This paper deals with system engineering and design methodology for super low altitude satel ites in the view of the com-putational mission analysis. Due to the slight advance of imaging instruments, such as the focus...This paper deals with system engineering and design methodology for super low altitude satel ites in the view of the com-putational mission analysis. Due to the slight advance of imaging instruments, such as the focus of camera and the image element of charge coupled device (CCD), it is an innovative and economical way to improve the camera’s resolution to enforce the satel ite to fly on the lower altitude orbit. DFH-3, the mature satel ite bus de-veloped by Chinese Academy of Space Technology, is employed to define the mass and power budgets for the computational mis-sion analysis and the detailed engineering design for super low altitude satel ites. An effective iterative algorithm is proposed to solve the ergodic representation of feasible mass and power bud-gets at the flight altitude under constraints. Besides, boundaries of mass or power exist for every altitude, where the upper boundary is derived from the maximum power, while the minimum thrust force holds the lower boundary before the power reaching the initial value. What’s more, an analytical algorithm is employed to numerical y investigate the coverage percentage over the altitude, so that the nominal altitude could be selected from al the feasi-ble altitudes based on both the mass and power budgets and the repetitive ground traces. The local time at the descending node is chosen for the nominal sun-synchronous orbit based on the average evaluation function. After determining the key orbital ele-ments based on the computational mission analysis, the detailed engineering design on the configuration and other subsystems, like power, telemetry telecontrol and communication (TT&C), and attitude determination and control system (ADCS), is performed based on the benchmark bus, besides, some improvements to the bus are also implemented to accommodate the flight at a super low altitude. Two operation strategies, drag-free closed-loop mode and on/off open-loop mode, are presented to maintain the satel-lite’s altitude. Final y, a flight planning schedule for the satel ite is demonstrated from its launch into the initial altitude at the very beginning to its decay to death in the end.展开更多
As an emerging memory device,memristor shows great potential in neuromorphic computing applications due to its advantage of low power consumption.This review paper focuses on the application of low-power-based memrist...As an emerging memory device,memristor shows great potential in neuromorphic computing applications due to its advantage of low power consumption.This review paper focuses on the application of low-power-based memristors in various aspects.The concept and structure of memristor devices are introduced.The selection of functional materials for low-power memristors is discussed,including ion transport materials,phase change materials,magnetoresistive materials,and ferroelectric materials.Two common types of memristor arrays,1T1R and 1S1R crossbar arrays are introduced,and physical diagrams of edge computing memristor chips are discussed in detail.Potential applications of low-power memristors in advanced multi-value storage,digital logic gates,and analogue neuromorphic computing are summarized.Furthermore,the future challenges and outlook of neuromorphic computing based on memristor are deeply discussed.展开更多
Multispectral low earth orbit(LEO)satel-lites are characterized by a large volume of captured data and high spatial resolution,which can provide rich image information and data support for a vari-ety of fields,but it ...Multispectral low earth orbit(LEO)satel-lites are characterized by a large volume of captured data and high spatial resolution,which can provide rich image information and data support for a vari-ety of fields,but it is difficult for them to satisfy low-delay and low-energy consumed task processing re-quirements due to their limited computing resources.To address the above problems,this paper presents the LEO satellites cooperative task offloading and computing resource allocation(LEOC-TC)algorithm.Firstly,a LEO satellites cooperative task offloading system was designed so that the multispectral LEO satellites in the system could leave their tasks locally or offload them to other LEO satellites with servers for processing,thus providing high-quality information-processing services for multispectral LEO satellites.Secondly,an optimization problem with the objective of minimizing the weighted sum of the total task pro-cessing delay and total energy consumed for multi-spectral LEO satellite is established,and the optimiza-tion problem is split into an offloading ratio subprob-lem and a computing resource subproblem.Finally,Bernoulli mapping tuna swarm optimization algorithm is used to solve the above two sub-problems separately in order to satisfy the demand of low delay and low energy consumed by the system.Simulation results show that the total task processing cost of the LEOCTC algorithm can be reduced by 63.32%,66.67%,and 80.72%compared to the random offloading ratio algorithm,the average resource offloading algorithm,and the local computing algorithm,respectively.展开更多
Through enabling the IT and cloud computation capacities at Radio Access Network(RAN),Mobile Edge Computing(MEC) makes it possible to deploy and provide services locally.Therefore,MEC becomes the potential technology ...Through enabling the IT and cloud computation capacities at Radio Access Network(RAN),Mobile Edge Computing(MEC) makes it possible to deploy and provide services locally.Therefore,MEC becomes the potential technology to satisfy the requirements of 5G network to a certain extent,due to its functions of services localization,local breakout,caching,computation offloading,network context information exposure,etc.Especially,MEC can decrease the end-to-end latency dramatically through service localization and caching,which is key requirement of 5G low latency scenario.However,the performance of MEC still needs to be evaluated and verified for future deployment.Thus,the concept of MEC is introduced into5 G architecture and analyzed for different 5G scenarios in this paper.Secondly,the evaluation of MEC performance is conducted and analyzed in detail,especially for network end-to-end latency.In addition,some challenges of the MEC are also discussed for future deployment.展开更多
