Satellite edge computing has garnered significant attention from researchers;however,processing a large volume of tasks within multi-node satellite networks still poses considerable challenges.The sharp increase in us...Satellite edge computing has garnered significant attention from researchers;however,processing a large volume of tasks within multi-node satellite networks still poses considerable challenges.The sharp increase in user demand for latency-sensitive tasks has inevitably led to offloading bottlenecks and insufficient computational capacity on individual satellite edge servers,making it necessary to implement effective task offloading scheduling to enhance user experience.In this paper,we propose a priority-based task scheduling strategy based on a Software-Defined Network(SDN)framework for satellite-terrestrial integrated networks,which clarifies the execution order of tasks based on their priority.Subsequently,we apply a Dueling-Double Deep Q-Network(DDQN)algorithm enhanced with prioritized experience replay to derive a computation offloading strategy,improving the experience replay mechanism within the Dueling-DDQN framework.Next,we utilize the Deep Deterministic Policy Gradient(DDPG)algorithm to determine the optimal resource allocation strategy to reduce the processing latency of sub-tasks.Simulation results demonstrate that the proposed d3-DDPG algorithm outperforms other approaches,effectively reducing task processing latency and thus improving user experience and system efficiency.展开更多
As AI systems scale, the limitations of cloud-based architectures, including latency, bandwidth, and privacy concerns, demand decentralized alternatives. Federated learning (FL) and Edge AI provide a paradigm shift by...As AI systems scale, the limitations of cloud-based architectures, including latency, bandwidth, and privacy concerns, demand decentralized alternatives. Federated learning (FL) and Edge AI provide a paradigm shift by combining privacy preserving training with efficient, on device computation. This paper introduces a cutting-edge FL-edge integration framework, achieving a 10% to 15% increase in model accuracy and reducing communication costs by 25% in heterogeneous environments. Blockchain based secure aggregation ensures robust and tamper-proof model updates, while exploratory quantum AI techniques enhance computational efficiency. By addressing key challenges such as device variability and non-IID data, this work sets the stage for the next generation of adaptive, privacy-first AI systems, with applications in IoT, healthcare, and autonomous systems.展开更多
Superior strength and high-temperature performance make γ-TiAl vital for lightweight aero-engines. However, its inherent brittleness poses machining problems. This study employed Elliptical Ultrasonic Vibration Milli...Superior strength and high-temperature performance make γ-TiAl vital for lightweight aero-engines. However, its inherent brittleness poses machining problems. This study employed Elliptical Ultrasonic Vibration Milling (EUVM) to address these problems. Considering the influence of machining parameters on vibration patterns of EUVM, a separation time model was established to analyze the vibration evolutionary process, thereby instructing the cutting mechanism. On this basis, deep discussions regarding chip formation, cutting force, edge breakage, and subsurface layer deformation were conducted for EUVM and Conventional Milling (CM). Chip morphology showed the chip formation was rooted in the periodic brittle fracture. Local dimples proved that the thermal effect of high-speed cutting improved the plasticity of γ-TiAl. EUVM achieved a maximum 18.17% reduction in cutting force compared with CM. The force variation mechanism differed with changes in the cutting speed or the vibration amplitude, and its correlation with thermal softening, strain hardening, and vibratory cutting effects was analyzed. EUVM attained desirable edge breakage by achieving smaller fracture lengths. The fracture mechanisms of different phases were distinct, causing a surge in edge fracture size of γ-TiAl under microstructural differences. In terms of subsurface deformation, EUVM also showed strengthening effects. Noteworthy, the lamellar deformation patterns under the cutting removal state differed from the quasi-static, which was categorized by the orientation angles. Additionally, the electron backscattering diffraction provided details of the influence of microstructural difference on the orientation and the deformation of grains in the subsurface layer. The results demonstrate that EUVM is a promising machining method for γ-TiAl and guide further research and development of EUVM γ-TiAl.展开更多
As an important complement to cloud computing, edge computing can effectively reduce the workload of the backbone network. To reduce latency and energy consumption of edge computing, deep learning is used to learn the...As an important complement to cloud computing, edge computing can effectively reduce the workload of the backbone network. To reduce latency and energy consumption of edge computing, deep learning is used to learn the task offloading strategies by interacting with the entities. In actual application scenarios, users of edge computing are always changing dynamically. However, the existing task offloading strategies cannot be applied to such dynamic scenarios. To solve this problem, we propose a novel dynamic task offloading framework for distributed edge computing, leveraging the potential of meta-reinforcement learning (MRL). Our approach formulates a multi-objective optimization problem aimed at minimizing both delay and energy consumption. We model the task offloading strategy using a directed acyclic graph (DAG). Furthermore, we propose a distributed edge computing adaptive task offloading algorithm rooted in MRL. This algorithm integrates multiple Markov decision processes (MDP) with a sequence-to-sequence (seq2seq) network, enabling it to learn and adapt task offloading strategies responsively across diverse network environments. To achieve joint optimization of delay and energy consumption, we incorporate the non-dominated sorting genetic algorithm II (NSGA-II) into our framework. Simulation results demonstrate the superiority of our proposed solution, achieving a 21% reduction in time delay and a 19% decrease in energy consumption compared to alternative task offloading schemes. Moreover, our scheme exhibits remarkable adaptability, responding swiftly to changes in various network environments.展开更多
