The control of ion transport by responding to stimulus is a necessary condition for the existence of life.Bioinspired iontronics could enable anomalous ion dynamics in the nano-confined spaces,creating many efficient ...The control of ion transport by responding to stimulus is a necessary condition for the existence of life.Bioinspired iontronics could enable anomalous ion dynamics in the nano-confined spaces,creating many efficient energy systems and neuromorphic in-sensor computing networks:Unlike tradi-tional electronics based on von Neumann computing architec-ture,the Boolean logic computing based on the iontronics could avoid complex wiring with higher energy efficiency and programmable neuromorphic logic.Here,a systematic summary on the state of art in bioinspired iontronics is pre-sented and the stimulus from chemical potentials,electric fields,light,heat,piezo and magnetic fields on ion dynamics are reviewed.Challenges and perspectives are also addressed in the aspects of iontronic integrated systems.It is believed that comprehensive investigations in bioinspired ionic control will accelerate the development on more efficient energy and information flow for the futuristic human-machine interface.展开更多
Reliable and controllable switches are crucial in nanofluidics and iontronics.lon channels found in nature serve as a rich source of inspiration due to their intricate mechanisms modulated by stimuli like pressure,tem...Reliable and controllable switches are crucial in nanofluidics and iontronics.lon channels found in nature serve as a rich source of inspiration due to their intricate mechanisms modulated by stimuli like pressure,temperature,chemical species,and voltage.The artifi-cial replication of the properties of these channels is challenging due to their complex chemistry,limited stability range,and intricate moving parts,allosterically modulated.Nonetheless,we can harness some of the gating mechanisms of ion channels for nanofluidic and iontronic purposes.This theoretical and computational study explores the use of electrowetting in simple hydrophobic nanopores to control their conductance using an external applied voltage.We employ restrained molecular dynamics to calculate the free energy required for wetting a model nanopore under different voltages.Utilizing a simple theory,we generate free energy profles across a wide voltage range.We also computed transition rates between conductive and non-conductive states,showing their voltage depen-dence and how this behavior can impair memory to the system,resembling the memristor behavior voltage-gated channels in the brain.The proposed framework provides a promising avenue for designing and controlling hydrophobic nanopores via electrowet-ting,enabling potential applications in neuromorphic iontronics.展开更多
基金supported by the Beijing Natural Science Foundation[Grant No.IS23040].
文摘The control of ion transport by responding to stimulus is a necessary condition for the existence of life.Bioinspired iontronics could enable anomalous ion dynamics in the nano-confined spaces,creating many efficient energy systems and neuromorphic in-sensor computing networks:Unlike tradi-tional electronics based on von Neumann computing architec-ture,the Boolean logic computing based on the iontronics could avoid complex wiring with higher energy efficiency and programmable neuromorphic logic.Here,a systematic summary on the state of art in bioinspired iontronics is pre-sented and the stimulus from chemical potentials,electric fields,light,heat,piezo and magnetic fields on ion dynamics are reviewed.Challenges and perspectives are also addressed in the aspects of iontronic integrated systems.It is believed that comprehensive investigations in bioinspired ionic control will accelerate the development on more efficient energy and information flow for the futuristic human-machine interface.
基金supported by the H2020 European Research Council[803213]Partnership for Advanced Computing in Europe AISBL。
文摘Reliable and controllable switches are crucial in nanofluidics and iontronics.lon channels found in nature serve as a rich source of inspiration due to their intricate mechanisms modulated by stimuli like pressure,temperature,chemical species,and voltage.The artifi-cial replication of the properties of these channels is challenging due to their complex chemistry,limited stability range,and intricate moving parts,allosterically modulated.Nonetheless,we can harness some of the gating mechanisms of ion channels for nanofluidic and iontronic purposes.This theoretical and computational study explores the use of electrowetting in simple hydrophobic nanopores to control their conductance using an external applied voltage.We employ restrained molecular dynamics to calculate the free energy required for wetting a model nanopore under different voltages.Utilizing a simple theory,we generate free energy profles across a wide voltage range.We also computed transition rates between conductive and non-conductive states,showing their voltage depen-dence and how this behavior can impair memory to the system,resembling the memristor behavior voltage-gated channels in the brain.The proposed framework provides a promising avenue for designing and controlling hydrophobic nanopores via electrowet-ting,enabling potential applications in neuromorphic iontronics.