AIM:To evaluate the feasibility of low contrast medium and radiation dose for hepatic computed tomography(CT) perfusion of rabbit VX2 tumor.METHODS:Eleven rabbits with hepatic VX2 tumor underwent perfusion CT scanning...AIM:To evaluate the feasibility of low contrast medium and radiation dose for hepatic computed tomography(CT) perfusion of rabbit VX2 tumor.METHODS:Eleven rabbits with hepatic VX2 tumor underwent perfusion CT scanning with a 24-h interval between a conventional tube potential(120 k Vp) protocol with 350 mg I/m L contrast medium and filtered back projection,and a low tube potential(80 k Vp) protocol with 270 mg I/m L contrast medium with iterative reconstruction.Correlation and agreement among perfusion parameters acquired by the conventional and low dose protocols were assessed for the viable tumor component as well as whole tumor.Image noise and tumor-to-liver contrast to noise ratio during arterial and portal venous phases were evaluated.RESULTS:A 38% reduction in contrast medium dose(360.1 ± 13.3 mg I/kg vs 583.5 ± 21.5 mg I/kg,P < 0.001) and a 73% decrease in radiation dose(1898.5 m Gy·cm vs 6951.8 m Gy·cm) were observed.Interestingly,there was a strong positive correlation in hepatic arterial perfusion(r = 0.907,P < 0.001;r = 0.879,P < 0.001),hepatic portal perfusion(r = 0.819,P = 0.002;r = 0.831,P = 0.002),and hepatic blood flow(r = 0.945,P < 0.001;r = 0.930,P < 0.001) as well as a moderate correlation in hepatic perfusion index(r = 0.736,P = 0.01;r = 0.636,P = 0.035) between the low dose protocol with iterative reconstruction and the conventional protocol for the viable tumor component and the whole tumor.These two imaging protocols provided a moderate but acceptable agreement for perfusion parameters and similar tumorto-liver CNR during arterial and portal venous phases(5.63 ± 2.38 vs 6.16 ± 2.60,P = 0.814;4.60 ± 1.27 vs 5.11 ± 1.74,P = 0.587).CONCLUSION:Compared with the conventional protocol,low contrast medium and radiation dose with iterative reconstruction has no significant influence on hepatic perfusion parameters for rabbits VX2 tumor.展开更多
Objective To evaluate the feasibility of using a low concentration of contrast medium (Visipaque 270 mgl/mL), low tube voltage, and an advanced image reconstruction algorithm in head and neck computed tomography ang...Objective To evaluate the feasibility of using a low concentration of contrast medium (Visipaque 270 mgl/mL), low tube voltage, and an advanced image reconstruction algorithm in head and neck computed tomography angiography (CTA). Methods Forty patients (22 men and 18 women; average age 48.7 ± 14.25 years; average body mass index 23.9 ± 3.7 kg/m^2) undergoing CTA for suspected vascular diseases were randomly assigned into two groups. Group A (n = 20) was administered 370 mgl/mL contrast medium, and group B (n = 20) was administered 270 mgl/mL contrast medium. Both groups were administered at a rate of 4.8 mL/s and an injection volume of 0.8 mL/kg. Images of group A were obtained with 120 kVp and filtered back projection (FBP) reconstruction, whereas images of group B were obtained with 80 kVp and 80% adaptive iterative statistical reconstruction algorithm (ASiR). The CT values and standard deviations of intracranial arteries and image noise on the corona radiata were measured to calculate the contrast-to-noise ratio (CNR) and signal-to-noise ratio (SNR). The beam-hardening artifacts (BHAs) around the skull base were calculated. Two readers evaluated the image quality with volume rendered images using scores from 1 to 5. The values between the two groups were statistically compared. Results The mean CT value of the intracranial arteries in group B was significantly higher than that in group A (P 〈 0.001). The CNR and SNR values in group B were also statistically higher than those in group A (P 〈 0.001). Image noise and BHAs were not significantly different between the two groups. The image quality score of VR images of in group B was significantly higher than that in group A (P = 0.001). However, the quality scores of axial enhancement images in group B became significantly smaller than those in group A (P〈 0.001). The CT dose index volume and dose-length product were decreased by 63.8% and 64%, respectively, in group B (P 〈 0.001 for both). Conclusion Visipaque combined with 80 kVp and 80% ASiR provided similar image quality in intracranial CTA with 64% radiation dose reduction compared with the use of lopamidol, 120 kVp, and FBP reconstruc-tion.展开更多
AIM To compare radiation dose and image quality of lowdose computed tomography(CT) protocol combined with hybrid-iterative reconstruction algorithm with standarddose CT examinations for follow-up of oncologic patients...AIM To compare radiation dose and image quality of lowdose computed tomography(CT) protocol combined with hybrid-iterative reconstruction algorithm with standarddose CT examinations for follow-up of oncologic patients. METHODS Fifty-one patients with known malignant diseases which underwent, during clinical follow-up, both standarddose and low-dose whole-body CT scans were enrolled. Low-dose CT was performed on 256-row scanner, with 120 kV and automated m A modulation, and iterative reconstruction algorithm. Standard-dose CT was performed on 16-rows scanner, with 120 kV, 200-400 m As(depending on patient weight). We evaluated density values and signal-to-noise ratio, along with image noise(SD), sharpness and diagnostic quality with 4-point scale.RESULTS Density values in liver, spleen and aorta were higher in lowdose images(liver 112.55 HU vs 103.90 HU, P < 0.001), as SD values in liver and spleen(liver 16.81 vs 14.41). Volumetric-Computed-Tomographic-Dose-Index(CTDIvol) and Dose-Length-Product(DLP) were significantly lower in low-dose CT as compared to standard-dose(DLP 1025.6 m Gy*cm vs 1429.2 m Gy*cm, P < 0.001) with overall dose reduction of 28.9%. Qualitative analysis did not reveal significant differences in image noise and diagnostic quality.CONCLUSION Automatic tube-current modulation combined with hybriditerative algorithm allows radiation dose reduction of 28.9% without loss of diagnostic quality, being useful in reducing dose exposure in oncologic patients.展开更多
This review summarizes the requirement of low temperature conditions in existing experimental approaches to quantum computation and quantum simulation.