The rise of large-scale artificial intelligence(AI)models,such as ChatGPT,Deep-Seek,and autonomous vehicle systems,has significantly advanced the boundaries of AI,enabling highly complex tasks in natural language proc...The rise of large-scale artificial intelligence(AI)models,such as ChatGPT,Deep-Seek,and autonomous vehicle systems,has significantly advanced the boundaries of AI,enabling highly complex tasks in natural language processing,image recognition,and real-time decisionmaking.However,these models demand immense computational power and are often centralized,relying on cloud-based architectures with inherent limitations in latency,privacy,and energy efficiency.To address these challenges and bring AI closer to real-world applications,such as wearable health monitoring,robotics,and immersive virtual environments,innovative hardware solutions are urgently needed.This work introduces a near-sensor edge computing(NSEC)system,built on a bilayer AlN/Si waveguide platform,to provide real-time,energy-efficient AI capabilities at the edge.Leveraging the electro-optic properties of AlN microring resonators for photonic feature extraction,coupled with Si-based thermo-optic Mach-Zehnder interferometers for neural network computations,the system represents a transformative approach to AI hardware design.Demonstrated through multimodal gesture and gait analysis,the NSEC system achieves high classification accuracies of 96.77%for gestures and 98.31%for gaits,ultra-low latency(<10 ns),and minimal energy consumption(<0.34 pJ).This groundbreaking system bridges the gap between AI models and real-world applications,enabling efficient,privacy-preserving AI solutions for healthcare,robotics,and next-generation human-machine interfaces,marking a pivotal advancement in edge computing and AI deployment.展开更多
Recently,one of the main challenges facing the smart grid is insufficient computing resources and intermittent energy supply for various distributed components(such as monitoring systems for renewable energy power sta...Recently,one of the main challenges facing the smart grid is insufficient computing resources and intermittent energy supply for various distributed components(such as monitoring systems for renewable energy power stations).To solve the problem,we propose an energy harvesting based task scheduling and resource management framework to provide robust and low-cost edge computing services for smart grid.First,we formulate an energy consumption minimization problem with regard to task offloading,time switching,and resource allocation for mobile devices,which can be decoupled and transformed into a typical knapsack problem.Then,solutions are derived by two different algorithms.Furthermore,we deploy renewable energy and energy storage units at edge servers to tackle intermittency and instability problems.Finally,we design an energy management algorithm based on sampling average approximation for edge computing servers to derive the optimal charging/discharging strategies,number of energy storage units,and renewable energy utilization.The simulation results show the efficiency and superiority of our proposed framework.展开更多
Rod-airfoil interaction noise becomes a major issue in some aeronautical applications.The design of four wavy leading edges(WLEs)with varying wavelengths,bioinspired by the tubercles on humpback whales’flippers,aims ...Rod-airfoil interaction noise becomes a major issue in some aeronautical applications.The design of four wavy leading edges(WLEs)with varying wavelengths,bioinspired by the tubercles on humpback whales’flippers,aims to mitigate far-field noise.Among these cases,a reduction in the wavelength is found to be advantageous for noise suppression,with the smallest wavelength case achieving a maximum noise reduction of 1.9 dB.Furthermore,the noise radiation induced by WLEs is suppressed mainly at medium frequencies.The theory of multiprocess aeroacoustics is applied to reveal their underlying mechanisms.The dominant factor is the source cutoff effect,which significantly decreases the source strength on hills.Additionally,spanwise decoherence with phase interference serves as another crucial mechanism,particularly for reducing mid-frequency noise.展开更多
Edge structures are ubiquitous in the processing and fabrication of various optoelectronic devices.Novel physical properties and enhanced light–matter interactions are anticipated to occur at crystal edges due to the...Edge structures are ubiquitous in the processing and fabrication of various optoelectronic devices.Novel physical properties and enhanced light–matter interactions are anticipated to occur at crystal edges due to the broken spatial translational symmetry.However,the intensity of first-order Raman scattering at crystal edges has been rarely explored,although the mechanical stress and edge characteristics have been thoroughly studied by the Raman peak shift and the spectral features of the edge-related Raman modes.Here,by taking Ga As crystal with a well-defined edge as an example,we reveal the intensity enhancement of Raman-active modes and the emergence of Raman-forbidden modes under specific polarization configurations at the edge.This is attributed to the presence of a hot spot at the edge due to the redistributed electromagnetic fields and electromagnetic wave propagations of incident laser and Raman signal near the edge,which are confirmed by the finite-difference time-domain simulations.Spatially-resolved Raman intensities of both Raman-active and Raman-forbidden modes near the edge are calculated based on the redistributed electromagnetic fields,which quantitatively reproduce the corresponding experimental results.These findings offer new insights into the intensity enhancement of Raman scattering at crystal edges and present a new avenue to manipulate light–matter interactions of crystal by manufacturing various types of edges and to characterize the edge structures in photonic and optoelectronic devices.展开更多
Mitral regurgitation (MR) is a highly prevalent valvular heart disease globally,with untreated severe cases demonstrating associations with elevated morbidity,mortality,and adverse cardiovascular outcomes.[1,2]While t...Mitral regurgitation (MR) is a highly prevalent valvular heart disease globally,with untreated severe cases demonstrating associations with elevated morbidity,mortality,and adverse cardiovascular outcomes.[1,2]While transcatheter edge-toedge repair (TEER) has emerged as an alternative option for high surgical risk patients with severe MR,[3,4]severe MR of Carpentier class IIIa (characterized by restricted leaflet motion during both systole and diastole) has been considered a relative contraindication for TEER interventions due to stenosis risk and procedural complexity.[5,6]展开更多
Non-Abelian topological insulators are characterized by matrix-valued,non-commuting topological charges with regard to more than one energy gap.Their descriptions go beyond the conventional topological band theory,in ...Non-Abelian topological insulators are characterized by matrix-valued,non-commuting topological charges with regard to more than one energy gap.Their descriptions go beyond the conventional topological band theory,in which an additive integer like the winding or Chern number is endowed separately with each(degenerate group of)energy band(s).In this work,we reveal that Floquet(time-periodic)driving could not only enrich the topology and phase transitions of non-Abelian topological matter,but also induce bulk-edge correspondence unique to nonequilibrium setups.Using a one-dimensional,three-band model as an illustrative example,we demonstrate that Floquet driving could reshuffle the phase diagram of the non-driven system,yielding both gapped and gapless Floquet band structures with non-Abelian topological charges.Moreover,by dynamically tuning the anomalous Floquet π-quasienergy gap,non-Abelian topological transitions inaccessible to static systems could arise,leading to much more complicated relations between non-Abelian topological charges and Floquet edge states.These discoveries put forth periodic driving as a powerful scheme of engineering non-Abelian topological phases and incubating unique non-Abelian band topology beyond equilibrium.展开更多
