期刊文献+
共找到225,586篇文章
< 1 2 250 >
每页显示 20 50 100
Mechanism of nano-scale zero-valent iron modified biochar for enhancing low-nitrogen anammox process resistance to low temperatures 被引量:1
1
作者 Wenjing Chen Lijin Zhang +3 位作者 Zirui Liu Wenru Liu Bin Lu Haitao Zhao 《Journal of Environmental Sciences》 2025年第6期442-452,共11页
Two anaerobic ammonia oxidation(anammox)systems,one with adding nano-scale zerovalent iron modified biochar(nZVI@BC)and the other with adding biochar,were constructed to explore the feasibility of nZVI@BC for enhancin... Two anaerobic ammonia oxidation(anammox)systems,one with adding nano-scale zerovalent iron modified biochar(nZVI@BC)and the other with adding biochar,were constructed to explore the feasibility of nZVI@BC for enhancing the resistance of low-nitrogen anammox processes to low temperatures.The results showed that the average nitrogen removal efficiency with nZVI@BC addition at lowtemperatureswas maintained at about 80%,while that with biochar addition gradually decreased to 69.49%.The heme-c content of biomass with nZVI@BC was significantly higher by 36.60%-91.45%.Additional,nZVI@BC addition resulted in more extracellular polymeric substances,better biomass granulation,and a higher abundance of anammox bacteria.In particularly,anammox genes hzsA/B/C,hzo and hdh played a pivotal role in maintaining nitrogen removal performance at 15℃.These findings suggest that nZVI@BC has the potential to enhance the resistance of low-nitrogen anammox processes to low temperatures,making it a valuable approach for practical applications in low-nitrogen and low-temperature wastewater treatment. 展开更多
关键词 ANAMMOX nZVI@BC low temperatures Community structure Functional gene
原文传递
An integrated physiology and proteomics analysis reveals the response of wheat grain to low temperature stress during booting 被引量:1
2
作者 Anmin Zhang Zihong Li +7 位作者 Qirui Zhou Jiawen Zhao Yan Zhao Mengting Zhao Shangyu Ma Yonghui Fan Zhenglai Huang Wenjing Zhang 《Journal of Integrative Agriculture》 2025年第1期114-131,共18页
Low temperature(LT)in spring has become one of the principal abiotic stresses that restrict the growth and development of wheat.Diverse analyses were performed to investigate the mechanism underlying the response of w... Low temperature(LT)in spring has become one of the principal abiotic stresses that restrict the growth and development of wheat.Diverse analyses were performed to investigate the mechanism underlying the response of wheat grain development to LT stress during booting.These included morphological observation,measurements of starch synthase activity,and determination of amylose and amylopectin content of wheat grain after exposure to treatment with LT during booting.Additionally,proteomic analysis was performed using tandem mass tags(TMT).Results showed that the plumpness of wheat grains decreased after LT stress.Moreover,the activities of sucrose synthase(SuS,EC 2.4.1.13)and ADP-glucose pyrophosphorylase(AGPase,EC 2.7.7.27)exhibited a significant reduction,leading to a significant reduction in the contents of amylose and amylopectin.A total of 509 differentially expressed proteins(DEPs)were identified by proteomics analysis.The Gene Ontology(GO)enrichment analysis showed that the protein difference multiple in the nutritional repository activity was the largest among the molecular functions,and the up-regulated seed storage protein(ssP)played an active role in the response of grains to LT stress and subsequent damage.The Kyoto Encyclopedia of Genes and Genomes(KEGG)enrichment analysis showed that LT stress reduced the expression of DEPs such as sucrose phosphate synthase(SPS),glucose-1-phosphate adenylyltransferase(glgC),andβ-fructofuranosidase(FFase)in sucrose and starch metabolic pathways,thus affecting the synthesis of grain starch.In addition,many heat shock proteins(HsPs)were found in the protein processing in endoplasmic reticulum pathways,which can resist some damage caused by LT stress.These findings provide a new theoretical foundation for elucidating the underlying mechanism governing wheat yield developmentafterexposuretoLTstress inspring. 展开更多
关键词 low temperature at booting WHEAT GRAIN starch synthesis PROTEOMICS
在线阅读 下载PDF
Construction of hard carbon with abundant closed ultra-micropores via a pre-oxidation strategy for high-efficiency sodium storage in the low potential plateau 被引量:1
3
作者 Wenbo Hou Lili Ma +6 位作者 Zhiyuan Liu Yiming Hu Wenxing Miao Bo Tao Kanjun Sun Hui Peng Guofu Ma 《Journal of Energy Chemistry》 2025年第6期65-75,I0003,共12页