Computed tomography (CT) is commonly used to assess for cerebral hemorrhage and acute ischemic stroke. We investigated the accuracy of CT using a low tube voltage technique in acute ischemic stroke. We compared the st...Computed tomography (CT) is commonly used to assess for cerebral hemorrhage and acute ischemic stroke. We investigated the accuracy of CT using a low tube voltage technique in acute ischemic stroke. We compared the standard deviation (SD), contrast between gray and white matter, and contrast-to-noise ratio (CNR) between three groups (120 kV 500 mAs, 100 kV 850 mAs, and 100 kV 750 mAs using hybrid iterative reconstruction) in 50 patients without lesions, and visual evaluation using the normalized rank approach was also performed. The mean value of SD was 4.02, 4.22, and 4.04, respectively, and the contrast between gray and white matter was 7.08, 8.66, and 8.68 HU, respectively;in addition, the CNR was 1.77, 2.06, and 2.15, respectively. The difference between the 100 kV and 120 kV groups was significant (p 0.01). Visual evaluation showed a significant difference between the 100 and 120 kV groups (p 0.05).展开更多
Traditional digital processing approaches are based on semiconductor transistors, which suffer from high power consumption, aggravating with technology node scaling. To solve definitively this problem, a number of eme...Traditional digital processing approaches are based on semiconductor transistors, which suffer from high power consumption, aggravating with technology node scaling. To solve definitively this problem, a number of emerging non-volatile nanodevices are under intense investigations. Meanwhile, novel computing circuits are invented to dig the full potential of the nanodevices. The combination of non-volatile nanodevices with suitable computing paradigms have many merits compared with the complementary metal-oxide-semiconductor transistor (CMOS) technology based structures, such as zero standby power, ultra-high density, non-volatility, and acceptable access speed. In this paper, we overview and compare the computing paradigms based on the emerging nanodevices towards ultra-low dissipation.展开更多
Bluetooth low energy(BLE)-based indoor localization has been extensively researched due to its cost-effectiveness,low power consumption,and ubiquity.Despite these advantages,the variability of received signal strength...Bluetooth low energy(BLE)-based indoor localization has been extensively researched due to its cost-effectiveness,low power consumption,and ubiquity.Despite these advantages,the variability of received signal strength indicator(RSSI)measurements,influenced by physical obstacles,human presence,and electronic interference,poses a significant challenge to accurate localization.In this work,we present an optimised method to enhance indoor localization accuracy by utilising multiple BLE beacons in a radio frequency(RF)-dense modern building environment.Through a proof-of-concept study,we demonstrate that using three BLE beacons reduces localization error from a worst-case distance of 9.09-2.94 m,whereas additional beacons offer minimal incremental benefit in such settings.Furthermore,our framework for BLE-based localization,implemented on an edge network of Raspberry Pies,has been released under an open-source license,enabling broader application and further research.展开更多
Low earth orbit(LEO)satellites with wide coverage can carry the mobile edge computing(MEC)servers with powerful computing capabilities to form the LEO satellite edge computing system,providing computing services for t...Low earth orbit(LEO)satellites with wide coverage can carry the mobile edge computing(MEC)servers with powerful computing capabilities to form the LEO satellite edge computing system,providing computing services for the global ground users.In this paper,the computation offloading problem and resource allocation problem are formulated as a mixed integer nonlinear program(MINLP)problem.This paper proposes a computation offloading algorithm based on deep deterministic policy gradient(DDPG)to obtain the user offloading decisions and user uplink transmission power.This paper uses the convex optimization algorithm based on Lagrange multiplier method to obtain the optimal MEC server resource allocation scheme.In addition,the expression of suboptimal user local CPU cycles is derived by relaxation method.Simulation results show that the proposed algorithm can achieve excellent convergence effect,and the proposed algorithm significantly reduces the system utility values at considerable time cost compared with other algorithms.展开更多
Copper metal is widely electroplated for microelectronic interconnections such as redistribution layers(RDL),pillar bumps,through silicon vias,etc.With advances of multilayered RDL,via-on-via structures have been deve...Copper metal is widely electroplated for microelectronic interconnections such as redistribution layers(RDL),pillar bumps,through silicon vias,etc.With advances of multilayered RDL,via-on-via structures have been developed for ultrahigh-density any-layer interconnection,which expects superconformal filling of interlayer low aspect-ratio vias jointly with coplanar lines and pads.However,it poses a great challenge to electrodeposition,because current via fill mechanisms are stemming from middle to high aspect-ratio(>0.8)vias and lacking applicability in low aspect-ratio(<0.3)RDL-vias,where via geometry related electric-flow fields coupling must be reconsidered.In the present work,a four-additive strategy has been developed for RDL-vias fill and thoroughly investigated from additive electrochemistry,in situ Raman spectroelectrochemistry,and quantum chemistry perspectives.A novel adsorbate configuration controlled(ACC)electrodeposition mechanism is established that at weak-convection bilateral edges and lower corners,the adsorbate displays a weakly-adsorbing configuration to assist accelerator-governed deposition,whereas at strong-convection center,the adsorbate exhibits a mildlyadsorbing configuration to promote leveler-determined inhibition.Deposit profiles can be tailored from dished,flat to domed,depending on predominance of leveler over accelerator.This study should lay theoretical and practical foundations in design and application of copper electroplating additives of multiple adsorbate configurations to cope with complicated interconnect scenarios.展开更多