Efficient edge caching is essential for maximizing utility in video streaming systems,especially under constraints such as limited storage capacity and dynamically fluctuating content popularity.Utility,defined as the...Efficient edge caching is essential for maximizing utility in video streaming systems,especially under constraints such as limited storage capacity and dynamically fluctuating content popularity.Utility,defined as the benefit obtained per unit of cache bandwidth usage,degrades when static or greedy caching strategies fail to adapt to changing demand patterns.To address this,we propose a deep reinforcement learning(DRL)-based caching framework built upon the proximal policy optimization(PPO)algorithm.Our approach formulates edge caching as a sequential decision-making problem and introduces a reward model that balances cache hit performance and utility by prioritizing high-demand,high-quality content while penalizing degraded quality delivery.We construct a realistic synthetic dataset that captures both temporal variations and shifting content popularity to validate our model.Experimental results demonstrate that our proposed method improves utility by up to 135.9%and achieves an average improvement of 22.6%compared to traditional greedy algorithms and long short-term memory(LSTM)-based prediction models.Moreover,our method consistently performs well across a variety of utility functions,workload distributions,and storage limitations,underscoring its adaptability and robustness in dynamic video caching environments.展开更多
Urban green spaces and parks offer opportunities for retaining and increasing bird richness, diversity, and species abundance. However, urbanisation influences predator–prey interactions, leading to high predation ra...Urban green spaces and parks offer opportunities for retaining and increasing bird richness, diversity, and species abundance. However, urbanisation influences predator–prey interactions, leading to high predation rates in urban areas, in the UK notably through the presence of large populations of domestic cats and increased populations of synanthropic species, such as rats and squirrels. These high predation rates are assumed to be a significant cause of reproductive failure in birds. Some ecologists advocate for the use of buffer zones with reduced human influence to reduce potential hunting pressure in eco-sensitive areas. However, the buffer effect on predation rates of nesting birds in suburban areas is rarely investigated. In this study, we investigated how edge effects (how close nest sites are to housing) and nest height (i.e., ground vs. above-ground) affected nest predation rates in a suburban park using camera traps to monitor artificial nests containing quail eggs. Our hypothesis was that nests in the buffer area (<300 m inward from university boundary) and at low height would suffer higher predation rates than nests in the core area (>300 m from the university boundary) and at height, as the buffer zone effect, and ease of access to ground predators would result in higher predation rates. We found no significant effect of nest height in nest predation rates. However, contrary to our expectations, nests in the core zone suffered higher predation rates than those in the buffer zone, and corvids were responsible for almost half of the egg loss events. We speculate that this may be a consequence of higher levels of anthropogenic disturbance (e.g., pedestrians, dog walking, vehicles) adjacent to our buffer zone acting as a deterrent to avian nest predators. This work suggests that protecting urban sites from disturbance may not always act to support bird abundance.展开更多
A robust Reynolds-Averaged Navier-Stokes(RANS)based solver is established to predict the complex unsteady aerodynamic characteristics of the Active Flap Control(AFC)rotor.The complex motion with multiple degrees of fr...A robust Reynolds-Averaged Navier-Stokes(RANS)based solver is established to predict the complex unsteady aerodynamic characteristics of the Active Flap Control(AFC)rotor.The complex motion with multiple degrees of freedom of the Trailing Edge Flap(TEF)is analyzed by employing an inverse nested overset grid method.Simulation of non-rotational and rotational modes of blade motion are carried out to investigate the formation and development of TEF shedding vortex with high-frequency deflection of TEF.Moreover,the mechanism of TEF deflection interference with blade tip vortex and overall rotor aerodynamics is also explored.In nonrotational mode,two bundles of vortices form at the gap ends of TEF and the main blade and merge into a single TEF vortex.Dynamic deflection of the TEF significantly interferes with the blade tip vortex.The position of the blade tip vortex consistently changes,and its frequency is directly related to the frequency of TEF deflection.In rotational mode,the tip vortex forms a helical structure.The end vortices at the gap sides co-swirl and subsequently merge into the concentrated beam of tip vortices,causing fluctuations in the vorticity and axial position of the tip vortex under the rotor.This research concludes with the investigation on suppression of Blade Vortex Interaction(BVI),showing an increase in miss distance and reduction in the vorticity of tip vortex through TEF phase control at a particular control frequency.Through this mechanism,a designed TEF deflection law increases the miss distance by 34.7%and reduces vorticity by 11.9%at the target position,demonstrating the effectiveness of AFC in mitigating BVI.展开更多
As Internet of Vehicles(IoV)technology continues to advance,edge computing has become an important tool for assisting vehicles in handling complex tasks.However,the process of offloading tasks to edge servers may expo...As Internet of Vehicles(IoV)technology continues to advance,edge computing has become an important tool for assisting vehicles in handling complex tasks.However,the process of offloading tasks to edge servers may expose vehicles to malicious external attacks,resulting in information loss or even tampering,thereby creating serious security vulnerabilities.Blockchain technology can maintain a shared ledger among servers.In the Raft consensus mechanism,as long as more than half of the nodes remain operational,the system will not collapse,effectively maintaining the system’s robustness and security.To protect vehicle information,we propose a security framework that integrates the Raft consensus mechanism from blockchain technology with edge computing.To address the additional latency introduced by blockchain,we derived a theoretical formula for system delay and proposed a convex optimization solution to minimize the system latency,ensuring that the system meets the requirements for low latency and high reliability.Simulation results demonstrate that the optimized data extraction rate significantly reduces systemdelay,with relatively stable variations in latency.Moreover,the proposed optimization solution based on this model can provide valuable insights for enhancing security and efficiency in future network environments,such as 5G and next-generation smart city systems.展开更多