Rationally regulating the porosity of hard carbon(HC),especially the closed pores matching the low potential plateau and the ultra-microporous structure suitable for Na+embedding,has been shown to be the key to improv... Rationally regulating the porosity of hard carbon(HC),especially the closed pores matching the low potential plateau and the ultra-microporous structure suitable for Na+embedding,has been shown to be the key to improving the sodium storage performance and initial coulombic efficiency(ICE).However,the preparation of such HC materials with specific pore structures still faces great challenges.Herein,a simple pre-oxidation strategy is employed to construct abundant closed ultra-microporous structures in soy protein powder-derived HC material,achieving a significant improvement in its ICE and platform capacity.The pre-oxidation process promotes the cross-linking degree of the soy protein,thereby hindering the directional growth of graphite domains during the carbonization process.The optimized HC exhibits ultra-high platform capacity(329 mAh g^(-1))and considerable energy density(148.5 Wh kg^(-1)).Based on the ex-situ Raman and X-ray photoelectron spectroscopy characterization results,the excellent sodium storage capacity of the HC material is attributed to the synergistic effect of adsorption-intercalation/filling.The presented work provides novel insights into the synthesis of other biomass-derived HC materials with abundant closed ultra-micro pores. 展开更多
关键词 Pre-oxidation strategy Closed ultra-micropores low potential plateau Sodium-ion storage
在线阅读 下载PDF
Overcoming low-temperature challenges in LIBs:The role of anion-rich solvation sheath in strong solvents 被引量:1
4
作者 Xueqing Min Li Wang +3 位作者 Yanzhou Wu Zhiguo Zhang Hong Xu Xiangming He 《Journal of Energy Chemistry》 2025年第7期63-70,共8页
Lithium-ion batteries(LIBs)face significant limitations in low-temperature environments,with the slow interfacial de-solvation process and the hindered Li+transport through the interphase layer emerging as key obstacl... Lithium-ion batteries(LIBs)face significant limitations in low-temperature environments,with the slow interfacial de-solvation process and the hindered Li+transport through the interphase layer emerging as key obstacles beyond the issue of ionic conductivity.This investigation unveils a novel formulation that constructs an anion-rich solvation sheath within strong solvents,effectively addressing all three of these challenges to bolster low-temperature performance.The developed electrolyte,characterized by an enhanced concentration of contact ion pairs(CIPs)and aggregates(AGGs),facilitates the formation of an inorganic-rich interphase layer on the anode and cathode particles.This promotes de-solvation at low temperatures and stabilizes the electrode-electrolyte interphase.Full cells composed of LiNi_(0.6)Co_(0.2)Mn_(0.2)O_(2)(NCM622)and graphite,when equipped with this electrolyte,showcase remarkable cycle stability and capacity retention,with 93.3% retention after 500 cycles at room temperature(RT)and 95.5%after 120 cycles at -20℃.This study validates the utility of the anion-rich solvation sheath in strong solvents as a strategy for the development of low-temperature electrolytes. 展开更多
关键词 Electrolytes Solvation structure low temperature Strong solvents Lithium-ion batteries
在线阅读 下载PDF
A low Mach number asymptotic analysis of dissipation-reducing methods for curing shock instability 被引量:1
5
作者 Hongping GUO Xun WANG Zhijun SHEN 《Applied Mathematics and Mechanics(English Edition)》 2025年第4期723-744,共22页
We are intrigued by the issues of shock instability,with a particular emphasis on numerical schemes that address the carbuncle phenomenon by reducing dissipation rather than increasing it.For a specific class of plana... We are intrigued by the issues of shock instability,with a particular emphasis on numerical schemes that address the carbuncle phenomenon by reducing dissipation rather than increasing it.For a specific class of planar flow fields where the transverse direction exhibits vanishing but non-zero velocity components,such as a disturbed onedimensional(1D)steady shock wave,we conduct a formal asymptotic analysis for the Euler system and associated numerical methods.This analysis aims to illustrate the discrepancies among various low-dissipative numerical algorithms.Furthermore,a numerical stability analysis of steady shock is undertaken to identify the key factors underlying shock-stable algorithms.To verify the stability mechanism,a consistent,low-dissipation,and shock-stable HLLC-type Riemann solver is presented. 展开更多
关键词 Riemann solver numerical shock instability low Mach number HLLC