In this paper, a new partial transmit sequence(PTS)scheme with low computational complexity is proposed for the problems of high computational complexity in the conventional PTS method. By analyzing the relationship...In this paper, a new partial transmit sequence(PTS)scheme with low computational complexity is proposed for the problems of high computational complexity in the conventional PTS method. By analyzing the relationship of candidate sequences in the PTS method under the interleaved partition method, it has been discovered that some candidate sequences generated by phase factor sequences have the same peak average power ratio(PAPR). Hence, phase factor sequences can be optimized to reduce their searching times. Then, the computational process of generating candidate sequences can be simplified by improving the utilization of data and minimizing the calculations of complex multiplication. The performance analysis shows that, compared with the conventional PTS scheme, the proposed approach significantly decreases the computational complexity and has no loss of PAPR performance.展开更多
AIM: To evaluate the image quality of hepatic multidetector computed tomography(MDCT) with dynamic contrast enhancement. METHODS: It uses iodixanol 270 mg/m L(Visipaque 270) and 80 kVp acquisitions reconstructed with ...AIM: To evaluate the image quality of hepatic multidetector computed tomography(MDCT) with dynamic contrast enhancement. METHODS: It uses iodixanol 270 mg/m L(Visipaque 270) and 80 kVp acquisitions reconstructed with sinogram affirmed iterative reconstruction(SAFIRE?) in comparison with a standard MDCT protocol. Fiftythree consecutive patients with known or suspected hepatocellular carcinoma underwent 55 CT examinations, with two different four-phase CT protocols. The first group of 30 patients underwent a standard 120 kVp acquisition after injection of Iohexol 350 mg/m L(Accupaque 350~?) and reconstructed with filtered back projection. The second group of 25 patients underwent a dual-energy CT at 80-140 kVp with iodixanol 270. The 80 kVp component of the second group was reconstructed iteratively(SAFIRE?-Siemens). All hyperdense and hypodense hepatic lesions ≥ 5 mm were identified with both protocols. Aorta and portal vessels/liver parenchyma contrast to noise ratio(CNR) in arterial phase, hypervascular lesion/liver parenchyma CNR in arterial phase, hypodense lesion/liver parenchyma CNR in portal and late phase were calculated in both groups.RESULTS: Aorta/liver and focal lesions altogether/liver CNR were higher for the second protocol(P = 0.0078 and 0.0346). Hypervascular lesions/liver CNR was not statistically different(P = 0.86). Hypodense lesion/liver CNR in the portal phase was significantly higher for the second group(P = 0.0107). Hypodense lesion/liver CNR in the late phase was the same for both groups(P = 0.9926).CONCLUSION: MDCT imaging with 80 kVp with iterative reconstruction and iodixanol 270 yields equal or even better image quality.展开更多
Over the past several years,advances in the technical domain of computed tomography(CT) have influenced the trend of imaging modalities used in the clinical evaluation of the urinary system.Renal collecting systems ca...Over the past several years,advances in the technical domain of computed tomography(CT) have influenced the trend of imaging modalities used in the clinical evaluation of the urinary system.Renal collecting systems can be illustrated more precisely with the advent of multi-detector row CT through thinner slices,high speed acquisitions,and enhanced longitudinal spatial resolution resulting in improved reformatted coronal images.On the other hand,a significant increase in exposure to ionizing radiation,especially in the radiosensitive organs,such as the gonads,is a concern with the increased utilization of urinary tract CT.In this article,we discuss the strategies and techniques availablefor reducing radiation dose for a variety of urinary tractCT protocols with metabolic clinical examples.We also reviewed CT for hematuria evaluation and related scan parameter optimization such as,reducing the number of acquisition phases,CT angiography of renal donors and lowering tube potential,when possible.展开更多
NOx can cause severe environmental problems such as acid rain and photochemical smog,endangering human health and the living environment.Among them,NO pollution accounts for about 95%.NO can exist stably in the air fo...NOx can cause severe environmental problems such as acid rain and photochemical smog,endangering human health and the living environment.Among them,NO pollution accounts for about 95%.NO can exist stably in the air for a long time when the concentration is lower than the ppm level.Therefore,the conversion of low concentration of NO has attracted more and more attention.However,traditional physical or chemical methods are difficult to deal with low concentration of NO,having high requirements on equipment and being not cost‐effective.Semiconductor photocatalytic technology can convert low concentration of NO into non‐toxic products and reduce its harm.This work briefly surveys the commonly used materials,modification methods,and mechanisms for semiconductor photocatalytic conversion of low concentration of NO.In addition,the challenges and prospects of ppb level of NO treatment are also discussed,aiming to promote the development of semiconductor photocatalytic conversion of NO.展开更多
In this paper, an efficient hybrid shock capturing scheme is proposed to obtain accurate results both in the smooth region and around discontinuities for compressible flows. The hybrid algorithm is based on a fifth-or...In this paper, an efficient hybrid shock capturing scheme is proposed to obtain accurate results both in the smooth region and around discontinuities for compressible flows. The hybrid algorithm is based on a fifth-order weighted essentially non-oscillatory (WENO) scheme in the finite volume form to solve the smooth part of the flow field, which is coupled with a characteristic-based monotone upstream-centered scheme for conservation laws (MUSCL) to capture discontinuities. The hybrid scheme is intended to combine high resolution of MUSCL scheme and low dissipation of WENO scheme. The two ingredients in this hybrid scheme are switched with an indicator. Three typical indicators are chosen and compared. MUSCL and WENO are both shock capturing schemes making the choice of the indicator parameter less crucial. Several test cases are carried out to investigate hybrid scheme with different indicators in terms of accuracy and efficiency. Numerical results demonstrate that the hybrid scheme in the present work performs well in a broad range of problems.展开更多
基金supported by the National Natural Science Foundation of China(11172020)the Fundamental Research Funds for the Central Universities+1 种基金the Aerospace Science and Technology Innovation Foundation of China Aerospace Science Corporationthe Innovation Fund of China Academy of Space Technology