The edge crack behavior of copper foil in asymmetrical micro-rolling was studied.The effects of the speed ratio between rolls,grain size and stress state in the deformation zone on edge cracks of the rolled piece in a...The edge crack behavior of copper foil in asymmetrical micro-rolling was studied.The effects of the speed ratio between rolls,grain size and stress state in the deformation zone on edge cracks of the rolled piece in asymmetrical rolling were analyzed.Low plasticity,uneven deformation and longitudinal secondary tensile stress generated in the edge area of the rolled piece during the rolling process are the main causes of edge cracks.The larger the grain size of the rolled piece,the smaller the number of edge cracks and the deeper the expansion depth,and the larger the spacing between cracks under the same rolling reduction.Asymmetrical rolling can effectively increase the rolling reduction at when the copper foil fist shows edge cracks compared to symmetrical rolling.This enhancement is attributed to the shearing stress induced by asymmetrical rolling,which reduces the rolling force and longitudinal secondary tensile stress,and increases the residual compressive stress on the surface of the rolled piece.The edge crack defects of copper foil can be effectively reduced by increasing the speed ratio between the rolls in asymmetrical rolling.展开更多
The ionosphere is an important component of the near Earth space environment.The three common methods for detecting the ionosphere with high frequency(HF)radio signals are vertical detection,oblique detection,and obli...The ionosphere is an important component of the near Earth space environment.The three common methods for detecting the ionosphere with high frequency(HF)radio signals are vertical detection,oblique detection,and oblique backscatter detection.The ionograms obtained by these detection methods can effectively reflect a large amount of effective information in the ionosphere.The focus of this article is on the oblique backscatter ionogram obtained by oblique backscatter detection.By extracting the leading edge of the oblique backscatter ionogram,effective information in the ionosphere can be inverted.The key issue is how to accurately obtain the leading edge of the oblique backscatter ionogram.In recent years,the application of pattern recognition has become increasingly widespread,and the YOLO model is one of the best fast object detection algorithms in one-stage.Therefore,the core idea of this article is to use the newer YOLOX object detection algorithm in the YOLO family to perform pattern recognition on the F and E_(s) layers echoes in the oblique backscatter ionogram.After image processing,a single-layer oblique backscatter echoes are obtained.It can be found that the leading edge extraction of the oblique backscatter ionogram obtained after pattern recognition and image processing by the YOLOX model is more fitting to the actual oblique backscatter leading edge.展开更多
This paper introduces a quantum-enhanced edge computing framework that synergizes quantuminspired algorithms with advanced machine learning techniques to optimize real-time task offloading in edge computing environmen...This paper introduces a quantum-enhanced edge computing framework that synergizes quantuminspired algorithms with advanced machine learning techniques to optimize real-time task offloading in edge computing environments.This innovative approach not only significantly improves the system’s real-time responsiveness and resource utilization efficiency but also addresses critical challenges in Internet of Things(IoT)ecosystems—such as high demand variability,resource allocation uncertainties,and data privacy concerns—through practical solutions.Initially,the framework employs an adaptive adjustment mechanism to dynamically manage task and resource states,complemented by online learning models for precise predictive analytics.Secondly,it accelerates the search for optimal solutions using Grover’s algorithm while efficiently evaluating complex constraints through multi-controlled Toffoli gates,thereby markedly enhancing the practicality and robustness of the proposed solution.Furthermore,to bolster the system’s adaptability and response speed in dynamic environments,an efficientmonitoring mechanism and event-driven architecture are incorporated,ensuring timely responses to environmental changes and maintaining synchronization between internal and external systems.Experimental evaluations confirm that the proposed algorithm demonstrates superior performance in complex application scenarios,characterized by faster convergence,enhanced stability,and superior data privacy protection,alongside notable reductions in latency and optimized resource utilization.This research paves the way for transformative advancements in edge computing and IoT technologies,driving smart edge computing towards unprecedented levels of intelligence and automation.展开更多
文摘Satellite edge computing has garnered significant attention from researchers;however,processing a large volume of tasks within multi-node satellite networks still poses considerable challenges.The sharp increase in user demand for latency-sensitive tasks has inevitably led to offloading bottlenecks and insufficient computational capacity on individual satellite edge servers,making it necessary to implement effective task offloading scheduling to enhance user experience.In this paper,we propose a priority-based task scheduling strategy based on a Software-Defined Network(SDN)framework for satellite-terrestrial integrated networks,which clarifies the execution order of tasks based on their priority.Subsequently,we apply a Dueling-Double Deep Q-Network(DDQN)algorithm enhanced with prioritized experience replay to derive a computation offloading strategy,improving the experience replay mechanism within the Dueling-DDQN framework.Next,we utilize the Deep Deterministic Policy Gradient(DDPG)algorithm to determine the optimal resource allocation strategy to reduce the processing latency of sub-tasks.Simulation results demonstrate that the proposed d3-DDPG algorithm outperforms other approaches,effectively reducing task processing latency and thus improving user experience and system efficiency.