在线阅读 下载PDF
Multistage microcellular waterborne polyurethane composite with optionally low-reflection behavior for ultra-efficient electromagnetic interference shielding 被引量:3
6
作者 Jianming Yang Hu Wang +4 位作者 Hexin Zhang Peng Lin Hong Gao Youyi Xia Xia Liao 《Journal of Materials Science & Technology》 2025年第5期132-140,共9页
Electromagnetic interference(EMI)shielding materials with superior shielding efficiency and low-reflection properties hold promising potential for utilization across electronic components,precision instruments,and fif... Electromagnetic interference(EMI)shielding materials with superior shielding efficiency and low-reflection properties hold promising potential for utilization across electronic components,precision instruments,and fifth-generation communication equipment.In this study,multistage microcellular waterborne polyurethane(WPU)composites were constructed via gradient induction,layer-by-layer casting,and supercritical carbon dioxide foaming.The gradient-structured WPU/ironcobalt loaded reduced graphene oxide(FeCo@rGO)foam serves as an impedance-matched absorption layer,while the highly conductive WPU/silver loaded glass microspheres(Ag@GM)layer is employed as a reflection layer.Thanks to the incorporation of an asymmetric structure,as well as the introduction of gradient and porous configurations,the composite foam demonstrates excellent conductivity,outstanding EMI SE(74.9 dB),and minimal reflection characteristics(35.28%)in 8.2-12.4 GHz,implying that more than 99.99999%of electromagnetic(EM)waves were blocked and only 35.28%were reflected to the external environment.Interestingly,the reflectivity of the composite foam is reduced to 0.41%at 10.88 GHz due to the resonance for incident and reflected EM waves.Beyond that,the composite foam is characterized by low density(0.47 g/cm^(3))and great stability of EMI shielding properties.This work offers a viable approach for craft-ing lightweight,highly shielding,and minimally reflective EMI shielding composites. 展开更多
关键词 Electromagnetic interference shielding Supercritical carbon dioxide(ScCO_(2))foaming low reflectivity Multilayered structure MICROCELLULAR
原文传递
Dipole-dipole interactions in electrolyte to facilitate Li-ion desolvation for low-temperature Li-ion batteries 被引量:1
7
作者 Changlin Liu Zongjun Li +3 位作者 Lili Jiang Hao Zhu Fengchao Wang Lizhi Sheng 《Journal of Energy Chemistry》 2025年第5期678-686,共9页
Lithium-ion batteries are widely recognized as prime candidates for energy storage devices.Ethylene carbonate(EC)has become a critical component in conventional commercial electrolytes due to its exceptional film-form... Lithium-ion batteries are widely recognized as prime candidates for energy storage devices.Ethylene carbonate(EC)has become a critical component in conventional commercial electrolytes due to its exceptional film-forming properties and high dielectric constant.However,the elevated freezing point,high viscosity,and strong solvation energy of EC significantly hinder the transport rate of Li^(+)and the desolvation process at low temperatures.This leads to substantial capacity loss and even lithium plating on graphite anodes.Herein,we have developed an efficient electrolyte system specifically designed for lowtemperature conditions,which consists of 1.0 M lithium bis(fluorosulfonyl)imide(LiFSI)in isoxazole(IZ)with fluorobenzene(FB)as an uncoordinated solvent and fluoroethylene carbonate(FEC)as a filmforming co-solvent.This system effectively lowers the desolvation energy of Li^(+)through dipole-dipole interactions.The weak solvation capability allows more anions to enter the solvation sheath,promoting the formation of contact ion pairs(CIPs)and aggregates(AGGs)that enhance the transport rate of Li^(+)while maintaining high ionic conductivity across a broad temperature range.Moreover,the formation of inorganic-dominant interfacial phases on the graphite anode,induced by fluoroethylene carbonate,significantly enhances the kinetics of Li^(+)transport.At a low temperature of-20℃,this electrolyte system achieves an impressive reversible capacity of 200.9 mAh g^(-1)in graphite half-cell,which is nearly three times that observed with conventional EC-based electrolytes,demonstrating excellent stability throughout its operation. 展开更多
关键词 Lithium-ion batteries low-temperature electrolytes ISOXAZOLE Dipole-dipole interactions low desolvation energy
在线阅读 下载PDF
A low redox potential and long life organic anode material for sodium-ion batteries 被引量:1
8