文摘This paper deals with system engineering and design methodology for super low altitude satel ites in the view of the com-putational mission analysis. Due to the slight advance of imaging instruments, such as the focus of camera and the image element of charge coupled device (CCD), it is an innovative and economical way to improve the camera’s resolution to enforce the satel ite to fly on the lower altitude orbit. DFH-3, the mature satel ite bus de-veloped by Chinese Academy of Space Technology, is employed to define the mass and power budgets for the computational mis-sion analysis and the detailed engineering design for super low altitude satel ites. An effective iterative algorithm is proposed to solve the ergodic representation of feasible mass and power bud-gets at the flight altitude under constraints. Besides, boundaries of mass or power exist for every altitude, where the upper boundary is derived from the maximum power, while the minimum thrust force holds the lower boundary before the power reaching the initial value. What’s more, an analytical algorithm is employed to numerical y investigate the coverage percentage over the altitude, so that the nominal altitude could be selected from al the feasi-ble altitudes based on both the mass and power budgets and the repetitive ground traces. The local time at the descending node is chosen for the nominal sun-synchronous orbit based on the average evaluation function. After determining the key orbital ele-ments based on the computational mission analysis, the detailed engineering design on the configuration and other subsystems, like power, telemetry telecontrol and communication (TT&amp;C), and attitude determination and control system (ADCS), is performed based on the benchmark bus, besides, some improvements to the bus are also implemented to accommodate the flight at a super low altitude. Two operation strategies, drag-free closed-loop mode and on/off open-loop mode, are presented to maintain the satel-lite’s altitude. Final y, a flight planning schedule for the satel ite is demonstrated from its launch into the initial altitude at the very beginning to its decay to death in the end.
基金supported by the NSFC(12474071)Natural Science Foundation of Shandong Province(ZR2024YQ051)+5 种基金Open Research Fund of State Key Laboratory of Materials for Integrated Circuits(SKLJC-K2024-12)the Shanghai Sailing Program(23YF1402200,23YF1402400)Funded by Basic Research Program of Jiangsu(BK20240424)Taishan Scholar Foundation of Shandong Province(tsqn202408006)Young Talent of Lifting engineering for Science and Technology in Shandong,China(SDAST2024QTB002)the Qilu Young Scholar Program of Shandong University.
文摘As an emerging memory device,memristor shows great potential in neuromorphic computing applications due to its advantage of low power consumption.This review paper focuses on the application of low-power-based memristors in various aspects.The concept and structure of memristor devices are introduced.The selection of functional materials for low-power memristors is discussed,including ion transport materials,phase change materials,magnetoresistive materials,and ferroelectric materials.Two common types of memristor arrays,1T1R and 1S1R crossbar arrays are introduced,and physical diagrams of edge computing memristor chips are discussed in detail.Potential applications of low-power memristors in advanced multi-value storage,digital logic gates,and analogue neuromorphic computing are summarized.Furthermore,the future challenges and outlook of neuromorphic computing based on memristor are deeply discussed.
基金supported in part by Sub Project of National Key Research and Development plan in 2020(No.2020YFC1511704)scientific research level improvement project to promote the colleges connotation development of Beijing Information Science&Technology University(No.2020KYNH212,No.2021CGZH302)in part by the National Natural Science Foundation of China(Grant No.61971048).
文摘Multispectral low earth orbit(LEO)satel-lites are characterized by a large volume of captured data and high spatial resolution,which can provide rich image information and data support for a vari-ety of fields,but it is difficult for them to satisfy low-delay and low-energy consumed task processing re-quirements due to their limited computing resources.To address the above problems,this paper presents the LEO satellites cooperative task offloading and computing resource allocation(LEOC-TC)algorithm.Firstly,a LEO satellites cooperative task offloading system was designed so that the multispectral LEO satellites in the system could leave their tasks locally or offload them to other LEO satellites with servers for processing,thus providing high-quality information-processing services for multispectral LEO satellites.Secondly,an optimization problem with the objective of minimizing the weighted sum of the total task pro-cessing delay and total energy consumed for multi-spectral LEO satellite is established,and the optimiza-tion problem is split into an offloading ratio subprob-lem and a computing resource subproblem.Finally,Bernoulli mapping tuna swarm optimization algorithm is used to solve the above two sub-problems separately in order to satisfy the demand of low delay and low energy consumed by the system.Simulation results show that the total task processing cost of the LEOCTC algorithm can be reduced by 63.32%,66.67%,and 80.72%compared to the random offloading ratio algorithm,the average resource offloading algorithm,and the local computing algorithm,respectively.
基金supported by the National High Technology Research and Development Program(863) of China(No.2015AA01A701)
文摘Through enabling the IT and cloud computation capacities at Radio Access Network(RAN),Mobile Edge Computing(MEC) makes it possible to deploy and provide services locally.Therefore,MEC becomes the potential technology to satisfy the requirements of 5G network to a certain extent,due to its functions of services localization,local breakout,caching,computation offloading,network context information exposure,etc.Especially,MEC can decrease the end-to-end latency dramatically through service localization and caching,which is key requirement of 5G low latency scenario.However,the performance of MEC still needs to be evaluated and verified for future deployment.Thus,the concept of MEC is introduced into5 G architecture and analyzed for different 5G scenarios in this paper.Secondly,the evaluation of MEC performance is conducted and analyzed in detail,especially for network end-to-end latency.In addition,some challenges of the MEC are also discussed for future deployment.