文摘As AI systems scale, the limitations of cloud-based architectures, including latency, bandwidth, and privacy concerns, demand decentralized alternatives. Federated learning (FL) and Edge AI provide a paradigm shift by combining privacy preserving training with efficient, on device computation. This paper introduces a cutting-edge FL-edge integration framework, achieving a 10% to 15% increase in model accuracy and reducing communication costs by 25% in heterogeneous environments. Blockchain based secure aggregation ensures robust and tamper-proof model updates, while exploratory quantum AI techniques enhance computational efficiency. By addressing key challenges such as device variability and non-IID data, this work sets the stage for the next generation of adaptive, privacy-first AI systems, with applications in IoT, healthcare, and autonomous systems.
基金co-supported by the Science Center for Gas Turbine Project, China(No. P2022-AB-IV-001-002)the National Natural Science Foundation of China (No. 91960203)+1 种基金the Fundamental Research Funds for the Central Universities (No. D5000230048)the Innovation Capability Support Program of Shaanxi (No. 2022TD-60)
文摘Superior strength and high-temperature performance make γ-TiAl vital for lightweight aero-engines. However, its inherent brittleness poses machining problems. This study employed Elliptical Ultrasonic Vibration Milling (EUVM) to address these problems. Considering the influence of machining parameters on vibration patterns of EUVM, a separation time model was established to analyze the vibration evolutionary process, thereby instructing the cutting mechanism. On this basis, deep discussions regarding chip formation, cutting force, edge breakage, and subsurface layer deformation were conducted for EUVM and Conventional Milling (CM). Chip morphology showed the chip formation was rooted in the periodic brittle fracture. Local dimples proved that the thermal effect of high-speed cutting improved the plasticity of γ-TiAl. EUVM achieved a maximum 18.17% reduction in cutting force compared with CM. The force variation mechanism differed with changes in the cutting speed or the vibration amplitude, and its correlation with thermal softening, strain hardening, and vibratory cutting effects was analyzed. EUVM attained desirable edge breakage by achieving smaller fracture lengths. The fracture mechanisms of different phases were distinct, causing a surge in edge fracture size of γ-TiAl under microstructural differences. In terms of subsurface deformation, EUVM also showed strengthening effects. Noteworthy, the lamellar deformation patterns under the cutting removal state differed from the quasi-static, which was categorized by the orientation angles. Additionally, the electron backscattering diffraction provided details of the influence of microstructural difference on the orientation and the deformation of grains in the subsurface layer. The results demonstrate that EUVM is a promising machining method for γ-TiAl and guide further research and development of EUVM γ-TiAl.
基金funded by the Fundamental Research Funds for the Central Universities(J2023-024,J2023-027).
文摘As an important complement to cloud computing, edge computing can effectively reduce the workload of the backbone network. To reduce latency and energy consumption of edge computing, deep learning is used to learn the task offloading strategies by interacting with the entities. In actual application scenarios, users of edge computing are always changing dynamically. However, the existing task offloading strategies cannot be applied to such dynamic scenarios. To solve this problem, we propose a novel dynamic task offloading framework for distributed edge computing, leveraging the potential of meta-reinforcement learning (MRL). Our approach formulates a multi-objective optimization problem aimed at minimizing both delay and energy consumption. We model the task offloading strategy using a directed acyclic graph (DAG). Furthermore, we propose a distributed edge computing adaptive task offloading algorithm rooted in MRL. This algorithm integrates multiple Markov decision processes (MDP) with a sequence-to-sequence (seq2seq) network, enabling it to learn and adapt task offloading strategies responsively across diverse network environments. To achieve joint optimization of delay and energy consumption, we incorporate the non-dominated sorting genetic algorithm II (NSGA-II) into our framework. Simulation results demonstrate the superiority of our proposed solution, achieving a 21% reduction in time delay and a 19% decrease in energy consumption compared to alternative task offloading schemes. Moreover, our scheme exhibits remarkable adaptability, responding swiftly to changes in various network environments.
基金the National Research Foundation(NRF)Singapore mid-sized center grant(NRF-MSG-2023-0002)FrontierCRP grant(NRF-F-CRP-2024-0006)+2 种基金A*STAR Singapore MTC RIE2025 project(M24W1NS005)IAF-PP project(M23M5a0069)Ministry of Education(MOE)Singapore Tier 2 project(MOE-T2EP50220-0014).
