The GaoFen7(GF7)optical satellite is the first Chinese civilian sub-meter high-resolution stereo mapping satellite and is equipped with a double linear array camera and laser altimeter to achieve large-scale topograph...The GaoFen7(GF7)optical satellite is the first Chinese civilian sub-meter high-resolution stereo mapping satellite and is equipped with a double linear array camera and laser altimeter to achieve large-scale topographic mapping.To improve the accuracy of attitude determination,an attitude determination system comprised of four star sensors is loaded.According to the measurement accuracy and steady performance,the star sensors 1a and 1b is usually used together for satellite attitude calculation,which is called the conventional mode of attitude determination.Then,the combination of star sensors 2a and 2b is called the unconventional mode of attitude determination.Affected by variations in the incident angle of sunlight and solar radiation,thermal deformation occurs in the body and installation structure of the star sensor,which causes Attitude Low-Frequency Error(ALFE)and seriously influences the consistency of attitude determination results of different combination modes for multiple star sensors system.This study proposes an ALFE analysis and calibration approach for the multiple star sensors system of GF7 satellite to ensure the consistency of attitude determination results of different combination modes.Based on the statistical characteristics of the angles of the three axes,the installation parameters of the four star sensors are first calibrated.After analyzing the characteristics of the optical axis angles within 1420 orbit periods over 135 days,the segmented ALFE compensation model between the unconventional and conventional modes is proposed based on the Fourier series model and input parameter of latitude.Based on the on-orbit installation parameters and the ALFE model,the precise attitude determination results of the unconventional mode are calculated.Experimental results show that the attitude determination consistency after compensation is better than 2″.Moreover,the reliable application time range of the compensation model is 30 days to satisfy the requirements for high-precision attitude determination of GF7 satellite.展开更多
<div style="text-align:justify;"> According to the problem that the low measurement accuracy of TH-1 satellite star sensor, the low frequency and “slow drift” error which cannot be ignored in the att...<div style="text-align:justify;"> According to the problem that the low measurement accuracy of TH-1 satellite star sensor, the low frequency and “slow drift” error which cannot be ignored in the attitude determination system, resulting in obvious random error in the horizontal position and elevation direction, and the change of the error with time and latitude, cannot be calibrated by the ground field of the real problem. In this paper, a low frequency detection model is established by using the principle of relative orientation, and the low frequency error is obtained by parallax elimination. Finally, the satellite attitude is compensated and the more accurate exterior orientation elements are obtained, thus improving the positioning accuracy and stability. The experimental results show that: the proposed methods are feasible, and by using the model to dynamically calibrate the exterior orientation angle elements on orbit, the plane and elevation errors of the ground points can be basically eliminated. The global uncontrollable positioning accuracy and stability of the photogrammetry satellite are improved. </div>展开更多
基金supported by the National Science Fund for Distinguished Young Scholars[grant number 61825103]the Shanghai Aerospace Science and Technology Innovation Fund.
文摘The GaoFen7(GF7)optical satellite is the first Chinese civilian sub-meter high-resolution stereo mapping satellite and is equipped with a double linear array camera and laser altimeter to achieve large-scale topographic mapping.To improve the accuracy of attitude determination,an attitude determination system comprised of four star sensors is loaded.According to the measurement accuracy and steady performance,the star sensors 1a and 1b is usually used together for satellite attitude calculation,which is called the conventional mode of attitude determination.Then,the combination of star sensors 2a and 2b is called the unconventional mode of attitude determination.Affected by variations in the incident angle of sunlight and solar radiation,thermal deformation occurs in the body and installation structure of the star sensor,which causes Attitude Low-Frequency Error(ALFE)and seriously influences the consistency of attitude determination results of different combination modes for multiple star sensors system.This study proposes an ALFE analysis and calibration approach for the multiple star sensors system of GF7 satellite to ensure the consistency of attitude determination results of different combination modes.Based on the statistical characteristics of the angles of the three axes,the installation parameters of the four star sensors are first calibrated.After analyzing the characteristics of the optical axis angles within 1420 orbit periods over 135 days,the segmented ALFE compensation model between the unconventional and conventional modes is proposed based on the Fourier series model and input parameter of latitude.Based on the on-orbit installation parameters and the ALFE model,the precise attitude determination results of the unconventional mode are calculated.Experimental results show that the attitude determination consistency after compensation is better than 2″.Moreover,the reliable application time range of the compensation model is 30 days to satisfy the requirements for high-precision attitude determination of GF7 satellite.
文摘<div style="text-align:justify;"> According to the problem that the low measurement accuracy of TH-1 satellite star sensor, the low frequency and “slow drift” error which cannot be ignored in the attitude determination system, resulting in obvious random error in the horizontal position and elevation direction, and the change of the error with time and latitude, cannot be calibrated by the ground field of the real problem. In this paper, a low frequency detection model is established by using the principle of relative orientation, and the low frequency error is obtained by parallax elimination. Finally, the satellite attitude is compensated and the more accurate exterior orientation elements are obtained, thus improving the positioning accuracy and stability. The experimental results show that: the proposed methods are feasible, and by using the model to dynamically calibrate the exterior orientation angle elements on orbit, the plane and elevation errors of the ground points can be basically eliminated. The global uncontrollable positioning accuracy and stability of the photogrammetry satellite are improved. </div>