基金National Natural Science Foundation of China,No.NSFC 81171389Key Program of Basic Research from Shanghai Municipal Science and Technology Commission,No.12JC1406500the Program of Shanghai Municipal Health Outstanding Discipline Leader,No.XBR 2013110
文摘AIM:To evaluate the feasibility of low contrast medium and radiation dose for hepatic computed tomography(CT) perfusion of rabbit VX2 tumor.METHODS:Eleven rabbits with hepatic VX2 tumor underwent perfusion CT scanning with a 24-h interval between a conventional tube potential(120 k Vp) protocol with 350 mg I/m L contrast medium and filtered back projection,and a low tube potential(80 k Vp) protocol with 270 mg I/m L contrast medium with iterative reconstruction.Correlation and agreement among perfusion parameters acquired by the conventional and low dose protocols were assessed for the viable tumor component as well as whole tumor.Image noise and tumor-to-liver contrast to noise ratio during arterial and portal venous phases were evaluated.RESULTS:A 38% reduction in contrast medium dose(360.1 ± 13.3 mg I/kg vs 583.5 ± 21.5 mg I/kg,P < 0.001) and a 73% decrease in radiation dose(1898.5 m Gy·cm vs 6951.8 m Gy·cm) were observed.Interestingly,there was a strong positive correlation in hepatic arterial perfusion(r = 0.907,P < 0.001;r = 0.879,P < 0.001),hepatic portal perfusion(r = 0.819,P = 0.002;r = 0.831,P = 0.002),and hepatic blood flow(r = 0.945,P < 0.001;r = 0.930,P < 0.001) as well as a moderate correlation in hepatic perfusion index(r = 0.736,P = 0.01;r = 0.636,P = 0.035) between the low dose protocol with iterative reconstruction and the conventional protocol for the viable tumor component and the whole tumor.These two imaging protocols provided a moderate but acceptable agreement for perfusion parameters and similar tumorto-liver CNR during arterial and portal venous phases(5.63 ± 2.38 vs 6.16 ± 2.60,P = 0.814;4.60 ± 1.27 vs 5.11 ± 1.74,P = 0.587).CONCLUSION:Compared with the conventional protocol,low contrast medium and radiation dose with iterative reconstruction has no significant influence on hepatic perfusion parameters for rabbits VX2 tumor.
文摘Objective To evaluate the feasibility of using a low concentration of contrast medium (Visipaque 270 mgl/mL), low tube voltage, and an advanced image reconstruction algorithm in head and neck computed tomography angiography (CTA). Methods Forty patients (22 men and 18 women; average age 48.7 ± 14.25 years; average body mass index 23.9 ± 3.7 kg/m^2) undergoing CTA for suspected vascular diseases were randomly assigned into two groups. Group A (n = 20) was administered 370 mgl/mL contrast medium, and group B (n = 20) was administered 270 mgl/mL contrast medium. Both groups were administered at a rate of 4.8 mL/s and an injection volume of 0.8 mL/kg. Images of group A were obtained with 120 kVp and filtered back projection (FBP) reconstruction, whereas images of group B were obtained with 80 kVp and 80% adaptive iterative statistical reconstruction algorithm (ASiR). The CT values and standard deviations of intracranial arteries and image noise on the corona radiata were measured to calculate the contrast-to-noise ratio (CNR) and signal-to-noise ratio (SNR). The beam-hardening artifacts (BHAs) around the skull base were calculated. Two readers evaluated the image quality with volume rendered images using scores from 1 to 5. The values between the two groups were statistically compared. Results The mean CT value of the intracranial arteries in group B was significantly higher than that in group A (P 〈 0.001). The CNR and SNR values in group B were also statistically higher than those in group A (P 〈 0.001). Image noise and BHAs were not significantly different between the two groups. The image quality score of VR images of in group B was significantly higher than that in group A (P = 0.001). However, the quality scores of axial enhancement images in group B became significantly smaller than those in group A (P〈 0.001). The CT dose index volume and dose-length product were decreased by 63.8% and 64%, respectively, in group B (P 〈 0.001 for both). Conclusion Visipaque combined with 80 kVp and 80% ASiR provided similar image quality in intracranial CTA with 64% radiation dose reduction compared with the use of lopamidol, 120 kVp, and FBP reconstruc-tion.
文摘AIM To compare radiation dose and image quality of lowdose computed tomography(CT) protocol combined with hybrid-iterative reconstruction algorithm with standarddose CT examinations for follow-up of oncologic patients. METHODS Fifty-one patients with known malignant diseases which underwent, during clinical follow-up, both standarddose and low-dose whole-body CT scans were enrolled. Low-dose CT was performed on 256-row scanner, with 120 kV and automated m A modulation, and iterative reconstruction algorithm. Standard-dose CT was performed on 16-rows scanner, with 120 kV, 200-400 m As(depending on patient weight). We evaluated density values and signal-to-noise ratio, along with image noise(SD), sharpness and diagnostic quality with 4-point scale.RESULTS Density values in liver, spleen and aorta were higher in lowdose images(liver 112.55 HU vs 103.90 HU, P < 0.001), as SD values in liver and spleen(liver 16.81 vs 14.41). Volumetric-Computed-Tomographic-Dose-Index(CTDIvol) and Dose-Length-Product(DLP) were significantly lower in low-dose CT as compared to standard-dose(DLP 1025.6 m Gy*cm vs 1429.2 m Gy*cm, P < 0.001) with overall dose reduction of 28.9%. Qualitative analysis did not reveal significant differences in image noise and diagnostic quality.CONCLUSION Automatic tube-current modulation combined with hybriditerative algorithm allows radiation dose reduction of 28.9% without loss of diagnostic quality, being useful in reducing dose exposure in oncologic patients.
