期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Interaction mechanism of ferrate(Ⅵ) with arsenopyrite surface and its effect on flotation separation of chalcopyrite from arsenopyrite 被引量:4
1
作者 Run-peng LIAO Pan-jin HU +4 位作者 Shu-ming WEN Yong-xing ZHENG Xian-hui QIU Jin-fang LÜ Jian LIU 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2022年第11期3731-3743,共13页
Potassium ferrate(K_(2)FeO_(4)) was used as a novel environmental-friendly depressant,and its inhibition effect on flotation performance of arsenopyrite and chalcopyrite using potassium ethyl xanthate(PEX)as a collect... Potassium ferrate(K_(2)FeO_(4)) was used as a novel environmental-friendly depressant,and its inhibition effect on flotation performance of arsenopyrite and chalcopyrite using potassium ethyl xanthate(PEX)as a collector was investigated by flotation experiments,contact angle measurements,adsorption measurements,localized electrochemical impedance spectroscopy(LEIS)measurements,and X-ray photoelectron spectroscopy(XPS)analyses.The results showed that K_(2)FeO_(4)strongly depressed arsenopyrite in a pH range of 4−11,and the flotation separation of chalcopyrite from arsenopyrite could be realized in the presence of 5×10^(−4)mol/L K_(2)FeO_(4)and 5×10^(−5)mol/L PEX at pH 8 or 10.In the presence of K_(2)FeO_(4) and PEX,the contact angle and the xanthate adsorption capacity of arsenopyrite decreased significantly.LEIS measurements showed that the addition of ferrate could significantly increase the impedance of the arsenopyrite surface.XPS analyses further confirmed that ferrate accelerated the oxidation of arsenopyrite surface. 展开更多
关键词 ferrate(Ⅵ) ARSENOPYRITE CHALCOPYRITE low-alkalinity flotation separation
在线阅读 下载PDF
Electro-oxidation of 5-hydroxymethylfurfural in a low-concentrated alkaline electrolyte by enhancing hydroxyl adsorption over a single-atom supported catalyst
2
作者 Xiaoxia Xia Jingyi Xu +8 位作者 Xinru Yu Jing Yang An-Zhen Li Kaiyue Ji Lei Li Min Ma Qian Shao Ruixiang Ge Haohong Duan 《Science Bulletin》 SCIE EI CAS CSCD 2024年第18期2870-2880,共11页
Electrocatalytic oxidation of 5-hydroxymethylfurfural(HMF)to 2,5-furandicarboxylic acid(FDCA),a sustainable strategy to produce bio-based plastic monomer,is always conducted in a high-concentration alkaline solution(1... Electrocatalytic oxidation of 5-hydroxymethylfurfural(HMF)to 2,5-furandicarboxylic acid(FDCA),a sustainable strategy to produce bio-based plastic monomer,is always conducted in a high-concentration alkaline solution(1.0 mol L^(-1)KOH)for high activity.However,such high concentration of alkali poses challenges including HMF degradation and high operation costs associated with product separation.Herein,we report a single-atom-ruthenium supported on Co3O4(Ru1-Co3O4)as a catalyst that works efficiently in a low-concentration alkaline electrolyte(0.1 mol L^(-1)KOH),exhibiting a low potential of 1.191 V versus a reversible hydrogen electrode to achieve 10 m A cm^(-2)in 0.1 mol L^(-1)KOH,which outperforms previous catalysts.Electrochemical studies demonstrate that single-atom-Ru significantly enhances hydroxyl(OH-)adsorption with insufficient OH-supply,thus improving HMF oxidation.To showcase the potential of Ru1-Co3O4catalyst,we demonstrate its high efficiency in a flow reactor under industrially relevant conditions.Eventually,techno-economic analysis shows that substitution of the conventional1.0 mol L^(-1)KOH with 0.1 mol L^(-1)KOH electrolyte may significantly reduce the minimum selling price of FDCA by 21.0%.This work demonstrates an efficient catalyst design for electrooxidation of biomass working without using strong alkaline electrolyte that may contribute to more economic biomass electro-valorization. 展开更多
关键词 Biomass upgrading Electro-oxidation Single-atom catalyst low-alkaline medium
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部