文摘The rise of large-scale artificial intelligence(AI)models,such as ChatGPT,Deep-Seek,and autonomous vehicle systems,has significantly advanced the boundaries of AI,enabling highly complex tasks in natural language processing,image recognition,and real-time decisionmaking.However,these models demand immense computational power and are often centralized,relying on cloud-based architectures with inherent limitations in latency,privacy,and energy efficiency.To address these challenges and bring AI closer to real-world applications,such as wearable health monitoring,robotics,and immersive virtual environments,innovative hardware solutions are urgently needed.This work introduces a near-sensor edge computing(NSEC)system,built on a bilayer AlN/Si waveguide platform,to provide real-time,energy-efficient AI capabilities at the edge.Leveraging the electro-optic properties of AlN microring resonators for photonic feature extraction,coupled with Si-based thermo-optic Mach-Zehnder interferometers for neural network computations,the system represents a transformative approach to AI hardware design.Demonstrated through multimodal gesture and gait analysis,the NSEC system achieves high classification accuracies of 96.77%for gestures and 98.31%for gaits,ultra-low latency(<10 ns),and minimal energy consumption(<0.34 pJ).This groundbreaking system bridges the gap between AI models and real-world applications,enabling efficient,privacy-preserving AI solutions for healthcare,robotics,and next-generation human-machine interfaces,marking a pivotal advancement in edge computing and AI deployment.
基金supported in part by the National Natural Science Foundation of China under Grant No.61473066in part by the Natural Science Foundation of Hebei Province under Grant No.F2021501020+2 种基金in part by the S&T Program of Qinhuangdao under Grant No.202401A195in part by the Science Research Project of Hebei Education Department under Grant No.QN2025008in part by the Innovation Capability Improvement Plan Project of Hebei Province under Grant No.22567637H
文摘Recently,one of the main challenges facing the smart grid is insufficient computing resources and intermittent energy supply for various distributed components(such as monitoring systems for renewable energy power stations).To solve the problem,we propose an energy harvesting based task scheduling and resource management framework to provide robust and low-cost edge computing services for smart grid.First,we formulate an energy consumption minimization problem with regard to task offloading,time switching,and resource allocation for mobile devices,which can be decoupled and transformed into a typical knapsack problem.Then,solutions are derived by two different algorithms.Furthermore,we deploy renewable energy and energy storage units at edge servers to tackle intermittency and instability problems.Finally,we design an energy management algorithm based on sampling average approximation for edge computing servers to derive the optimal charging/discharging strategies,number of energy storage units,and renewable energy utilization.The simulation results show the efficiency and superiority of our proposed framework.
基金supported by the National Natural Science Foundation of China(12322210,12172351,92252202,and 12388101)the Fundamental Research Funds for the Central Universities.
文摘Rod-airfoil interaction noise becomes a major issue in some aeronautical applications.The design of four wavy leading edges(WLEs)with varying wavelengths,bioinspired by the tubercles on humpback whales’flippers,aims to mitigate far-field noise.Among these cases,a reduction in the wavelength is found to be advantageous for noise suppression,with the smallest wavelength case achieving a maximum noise reduction of 1.9 dB.Furthermore,the noise radiation induced by WLEs is suppressed mainly at medium frequencies.The theory of multiprocess aeroacoustics is applied to reveal their underlying mechanisms.The dominant factor is the source cutoff effect,which significantly decreases the source strength on hills.Additionally,spanwise decoherence with phase interference serves as another crucial mechanism,particularly for reducing mid-frequency noise.
基金Project supported by the National Key Research and Development Program of China(Grant No.2023YFA1407000)the Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDB0460000)+4 种基金the National Natural Science Foundation of China(Grant Nos.12322401,12127807,and 12393832)CAS Key Research Program of Frontier Sciences(Grant No.ZDBS-LY-SLH004)Beijing Nova Program(Grant No.20230484301)Youth Innovation Promotion Association,Chinese Academy of Sciences(Grant No.2023125)CAS Project for Young Scientists in Basic Research(Grant No.YSBR-026)。
文摘Edge structures are ubiquitous in the processing and fabrication of various optoelectronic devices.Novel physical properties and enhanced light–matter interactions are anticipated to occur at crystal edges due to the broken spatial translational symmetry.However,the intensity of first-order Raman scattering at crystal edges has been rarely explored,although the mechanical stress and edge characteristics have been thoroughly studied by the Raman peak shift and the spectral features of the edge-related Raman modes.Here,by taking Ga As crystal with a well-defined edge as an example,we reveal the intensity enhancement of Raman-active modes and the emergence of Raman-forbidden modes under specific polarization configurations at the edge.This is attributed to the presence of a hot spot at the edge due to the redistributed electromagnetic fields and electromagnetic wave propagations of incident laser and Raman signal near the edge,which are confirmed by the finite-difference time-domain simulations.Spatially-resolved Raman intensities of both Raman-active and Raman-forbidden modes near the edge are calculated based on the redistributed electromagnetic fields,which quantitatively reproduce the corresponding experimental results.These findings offer new insights into the intensity enhancement of Raman scattering at crystal edges and present a new avenue to manipulate light–matter interactions of crystal by manufacturing various types of edges and to characterize the edge structures in photonic and optoelectronic devices.
基金supported by the 1·3·5 Project for Disciplines of Excellence from West China Hospital of Sichuan University(ZYGD23021&23HXFH009)Sichuan Science and Technology Program(No.2025ZNSFSC1698)the Sichuan Provincial Cadre Health Research Program(ZH2024-103).
