期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Pyrazino[2,3-f][1,10]phenanthroline Derivatives for Oxygen-Tolerant Dual Photoredox/Copper Catalyzed Atom Transfer Radical Polymerization with Ultra-low Catalyst Dosage
1
作者 Wanchao Hu Bei Liu +1 位作者 Shiyi Li Changli Lü 《Chinese Journal of Chemistry》 2025年第11期1315-1324,共10页
Substantial progress has been made over recent years in visible light-driven dual photoredox/copper catalyzed atom transfer radical polymerization (photo-ATRP) through the design of photocatalysts (PCs) and the optimi... Substantial progress has been made over recent years in visible light-driven dual photoredox/copper catalyzed atom transfer radical polymerization (photo-ATRP) through the design of photocatalysts (PCs) and the optimization of reaction conditions. However, it remains challenging to achieve efficient photo-ATRP with low loadings of both photocatalyst and copper(II). In this study, two donor-acceptor organic PCs based on pyrazino[2,3-f][1,10]phenanthroline were successfully used to achieve efficient Cu(II)-mediated photo-ATRP. These organic PCs exhibit excellent visible light absorption capabilities and thermally activated delayed fluorescence (TADF) properties. Under blue light irradiation, the PCs facilitated highly efficient and oxygen-tolerant polymerization with an extremely low catalyst loading (50 ppb). This system demonstrated a broad applicability to various monomers, achieving successful polymerization of methacrylates, acrylates, and styrene. Additionally, efficient photo-ATRP on a large scale (250 mL) was achieved, resulting in narrow molecular weight polymers with high monomer conversions and high chain-end fidelity. This work provides an in-depth investigation into the regulatory process of photo-ATRP, offering new insights into the intricate mechanism of oxygen tolerance. 展开更多
关键词 Pyrazino[2 3-f][1 10]phenanthroline Thermally activated delayed fluorescence Cu(II)-mediated photo-ATRP low catalyst loading Oxygen tolerance
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部