作者 Zhi Li Yang Wei +7 位作者 Kang Zhou Xin Huang Xing Zhou Jie Xu Taoyi Kong Junwei Lucas Bao Xiaoli Dong Yonggang Wang 《Journal of Energy Chemistry》 2025年第1期557-564,共8页
Sodium-ion batteries (SIBs) with organic electrodes are an emerging research direction due to the sustainability of organic materials based on elements like C,H,O,and sodium ions.Currently,organic electrode materials ... Sodium-ion batteries (SIBs) with organic electrodes are an emerging research direction due to the sustainability of organic materials based on elements like C,H,O,and sodium ions.Currently,organic electrode materials for SIBs are mainly used as cathodes because of their relatively high redox potentials(>1 V).Organic electrodes with low redox potential that can be used as anode are rare.Herein,a novel organic anode material (tetrasodium 1,4,5,8-naphthalenetetracarboxylate,Na_(4)TDC) has been developed with low redox potential (<0.7 V) and excellent cyclic stability.Its three-sodium storage mechanism was demonstrated with various in-situ/ex-situ spectroscopy and theoretical calculations,showing a high capacity of 208 mAh/g and an average decay rate of merely 0.022%per cycle.Moreover,the Na_(4)TDC-hard carbon composite can further acquire improved capacity and cycling stability for 1200 cycles even with a high mass loading of up to 20 mg cm^(-2).By pairing with a thick Na_(3)V_(2)(PO_(4))_(3)cathode (20.6 mg cm^(-2)),the as-fabricated full cell exhibited high operating voltage (2.8 V),excellent rate performance and cycling stability with a high capacity retention of 88.7% after 200 cycles,well highlighting the Na_(4)TDC anode material for SIBs. 展开更多
关键词 Organic anode material low redox potential Composite anode Sodium-ion batteries
在线阅读 下载PDF
Investigation of bubbles escape behavior from low basicity mold flux for high-Mn high-Al steels using 3D X-ray microscope
9
作者 Qiang Liu Xiang Li +3 位作者 Shen Du Ming Gao Yanbin Yin Jiongming Zhang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS 2025年第1期102-110,共9页
During the continuous casting process of high-Mn high-Al steels,various types of gases such as Ar need to escape through the top of the mold.In which,the behavior of bubbles traversing the liquid slag serves as a rest... During the continuous casting process of high-Mn high-Al steels,various types of gases such as Ar need to escape through the top of the mold.In which,the behavior of bubbles traversing the liquid slag serves as a restrictive link,closely associated with viscosity and the thickness of liquid slag.In contrast to two-dimensional surface observation,three-dimensional(3D)analysis method can offer a more intuitive,accurate,and comprehensive information.Therefore,this study employs a 3D X-ray microscope(3D-XRM)to obtained spatial distribution and 3D morphological characteristics of residual bubbles in mold flux under different basicity of liquid slag,different temperatures,and different holding times.The results indicate that as basicity of slag increases from 0.52 to 1.03,temperature increases from 1423 to 1573 K,the viscosity of slag decreases,the floating rate of bubbles increases.In addition,when holding time increases from 10 to 30 s,the bubbles floating distance increases,and the volume fraction and average equivalent sphere diameter of the bubbles solidified in the mold flux gradually decreases.In one word,increasing the basicity,temperature,and holding time leading to an increase in the removal rate of bubbles especially for the large.These findings of bubbles escape behavior provide valuable insights into optimizing low basicity mold flux for high-Mn high-Al steels. 展开更多
关键词 mold flux low basicity BUBBLES three-dimensional X-ray microscope VISCOSITY
在线阅读 下载PDF
Application of a low-cost and high-efficiency polymer non-catalytic reduction technology for NO_(x) removal in waste-to-energy plant 被引量:1
10
作者 Shuai Xiao Congbo Li +4 位作者 Xueyan Zheng Liya Li Jingzhong Si Xiuqi Shu Xianqiong Zeng 《Journal of Environmental Sciences》 2025年第12期112-125,共14页