文摘Mitral regurgitation (MR) is a highly prevalent valvular heart disease globally,with untreated severe cases demonstrating associations with elevated morbidity,mortality,and adverse cardiovascular outcomes.[1,2]While transcatheter edge-toedge repair (TEER) has emerged as an alternative option for high surgical risk patients with severe MR,[3,4]severe MR of Carpentier class IIIa (characterized by restricted leaflet motion during both systole and diastole) has been considered a relative contraindication for TEER interventions due to stenosis risk and procedural complexity.[5,6]
基金supported by the National Natural Science Foundation of China(Grant Nos.12275260 and 11905211)the Fundamental Research Funds for the Central Universities(Grant No.202364008)the Young Talents Project of Ocean University of China。
文摘Non-Abelian topological insulators are characterized by matrix-valued,non-commuting topological charges with regard to more than one energy gap.Their descriptions go beyond the conventional topological band theory,in which an additive integer like the winding or Chern number is endowed separately with each(degenerate group of)energy band(s).In this work,we reveal that Floquet(time-periodic)driving could not only enrich the topology and phase transitions of non-Abelian topological matter,but also induce bulk-edge correspondence unique to nonequilibrium setups.Using a one-dimensional,three-band model as an illustrative example,we demonstrate that Floquet driving could reshuffle the phase diagram of the non-driven system,yielding both gapped and gapless Floquet band structures with non-Abelian topological charges.Moreover,by dynamically tuning the anomalous Floquet π-quasienergy gap,non-Abelian topological transitions inaccessible to static systems could arise,leading to much more complicated relations between non-Abelian topological charges and Floquet edge states.These discoveries put forth periodic driving as a powerful scheme of engineering non-Abelian topological phases and incubating unique non-Abelian band topology beyond equilibrium.
文摘Efficient edge caching is essential for maximizing utility in video streaming systems,especially under constraints such as limited storage capacity and dynamically fluctuating content popularity.Utility,defined as the benefit obtained per unit of cache bandwidth usage,degrades when static or greedy caching strategies fail to adapt to changing demand patterns.To address this,we propose a deep reinforcement learning(DRL)-based caching framework built upon the proximal policy optimization(PPO)algorithm.Our approach formulates edge caching as a sequential decision-making problem and introduces a reward model that balances cache hit performance and utility by prioritizing high-demand,high-quality content while penalizing degraded quality delivery.We construct a realistic synthetic dataset that captures both temporal variations and shifting content popularity to validate our model.Experimental results demonstrate that our proposed method improves utility by up to 135.9%and achieves an average improvement of 22.6%compared to traditional greedy algorithms and long short-term memory(LSTM)-based prediction models.Moreover,our method consistently performs well across a variety of utility functions,workload distributions,and storage limitations,underscoring its adaptability and robustness in dynamic video caching environments.
文摘Urban green spaces and parks offer opportunities for retaining and increasing bird richness, diversity, and species abundance. However, urbanisation influences predator–prey interactions, leading to high predation rates in urban areas, in the UK notably through the presence of large populations of domestic cats and increased populations of synanthropic species, such as rats and squirrels. These high predation rates are assumed to be a significant cause of reproductive failure in birds. Some ecologists advocate for the use of buffer zones with reduced human influence to reduce potential hunting pressure in eco-sensitive areas. However, the buffer effect on predation rates of nesting birds in suburban areas is rarely investigated. In this study, we investigated how edge effects (how close nest sites are to housing) and nest height (i.e., ground vs. above-ground) affected nest predation rates in a suburban park using camera traps to monitor artificial nests containing quail eggs. Our hypothesis was that nests in the buffer area (<300 m inward from university boundary) and at low height would suffer higher predation rates than nests in the core area (>300 m from the university boundary) and at height, as the buffer zone effect, and ease of access to ground predators would result in higher predation rates. We found no significant effect of nest height in nest predation rates. However, contrary to our expectations, nests in the core zone suffered higher predation rates than those in the buffer zone, and corvids were responsible for almost half of the egg loss events. We speculate that this may be a consequence of higher levels of anthropogenic disturbance (e.g., pedestrians, dog walking, vehicles) adjacent to our buffer zone acting as a deterrent to avian nest predators. This work suggests that protecting urban sites from disturbance may not always act to support bird abundance.
基金supported by the National Natural Science Foundation of China(No.11972190)。
文摘A robust Reynolds-Averaged Navier-Stokes(RANS)based solver is established to predict the complex unsteady aerodynamic characteristics of the Active Flap Control(AFC)rotor.The complex motion with multiple degrees of freedom of the Trailing Edge Flap(TEF)is analyzed by employing an inverse nested overset grid method.Simulation of non-rotational and rotational modes of blade motion are carried out to investigate the formation and development of TEF shedding vortex with high-frequency deflection of TEF.Moreover,the mechanism of TEF deflection interference with blade tip vortex and overall rotor aerodynamics is also explored.In nonrotational mode,two bundles of vortices form at the gap ends of TEF and the main blade and merge into a single TEF vortex.Dynamic deflection of the TEF significantly interferes with the blade tip vortex.The position of the blade tip vortex consistently changes,and its frequency is directly related to the frequency of TEF deflection.In rotational mode,the tip vortex forms a helical structure.The end vortices at the gap sides co-swirl and subsequently merge into the concentrated beam of tip vortices,causing fluctuations in the vorticity and axial position of the tip vortex under the rotor.This research concludes with the investigation on suppression of Blade Vortex Interaction(BVI),showing an increase in miss distance and reduction in the vorticity of tip vortex through TEF phase control at a particular control frequency.Through this mechanism,a designed TEF deflection law increases the miss distance by 34.7%and reduces vorticity by 11.9%at the target position,demonstrating the effectiveness of AFC in mitigating BVI.