基金Project supported by the National Key Research and Development Program of China(Grant No.2017YFA0303301)the National Natural Science Foundation of China(Grant Nos.11674009 and 11921005)+1 种基金the Beijing Natural Science Foundation,China(Grant No.JQ18002)the Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDB28000000)。
文摘This review summarizes the requirement of low temperature conditions in existing experimental approaches to quantum computation and quantum simulation.
文摘Computed tomography (CT) is commonly used to assess for cerebral hemorrhage and acute ischemic stroke. We investigated the accuracy of CT using a low tube voltage technique in acute ischemic stroke. We compared the standard deviation (SD), contrast between gray and white matter, and contrast-to-noise ratio (CNR) between three groups (120 kV 500 mAs, 100 kV 850 mAs, and 100 kV 750 mAs using hybrid iterative reconstruction) in 50 patients without lesions, and visual evaluation using the normalized rank approach was also performed. The mean value of SD was 4.02, 4.22, and 4.04, respectively, and the contrast between gray and white matter was 7.08, 8.66, and 8.68 HU, respectively;in addition, the CNR was 1.77, 2.06, and 2.15, respectively. The difference between the 100 kV and 120 kV groups was significant (p 0.01). Visual evaluation showed a significant difference between the 100 and 120 kV groups (p 0.05).
文摘Traditional digital processing approaches are based on semiconductor transistors, which suffer from high power consumption, aggravating with technology node scaling. To solve definitively this problem, a number of emerging non-volatile nanodevices are under intense investigations. Meanwhile, novel computing circuits are invented to dig the full potential of the nanodevices. The combination of non-volatile nanodevices with suitable computing paradigms have many merits compared with the complementary metal-oxide-semiconductor transistor (CMOS) technology based structures, such as zero standby power, ultra-high density, non-volatility, and acceptable access speed. In this paper, we overview and compare the computing paradigms based on the emerging nanodevices towards ultra-low dissipation.
基金supported by James M.Cox Foundation,National Institute on Deafness and Other Communication Disorders(grant no.1R21DC021029-01A1)Cox Enterprises Inc.,National Institute of Child Health and Human Development(grant no.AWD-006196-G1)Thrasher Research Fund Early Career Award Program.
文摘Bluetooth low energy(BLE)-based indoor localization has been extensively researched due to its cost-effectiveness,low power consumption,and ubiquity.Despite these advantages,the variability of received signal strength indicator(RSSI)measurements,influenced by physical obstacles,human presence,and electronic interference,poses a significant challenge to accurate localization.In this work,we present an optimised method to enhance indoor localization accuracy by utilising multiple BLE beacons in a radio frequency(RF)-dense modern building environment.Through a proof-of-concept study,we demonstrate that using three BLE beacons reduces localization error from a worst-case distance of 9.09-2.94 m,whereas additional beacons offer minimal incremental benefit in such settings.Furthermore,our framework for BLE-based localization,implemented on an edge network of Raspberry Pies,has been released under an open-source license,enabling broader application and further research.
基金supported by National Natural Science Foundation of China No.62231012Natural Science Foundation for Outstanding Young Scholars of Heilongjiang Province under Grant YQ2020F001Heilongjiang Province Postdoctoral General Foundation under Grant AUGA4110004923.
文摘Low earth orbit(LEO)satellites with wide coverage can carry the mobile edge computing(MEC)servers with powerful computing capabilities to form the LEO satellite edge computing system,providing computing services for the global ground users.In this paper,the computation offloading problem and resource allocation problem are formulated as a mixed integer nonlinear program(MINLP)problem.This paper proposes a computation offloading algorithm based on deep deterministic policy gradient(DDPG)to obtain the user offloading decisions and user uplink transmission power.This paper uses the convex optimization algorithm based on Lagrange multiplier method to obtain the optimal MEC server resource allocation scheme.In addition,the expression of suboptimal user local CPU cycles is derived by relaxation method.Simulation results show that the proposed algorithm can achieve excellent convergence effect,and the proposed algorithm significantly reduces the system utility values at considerable time cost compared with other algorithms.
基金supported by Key-Area Research and Development Program of Guangdong Province(No.2023B0101040002)National Natural Science Foundation of China(Nos.62304143,52303092 and 62274172)Guangdong Basic and Applied Basic Research Fund(No.2022B1515120037).
文摘Copper metal is widely electroplated for microelectronic interconnections such as redistribution layers(RDL),pillar bumps,through silicon vias,etc.With advances of multilayered RDL,via-on-via structures have been developed for ultrahigh-density any-layer interconnection,which expects superconformal filling of interlayer low aspect-ratio vias jointly with coplanar lines and pads.However,it poses a great challenge to electrodeposition,because current via fill mechanisms are stemming from middle to high aspect-ratio(>0.8)vias and lacking applicability in low aspect-ratio(<0.3)RDL-vias,where via geometry related electric-flow fields coupling must be reconsidered.In the present work,a four-additive strategy has been developed for RDL-vias fill and thoroughly investigated from additive electrochemistry,in situ Raman spectroelectrochemistry,and quantum chemistry perspectives.A novel adsorbate configuration controlled(ACC)electrodeposition mechanism is established that at weak-convection bilateral edges and lower corners,the adsorbate displays a weakly-adsorbing configuration to assist accelerator-governed deposition,whereas at strong-convection center,the adsorbate exhibits a mildlyadsorbing configuration to promote leveler-determined inhibition.Deposit profiles can be tailored from dished,flat to domed,depending on predominance of leveler over accelerator.This study should lay theoretical and practical foundations in design and application of copper electroplating additives of multiple adsorbate configurations to cope with complicated interconnect scenarios.