Ultra-low emission of nitrogen oxide(NO_(x))is an irreversible trend for the development of waste-to-energy industry.But traditional approaches to remove NO_(x) face significant challenge s,such as low denitration eff... Ultra-low emission of nitrogen oxide(NO_(x))is an irreversible trend for the development of waste-to-energy industry.But traditional approaches to remove NO_(x) face significant challenge s,such as low denitration efficiency,complex denitration system,and high investment and operating cost.Here we put forward a novel polymer non-catalytic reduction(PNCR)technology that utilized a new type of polymer agent to remove NO_(x),and the proposed PNCR technology was applied to the existing waste-to-energy plant to test the denitration performance.The PNCR technology demonstrated excellent denitration performance with a NO_(x) emission concentration of<100 mg/Nm^(3) and high denitration efficiency of>75%at the temperature range of 800-900℃,which showed the application feasibility even on the complex and unstable industrial operating conditions.In addition,PNCR and hybrid polymer/selective non-catalytic reduction(PNCR/SNCR)technology possessed remarkable economic advantages including low investment fee and low operating cost of<10 CNY per ton of municipal solid waste(MSW)compared with selective catalytic reduction(SCR)technology.The excellent denitration performance of PNCR technology forebodes a broad industrial application prospect in the field of flue gas cleaning for waste-to-energy plants. 展开更多
关键词 Polymer non-catalytic reduction High denitration efficiency low operating cost Waste-to-energy plant
原文传递
The control of differential tectonics on the formation of deep reservoirs in lacustrine rift basins:An insight of the Bodong Low Uplift in the Bohai Bay Basin,East China 被引量:1
11
作者 Qunfeng Ding Yuhang Chen +7 位作者 Lei Chen Lei Gao Shaofeng Bu Yuxing Liu Dongye Ma Rongjun Zhang Lijun Song Le Qu 《Energy Geoscience》 2025年第2期100-117,共18页
Tectonic activities significantly impact deep reservoir properties via sedimentary and diagenetic processes,and this is particularly true for lacustrine rift basins.The tectonic-sedimentary-diageneticreservoir system ... Tectonic activities significantly impact deep reservoir properties via sedimentary and diagenetic processes,and this is particularly true for lacustrine rift basins.The tectonic-sedimentary-diageneticreservoir system is crucial in deep reservoir exploration.This study examined the first member and upper submember of the second member of the Dongying Formation in the Bodong Low Uplift in the Bohai Bay Basin(East China),documenting the petrologic features and physical properties of reservoirs in different tectonic sub-units through integrated analysis of log and rock data,along with core observation.A mechanism for deep reservoir formation in lacustrine rift basins was developed to elucidate the sedimentary and diagenetic processes in complex tectonic settings.The results show that tectonic activities result in the occurrence of provenances in multiple directions and the existence of reservoirs at varying burial depths,as well as the significant diversity in sedimentary and diagenetic processes.The grain sizes of the sandstones,influenced by transport pathways rather than the topography of the sedimentary area,exhibit spatial complexity due to tectonic frameworks,which determine the initial pore content of reservoirs.However,the burial depth,influenced by subsequent tectonic subsidence,significantly impacts pore evolution during diagenesis.Based on the significant differences of reservoirs in slope zone,low uplift and depression zone,we establish different tectonic-diagenetic models in deep complex tectonic units of lacustrine rift basins. 展开更多
关键词 Deep reservoir Tectonic activity DIAGENESIS Dongying Formation Bodong low Uplift(BLU)
在线阅读 下载PDF
Low-profile,low sidelobe array antenna with ultrawide beam coverage for UAV communication 被引量:1
12
作者 Mei LI Zhiliang SHANG +2 位作者 Lin PU Ming-Chun TANG Lei ZHU 《Chinese Journal of Aeronautics》 2025年第1期444-454,共11页
This paper presents a design method to implement an antenna array characterized by ultra-wide beam coverage,low profile,and low Sidelobe Level(SLL)for the application of Unmanned Aerial Vehicle(UAV)air-to-ground commu... This paper presents a design method to implement an antenna array characterized by ultra-wide beam coverage,low profile,and low Sidelobe Level(SLL)for the application of Unmanned Aerial Vehicle(UAV)air-to-ground communication.The array consists of ten broadside-radiating,ultrawide-beamwidth elements that are cascaded by a central-symmetry series-fed network with tapered currents following Dolph-Chebyshev distribution to provide low SLL.First,an innovative design of end-fire Huygens source antenna that is compatible with metal ground is presented.A low-profile,half-mode Microstrip Patch Antenna(MPA)is utilized to serve as the magnetic dipole and a monopole is utilized to serves as the electric dipole,constructing the compact,end-fire,grounded Huygens source antenna.Then,two opposite-oriented end-fire Huygens source antennas are seamlessly integrated into a single antenna element in the form of monopole-loaded MPA to accomplish the ultrawide,broadside-radiating beam.Particular consideration has been applied into the design of series-fed network as well as antenna element to compensate the adverse coupling effects between elements on the radiation performance.Experiment indicates an ultrawide Half-Power Beamwidth(HPBW)of 161°and a low SLL of-25 dB with a high gain of 12 d Bi under a single-layer configuration.The concurrent ultrawide beamwidth and low SLL make it particularly attractive for applications of UAV air-to-ground communication. 展开更多
