%Ni), the Ni4Ti3 precipitates exhibit a heterogeneous distribution with a high number density of particles at the grain boundary, leaving most of the grain interiors free of precipitates; while for the NiTi alloy with a high supersaturation of Ni (i.e., Ti-52.5%Ni), the Ni4Ti3 precipitates show a homogeneous distribution across the entire simulation system. The stress-assisted aging can give rise to homogeneous distribution of the precipitates, regardless of the initial Ni-content; however, the distribution of variant type within the two grains is heterogeneous.
基金This work is financed by the grants of the National Natural Science Foundation of China (Grant No 40272084, 40472101 and 40572123).
文摘The MohroCoulomb criterion has been widely used to explain formation of fractures. However, it fails to explain large strain deformation that widely occurs in nature. There is presently a new theory, the MEMC, which is mathematically expressed as Meff = ((σ1-σ3) L.sin 2α sin α)/2, where σ1-σ3 represents the yield strength of the related rock, L is a unit length and a is the angle between σ1 and deformation bands. This criterion demonstrates that the maximum value appears at angles of ±54.7° to σ1 and there is a slight difference in the moment in the range of 55°±10°. The range covers the whole observations available from nature and experiments. Its major implications include: (1) it can be used to determine the stress state when the related deformation features formed; (2) it provides a new approach to determine the Wk of the related ductile shear zone if only the ratio of the vorticity and strain rate remains fixed; (3) It can be used to explain (a) the obtuse angle in the contraction direction of conjugate kink-bands and extensional crenulation cleavages, (b) formation of low-angle normal faults and high-angle reverse faults, (c) lozenge ductile shear zones in basement terranes, (d) some crocodile structures in seismic profiles and (e) detachment folds in foreland basins.
基金Financial supports from the National Key Research and Development Program of China (No. 2017YFA0204401)Shenyang National Laboratory for Materials Science (No. 2015RP04)
文摘Nanolaminated structures composed of low-angle grain boundaries(LAGBs) possess high thermal stability. In this paper, a gradient nanolaminated(GNL) surface layer with smooth finish was fabricated on an interstitial-free steel by means of surface mechanical rolling treatment. Microstructural observations demonstrated that the average lamellar thickness is about 80 nm in the topmost surface layer and increases with increasing depth. High thermal stability was confirmed in the GNL surface layer after annealing at 500℃. Diffusion measurements showed that effective diffusivity of Cr in GNL layer is 4–6 orders of magnitude higher than lattice diffusivity within the temperature range from 400 to 500℃. This might be attributed to numerous LAGBs or dislocation structures with a higher energy state in the GNL surface layer. This work demonstrates the possibility to advanced chromizing(or other surface alloying)processes of steels with formation of GNL surface layer, so that a thicker alloyed surface layer with a stable nanostructure is achieved.
基金This work was supported by the National Natural Science Foundation of China(Nos.52022100,52001075,and 52101162)the Shenyang National Laboratory for Materials Science(No.E01SL102)+6 种基金J.Pan is also grateful for support from the Youth In-novation Promotion Association of the Chinese Academy of Sci-ences(No.2020194)Y.Li acknowledges financial support from the Shenyang National Laboratory for Materials Science.J.Lu gratefully acknowledges the support of the National Key R&D Program of China(No.2017YFA0204403)the Major Program of the National Natural Science Foundation of China(NSFC,No.51590892)the Hong Kong Collaborative Research Fund(CRF)Scheme(C4026-17W)Theme-Based Research Scheme(Ref.T13-402/17-N)Gen-eral Research Fund(GRF)Scheme(CityU 11247516,CityU 11209918,CityU 11216219)Shenzhen-Hong Kong Science and Technology Innovation Cooperation Zone Shenzhen Park Project(No.HZQB-KCZYB-2020030).Atom probe tomography research was conducted at the Inter-University 3D Atom Probe Tomography Unit of the City University of Hong Kong,which is supported by the CityU grant 9360161.
文摘Refining grains into nanoscale can significantly strengthen and harden metallic materials;however,nanograined metals generally exhibit low thermal stability,hindering their practical applications.In this work,we exploit the superposition of the contribution of nanotwins,low-angle grain boundaries,and microalloying to tailor superior combinations of high hardness and good thermal stability in Ni and Ni alloys.For the nanotwinned Ni having a twin thickness of∼2.9 nm and grain size of 28 nm,it exhibits a hardness over 8.0 GPa and an onset coarsening temperature of 623 K,both of which are well above those of nanograined Ni.Re/Mo microalloying can further improve the onset coarsening temperature to 773 K without comprising hardness.Our analyses reveal that high hardness is achieved via strengthen-ing offered by extremely fine nanotwins.Meanwhile,the superior thermal stability is mainly ascribed to the low driving force for grain growth induced by the low-angle columnar boundary architecture and to the additional pinning effect on the migration of twin/columnar boundaries provided by minor Re/Mo solutes.The present work not only reveals a family of nanotwinned metals possessing the combination of ultra-high hardness and high thermal stability but also provides a strategy for tailoring properties of metallic materials by pairing low-angle grain boundaries and twin boundaries.
文摘The laser surface remelting (LSR) treatment was performed to Al-2.0 wt% Fe alloy with a 2 kW Yb-fiber laser (IPG YLR-2000S). The substrate and laser-treated material characterization were executed using different techniques. Among them, the microstructure was analyzed by optical microscope, SEM, low-angle X-ray diffraction (LAXRD) and the corrosion test was made in aerated solution of 0.1 M H2SO4 at a temperature of 25°C ± 0.5°C. As result was shown, the micrograph of LSR-treated material displaying can be a fine cellular structure and the existence of certain nano-porosities and a similar to a nano-dendritic growth was observed too. The characteristic of melted zone was constituted of metastable phases according to the result of x-rays and the behavior corrosion as a result of the LSR-treated sample, which it was shown to be more resistant to corrosion than the untreated sample. A comparative study was carried out of the cyclic polarization of the laser-treated and untreated samples, demonstrating that the reduction and oxidation reverse peaks were not observed and being the cyclic polarization behavior was of irreversible character in both samples, however, the LSR-treated sample propitious the passivity on the surface also reduced the corrosion phenomena. Wherefore, this type of laser-treated alloy can be applied in the aerospace, aeronautic and automobilist industries.
文摘Amphiphilic complexes of N-octadecyl-8-hydroxy-2-quinoline carboxamide, M (OQ)(2), form stable monolayer on pure water subphase and can be easily fabricated as highly ordered and uniform LB films, which were characterized by absorption spectra and low-angle X-ray diffraction measurements.
文摘The amphiphilic porphyrin, 5, 10, 15, 20-tetra-(4-hexadecylpyridiniumyl) porphyrin bromide (TC 16PyP), has good film-forming property on the air/water interface. The structure of TC 16PyP Langmuir-Blodgett films was characterized by UV-Vis absorption spectra, fluorescence spectra and low-angle X-ray diffraction (LAXD). It is indicated that TC 16PyP LB films have good stability and structure homogeneity. The photoelectric behavior of electrochemical cell of TC 16PyP LB films deposited on SnO 2 optically transparent electrodes (SnO 2 OTE) were investigated by using the system of bicell and bielectrode. The experimental results show that the photocell can generate large and stable photocurrent and photovoltage, the photoelectric device made from TC 16PyP LB films has a potential application value.