基金supported by the National Natural Science Foundation of China(6167309361370152)the Science and Technology Project of Shenyang(F16-205-1-01)
文摘In this paper, a new partial transmit sequence(PTS)scheme with low computational complexity is proposed for the problems of high computational complexity in the conventional PTS method. By analyzing the relationship of candidate sequences in the PTS method under the interleaved partition method, it has been discovered that some candidate sequences generated by phase factor sequences have the same peak average power ratio(PAPR). Hence, phase factor sequences can be optimized to reduce their searching times. Then, the computational process of generating candidate sequences can be simplified by improving the utilization of data and minimizing the calculations of complex multiplication. The performance analysis shows that, compared with the conventional PTS scheme, the proposed approach significantly decreases the computational complexity and has no loss of PAPR performance.
文摘AIM: To evaluate the image quality of hepatic multidetector computed tomography(MDCT) with dynamic contrast enhancement. METHODS: It uses iodixanol 270 mg/m L(Visipaque 270) and 80 kVp acquisitions reconstructed with sinogram affirmed iterative reconstruction(SAFIRE?) in comparison with a standard MDCT protocol. Fiftythree consecutive patients with known or suspected hepatocellular carcinoma underwent 55 CT examinations, with two different four-phase CT protocols. The first group of 30 patients underwent a standard 120 kVp acquisition after injection of Iohexol 350 mg/m L(Accupaque 350~?) and reconstructed with filtered back projection. The second group of 25 patients underwent a dual-energy CT at 80-140 kVp with iodixanol 270. The 80 kVp component of the second group was reconstructed iteratively(SAFIRE?-Siemens). All hyperdense and hypodense hepatic lesions ≥ 5 mm were identified with both protocols. Aorta and portal vessels/liver parenchyma contrast to noise ratio(CNR) in arterial phase, hypervascular lesion/liver parenchyma CNR in arterial phase, hypodense lesion/liver parenchyma CNR in portal and late phase were calculated in both groups.RESULTS: Aorta/liver and focal lesions altogether/liver CNR were higher for the second protocol(P = 0.0078 and 0.0346). Hypervascular lesions/liver CNR was not statistically different(P = 0.86). Hypodense lesion/liver CNR in the portal phase was significantly higher for the second group(P = 0.0107). Hypodense lesion/liver CNR in the late phase was the same for both groups(P = 0.9926).CONCLUSION: MDCT imaging with 80 kVp with iterative reconstruction and iodixanol 270 yields equal or even better image quality.
文摘Over the past several years,advances in the technical domain of computed tomography(CT) have influenced the trend of imaging modalities used in the clinical evaluation of the urinary system.Renal collecting systems can be illustrated more precisely with the advent of multi-detector row CT through thinner slices,high speed acquisitions,and enhanced longitudinal spatial resolution resulting in improved reformatted coronal images.On the other hand,a significant increase in exposure to ionizing radiation,especially in the radiosensitive organs,such as the gonads,is a concern with the increased utilization of urinary tract CT.In this article,we discuss the strategies and techniques availablefor reducing radiation dose for a variety of urinary tractCT protocols with metabolic clinical examples.We also reviewed CT for hematuria evaluation and related scan parameter optimization such as,reducing the number of acquisition phases,CT angiography of renal donors and lowering tube potential,when possible.
文摘NOx can cause severe environmental problems such as acid rain and photochemical smog,endangering human health and the living environment.Among them,NO pollution accounts for about 95%.NO can exist stably in the air for a long time when the concentration is lower than the ppm level.Therefore,the conversion of low concentration of NO has attracted more and more attention.However,traditional physical or chemical methods are difficult to deal with low concentration of NO,having high requirements on equipment and being not cost‐effective.Semiconductor photocatalytic technology can convert low concentration of NO into non‐toxic products and reduce its harm.This work briefly surveys the commonly used materials,modification methods,and mechanisms for semiconductor photocatalytic conversion of low concentration of NO.In addition,the challenges and prospects of ppb level of NO treatment are also discussed,aiming to promote the development of semiconductor photocatalytic conversion of NO.
文摘In this paper, an efficient hybrid shock capturing scheme is proposed to obtain accurate results both in the smooth region and around discontinuities for compressible flows. The hybrid algorithm is based on a fifth-order weighted essentially non-oscillatory (WENO) scheme in the finite volume form to solve the smooth part of the flow field, which is coupled with a characteristic-based monotone upstream-centered scheme for conservation laws (MUSCL) to capture discontinuities. The hybrid scheme is intended to combine high resolution of MUSCL scheme and low dissipation of WENO scheme. The two ingredients in this hybrid scheme are switched with an indicator. Three typical indicators are chosen and compared. MUSCL and WENO are both shock capturing schemes making the choice of the indicator parameter less crucial. Several test cases are carried out to investigate hybrid scheme with different indicators in terms of accuracy and efficiency. Numerical results demonstrate that the hybrid scheme in the present work performs well in a broad range of problems.