关键词 Array antenna Broad beam Fan beam low sidelobe level Chebyshev synthesis UAV communication
原文传递
In situ preparation of zincophilic covalent-organic frameworks with low surface work function and high rigidity to stabilize zinc metal anodes 被引量:1
13
作者 Yunyu Zhao Kaiyong Feng Yingjian Yu 《Journal of Energy Chemistry》 2025年第3期524-533,共10页
Zinc-ion batteries(ZIBs)are inexpensive and safe,but side reactions on the Zn anode and Zn dendrite growth hinder their practical applications.In this study,1,3,5-triformylphloroglycerol(Tp)and various diamine monomer... Zinc-ion batteries(ZIBs)are inexpensive and safe,but side reactions on the Zn anode and Zn dendrite growth hinder their practical applications.In this study,1,3,5-triformylphloroglycerol(Tp)and various diamine monomers(p-phenylenediamine(Pa),benzidine(BD),and 4,4"-diamino-p-terphenyl(DATP))were used to synthesize a series of two-dimensional covalent-organic frameworks(COFs).The resulting COFs were named TpPa,TpBD,and TpDATP,respectively,and they showed uniform zincophilic sites,different pore sizes,and high Young's moduli on the Zn anode.Among them,TpPa and TpBD showed lower surface work functions and higher ion transfer numbers,which were conducive to uniform galvanizing/stripping zinc and inhibited dendrite growth.Theoretical calculations showed that TpPa and TpBD had wider negative potential region and greater adsorption capacity for Zn2+than TpDATP,providing more electron donor sites to coordinate with Zn^(2+).Symmetric cells protected by TpPa and TpBD stably cycled for more than 2300 h,whereas TpDATP@Zn and the bare zinc symmetric cells failed after around 150 and200 h.The full cells containing TpPa and TpBD modification layers also showed excellent cycling capacity at 1 A/g.This study provides comprehensive insights into the construction of highly reversible Zn anodes via COF modification layers for advanced rechargeable ZIBs. 展开更多
关键词 Zn ion batteries Covalent organic framework DENDRITE low surface work function High rigidity
在线阅读 下载PDF
Evolution of CO_(2)Storage Mechanisms in Low-Permeability Tight Sandstone Reservoirs 被引量:1
14
作者 Xiangzeng Wang Hong Yang +3 位作者 Yongjie Huang Quansheng Liang Jing Liu Dongqing Ye 《Engineering》 2025年第5期107-120,共14页
Understanding the storage mechanisms in CO_(2)flooding is crucial,as many carbon capture,utilization,and storage(CCUS)projects are related to enhanced oil recovery(EOR).CO_(2)storage in reservoirs across large timesca... Understanding the storage mechanisms in CO_(2)flooding is crucial,as many carbon capture,utilization,and storage(CCUS)projects are related to enhanced oil recovery(EOR).CO_(2)storage in reservoirs across large timescales undergoes the two storage stages of oil displacement and well shut-in,which cover mul-tiple replacement processes of injection-production synchronization,injection only with no production,and injection-production stoppage.Because the controlling mechanism of CO_(2)storage in different stages is unknown,the evolution of CO_(2)storage mechanisms over large timescales is not understood.A math-ematical model for the evaluation of CO_(2)storage,including stratigraphic,residual,solubility,and mineral trapping in low-permeability tight sandstone reservoirs,was established using experimental and theoret-ical analyses.Based on a detailed geological model of the Huaziping Oilfield,calibrated with reservoir permeability and fracture characteristic parameters obtained from well test results,a dynamic simulation of CO_(2)storage for the entire reservoir life cycle under two scenarios of continuous injection and water-gas alternation were considered.The results show that CO_(2)storage exhibits the significant stage charac-teristics of complete storage,dynamic storage,and stable storage.The CO_(2)storage capacity and storage rate under the continuous gas injection scenario(scenario 1)were 6.34×10^(4)t and 61%,while those under the water-gas alternation scenario(scenario 2)were 4.62×10^(4)t and 46%.The proportions of stor-age capacity under scenarios 1 and 2 for structural or stratigraphic,residual,solubility,and mineral trap-ping were 33.36%,33.96%,32.43%,and 0.25%;and 15.09%,38.65%,45.77%,and 0.49%,respectively.The evolution of the CO_(2)storage mechanism showed an overall trend:stratigraphic and residual trapping first increased and then decreased,whereas solubility trapping gradually decreased,and mineral trapping continuously increased.Based on these results,an evolution diagram of the CO_(2)storage mechanism of low-permeability tight sandstone reservoirs across large timescales was established. 展开更多