基金supported in part by the National Natural Science Foundation of China under Grant No.61701197in part by the National Key Research and Development Program of China under Grant No.2021YFA1000500(4)in part by the 111 project under Grant No.B23008.
文摘As Internet of Vehicles(IoV)technology continues to advance,edge computing has become an important tool for assisting vehicles in handling complex tasks.However,the process of offloading tasks to edge servers may expose vehicles to malicious external attacks,resulting in information loss or even tampering,thereby creating serious security vulnerabilities.Blockchain technology can maintain a shared ledger among servers.In the Raft consensus mechanism,as long as more than half of the nodes remain operational,the system will not collapse,effectively maintaining the system’s robustness and security.To protect vehicle information,we propose a security framework that integrates the Raft consensus mechanism from blockchain technology with edge computing.To address the additional latency introduced by blockchain,we derived a theoretical formula for system delay and proposed a convex optimization solution to minimize the system latency,ensuring that the system meets the requirements for low latency and high reliability.Simulation results demonstrate that the optimized data extraction rate significantly reduces systemdelay,with relatively stable variations in latency.Moreover,the proposed optimization solution based on this model can provide valuable insights for enhancing security and efficiency in future network environments,such as 5G and next-generation smart city systems.
基金supported by the National Natural Science Foundation of China(Nos.52204401,52005432)Hebei Natural Science Foundation of China(No.E2021203179),Excellent Young Talents Program of University of Anhui Province,China(No.gxyq2022093)Excellent Youth Research Projects in Universities of Anhui Province,China(No.2022AH030153).
文摘The edge crack behavior of copper foil in asymmetrical micro-rolling was studied.The effects of the speed ratio between rolls,grain size and stress state in the deformation zone on edge cracks of the rolled piece in asymmetrical rolling were analyzed.Low plasticity,uneven deformation and longitudinal secondary tensile stress generated in the edge area of the rolled piece during the rolling process are the main causes of edge cracks.The larger the grain size of the rolled piece,the smaller the number of edge cracks and the deeper the expansion depth,and the larger the spacing between cracks under the same rolling reduction.Asymmetrical rolling can effectively increase the rolling reduction at when the copper foil fist shows edge cracks compared to symmetrical rolling.This enhancement is attributed to the shearing stress induced by asymmetrical rolling,which reduces the rolling force and longitudinal secondary tensile stress,and increases the residual compressive stress on the surface of the rolled piece.The edge crack defects of copper foil can be effectively reduced by increasing the speed ratio between the rolls in asymmetrical rolling.
基金Supported by the National Natural Science Foundation of China(42104151,42074184,42188101,41727804)。
文摘The ionosphere is an important component of the near Earth space environment.The three common methods for detecting the ionosphere with high frequency(HF)radio signals are vertical detection,oblique detection,and oblique backscatter detection.The ionograms obtained by these detection methods can effectively reflect a large amount of effective information in the ionosphere.The focus of this article is on the oblique backscatter ionogram obtained by oblique backscatter detection.By extracting the leading edge of the oblique backscatter ionogram,effective information in the ionosphere can be inverted.The key issue is how to accurately obtain the leading edge of the oblique backscatter ionogram.In recent years,the application of pattern recognition has become increasingly widespread,and the YOLO model is one of the best fast object detection algorithms in one-stage.Therefore,the core idea of this article is to use the newer YOLOX object detection algorithm in the YOLO family to perform pattern recognition on the F and E_(s) layers echoes in the oblique backscatter ionogram.After image processing,a single-layer oblique backscatter echoes are obtained.It can be found that the leading edge extraction of the oblique backscatter ionogram obtained after pattern recognition and image processing by the YOLOX model is more fitting to the actual oblique backscatter leading edge.
基金supported by National Natural Science Foundation of China(Nos.62071481 and 61501471).
文摘This paper introduces a quantum-enhanced edge computing framework that synergizes quantuminspired algorithms with advanced machine learning techniques to optimize real-time task offloading in edge computing environments.This innovative approach not only significantly improves the system’s real-time responsiveness and resource utilization efficiency but also addresses critical challenges in Internet of Things(IoT)ecosystems—such as high demand variability,resource allocation uncertainties,and data privacy concerns—through practical solutions.Initially,the framework employs an adaptive adjustment mechanism to dynamically manage task and resource states,complemented by online learning models for precise predictive analytics.Secondly,it accelerates the search for optimal solutions using Grover’s algorithm while efficiently evaluating complex constraints through multi-controlled Toffoli gates,thereby markedly enhancing the practicality and robustness of the proposed solution.Furthermore,to bolster the system’s adaptability and response speed in dynamic environments,an efficientmonitoring mechanism and event-driven architecture are incorporated,ensuring timely responses to environmental changes and maintaining synchronization between internal and external systems.Experimental evaluations confirm that the proposed algorithm demonstrates superior performance in complex application scenarios,characterized by faster convergence,enhanced stability,and superior data privacy protection,alongside notable reductions in latency and optimized resource utilization.This research paves the way for transformative advancements in edge computing and IoT technologies,driving smart edge computing towards unprecedented levels of intelligence and automation.