关键词 CO_(2)storage mechanism Evolutionary patterns Oil reservoir low permeability Tight sandstone
在线阅读 下载PDF
Combined Influences of Atmospheric Precursors on Antarctic Sea Ice and Its Record Low in February 2023 被引量:1
15
作者 Juan DOU Renhe ZHANG 《Advances in Atmospheric Sciences》 2025年第12期2435-2452,I0006-I0010,共23页
This study investigates the influence of major climatic modes on the interannual variability of the annual minimum extent of Antarctic sea ice.It shows that the Southern Annular Mode(SAM),the Indian Ocean Dipole(IOD),... This study investigates the influence of major climatic modes on the interannual variability of the annual minimum extent of Antarctic sea ice.It shows that the Southern Annular Mode(SAM),the Indian Ocean Dipole(IOD),and the El Niño-Southern Oscillation(ENSO),along with the total sea ice condition during the preceding spring,serve as precursor signals of February sea ice extent(SIE).These climate modes interact,energizing the Pacific-South American pattern(PSA),which deepens and shifts the Amundsen Sea Low(ASL)westward in spring.This pattern generates a dipole sea ice anomaly characterized by an increase in sea ice in the northern Ross Sea but a decrease in ice in the Bellingshausen and northern Weddell Seas.However,as the season transitions into summer,the ASL exerts a pronounced delayed effect,contributing to widespread sea ice loss across West Antarctica.Strong southerly winds on the western flank of the ASL push sea ice away from the inner Ross Sea,exposing coastal waters that absorb solar radiation,thereby accelerating ice melt through positive ice-albedo feedback.Simultaneously,northwesterly winds on the eastern flank transport warm air toward the Bellingshausen and northern Weddell Seas,intensifying ice loss in these regions.Furthermore,the active PSA is accompanied by a tripole sea surface temperature pattern characterized by warming in the Weddell Sea,which promotes continued ice melt.The co-occurrence of an exceptionally positive SAM,a La Niña,and a strong negative IOD during spring 2022,combined with lower-than-normal total spring SIE,ultimately contributed to the record-low Antarctic SIE observed in February 2023. 展开更多
关键词 Antarctic sea ice Southern Annular Mode ENSO Indian Ocean Dipole Pacific-South American pattern Amundsen Sea low
在线阅读 下载PDF
An improved high efficiency low error substrate integrated waveguide wideband delay line
16
作者 ZHANG Hongxi WANG Pei 《中国科学院大学学报(中英文)》 北大核心 2025年第5期677-685,共9页
In this paper,a wideband true time delay line for X-band is designed to overcome the beam dispersion problem in a high-resolution spaceborne synthetic aperture radar phased array antenna system.The delay line loads th... In this paper,a wideband true time delay line for X-band is designed to overcome the beam dispersion problem in a high-resolution spaceborne synthetic aperture radar phased array antenna system.The delay line loads the electromagnetic bandgap structure on the upper surface of the substrate integrated waveguide.This is equivalent to including an additional inductance-capacitance for energy storage,which realizes the slow-wave effect.A microstrip line-SIW tapered transition structure is introduced to achieve a low loss and a large bandwidth.In the frequency band between 8-12 GHz,the measured results show that the delay multiplier of the delay line reaches 4 times,i.e.,delay line’s delay time is 4 times larger than 50Ωmicrostrip line with same length.Furthermore,the delay fluctuation,i.e.,the difference between the maximum and minimum delay as a percentage of the standard delay is only 2.5%,the insertion loss is less than-2.5 dB,and the return loss is less than-15 dB.Compared with the existing delay lines,the proposed delay line has the advantages of high delay efficiency,low delay error,wide bandwidth and low loss,which has good practical value and application prospects. 展开更多
关键词 SIW EBG low error high efficiency WIDEBAND
在线阅读 下载PDF
Development and evaluation of organic/metal ion double crosslinking polymer gel for anti-CO_(2)gas channeling in high temperature and low permeability reservoirs 被引量:1
17
作者 Hong-Bin Yang Hai-Zhuang Jiang +7 位作者 Zhe Xu Xing Zhang Tao Wang Hai-Ning Liu Xiao Ma Jian-Jun Zhu Xiang-Feng Zhang Wan-Li Kang 《Petroleum Science》 2025年第2期724-738,共15页
CO_(2)flooding enhanced oil recovery(CO_(2)-EOR)represents a significant technology in the low permeability reservoir.With the fractures and heterogeneity in low permeability reservoirs,CO_(2)-EOR is susceptible to pe... CO_(2)flooding enhanced oil recovery(CO_(2)-EOR)represents a significant technology in the low permeability reservoir.With the fractures and heterogeneity in low permeability reservoirs,CO_(2)-EOR is susceptible to pessimistic gas channeling.Consequently,there is a need to develop conformance control materials that can be used in CO_(2)-EOR.Herein,to address the challenges of low strength and poor stability of polymer gel in high temperature and low permeability reservoirs,a new organic/metal ion composite crosslinking polymer gel(AR-Gel)is reported,which is formed by low hydrolysis and medium to high molecular weight polymer(CX-305),organic crosslinking agent(phenolic resin),and aluminium citrate(AI(Ⅲ)).The crosslinking of AI(Ⅲ)with carboxyl group and organic/metal ion double crosslinking can construct a more complex and stable polymer gel structure on the basis of traditional chemical crosslinking,to cope with the harsh conditions such as high temperature.The structure-activity relationship of AR-Gel was revealed by rheology behavior and micro-morphology.The applicability of AR-Gel in reservoir was investigated,as was its strength and stability in supercritical CO_(2).The anti-gas channeling and enhanced oil recovery of AR-Gel were investigated using low permeability fractured cores,and the field process parameters were provided.The gel can be used to meet supercritical CO_(2)reservoirs at 110℃and 20,000 mg/L salinity,with long-term stability over 60 days.The plugging rate of AR-Gel for fractured co re was 97%,with subsequent CO_(2)flooding re sulting in an enhanced oil recovery by 34.5%.ARGel can effectively control CO_(2)gas channeling and enhanced oil recovery.It offers a new material with high strength and temperature resistance,which is particularly beneficial in the CO_(2)flooding for the conformance control of oil field. 展开更多
关键词 High temperature and low permeability reservoir CO_(2)flooding Anti-gas channeling Polymer gel
原文传递
Microstructure and Mechanical Properties of New Nickel-Based Superalloys Fabricated by Selective Laser Melting at Low Energy Density
18
作者 Xu He Liang Jingjing Li Jinguo 《稀有金属材料与工程》 北大核心 2025年第8期1926-1933,共8页
ZGH401 alloy was prepared under varying laser power levels and scanning speeds by the orthogonal test method using selective laser melting(SLM).The effect of different energy densities on microstructure and mechanical... ZGH401 alloy was prepared under varying laser power levels and scanning speeds by the orthogonal test method using selective laser melting(SLM).The effect of different energy densities on microstructure and mechanical properties of the formed alloy was investigated.The microstructure of ZGH401 was analyzed by scanning electron microscope,electron back-scattered diffraction,and electron probe microanalysis.The results show that the defects of the as-built ZGH401 are gradually reduced,the relative density is correspondingly enhanced with increasing the energy density,and the ultimate density can reach 99.6%.An increase in laser power leads to a corresponding rise in hardness of ZGH401,while a faster scanning speed reduces the residual stress in asbuilt ZGH401 samples.In addition,better tensile properties are achieved at room temperature due to more grain boundaries perpendicular to the build direction than parallel to the build direction.The precipitated phases are identified as carbides and Laves phases via chemical composition analysis,with fewer carbides observed at the molten pool boundaries than within the molten pools. 展开更多
关键词 selective laser melting low energy density ZGH401
原文传递
基于Lowe分类的EAP-AKA′协议安全性分析与改进
19
作者 黄明巍 缪祥华 +2 位作者 张世奇 张世杰 王欣源 《数据通信》 2025年第1期24-28,32,共6页
EAP-AKA′协议是5G网络中重要的认证协议之一,但在其协议中存在一些潜在的安全风险。针对EAP-AKA′协议在5G网络中的安全性问题,基于Lowe分类法对协议的安全性进行了分析,并提出了一系列改进措施,包括使用由Fiat-Shamir启发式优化的挑战... EAP-AKA′协议是5G网络中重要的认证协议之一,但在其协议中存在一些潜在的安全风险。针对EAP-AKA′协议在5G网络中的安全性问题,基于Lowe分类法对协议的安全性进行了分析,并提出了一系列改进措施,包括使用由Fiat-Shamir启发式优化的挑战-应答机制及数字签名验证,从而增强了认证过程的安全性。最后,我们采用了Tamarin验证工具进行了实验验证,结果表明,本文提出的改进措施可以有效地提高EAP-AKA′协议的安全性。 展开更多
关键词 5G网络安全 EPA-AKA′协议 lowe分类 Tamarin分析器 Dolve-Yao敌手模型 Fiat-Shamir启发式 形式化方法
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部