数据流相似性查询广泛应用于智能家居、环境监测等领域.当前以LCSS(longest common subsequence)作为相似性测度函数的研究并不多.NAIVE算法使用基本动态规划方法计算测度函数值,通过该值与相似阈值的比较得到查询结果,对基于LCSS的数...数据流相似性查询广泛应用于智能家居、环境监测等领域.当前以LCSS(longest common subsequence)作为相似性测度函数的研究并不多.NAIVE算法使用基本动态规划方法计算测度函数值,通过该值与相似阈值的比较得到查询结果,对基于LCSS的数据流相似性查询问题进行研究.针对NAIVE算法必须在动态规划矩阵所有成员取值的计算完成后才能得到查询结果的缺点,提出了一种基于PS(possible solution)-CC(column critical)域优化策略的数据流相似性查询处理算法.该算法划定了每个窗口上动态规划矩阵的PS域和CC域,很好地利用了这2个域中成员所具有的性质和相似性查询的特点,无须获得测度函数的最终值便可得到查询结果,省略了很多矩阵成员的计算.实验部分证明了该算法的有效性,与同类算法相比,在处理具有更高精度结果要求的查询时效果更好.展开更多
为了提高运动目标轨迹分类的准确性,该文综合考虑了轨迹的位置信息和方向信息,提出了一种结合Hausdorff距离和最长公共子序列(Longest Common SubSequence,LCSS)的轨迹分类算法。该算法首先采用改进的Hausdorff距离对轨迹的位置信息进...为了提高运动目标轨迹分类的准确性,该文综合考虑了轨迹的位置信息和方向信息,提出了一种结合Hausdorff距离和最长公共子序列(Longest Common SubSequence,LCSS)的轨迹分类算法。该算法首先采用改进的Hausdorff距离对轨迹的位置信息进行相似性测量,然后采用改进的LCSS算法对轨迹的方向信息进行相似性测量。与其他轨迹聚类算法不同,该算法融合了Hausdorff距离和LCSS两种算法的优点,提高了轨迹分类的准确性。此外,为了进一步降低计算复杂度,该文还实现了一种基于插值的保距变换算法和一种LCSS快速算法。实验结果表明,该轨迹分类算法可以明显提高轨迹的聚类准确率,聚类准确率可达到96%;基于插值的保距变换算法和LCSS快速算法可以很大程度上降低算法的计算复杂度,下降幅度最大可达到80%。该方法可以同时满足轨迹分类对精确度、实时性和鲁棒性的要求。展开更多
文摘数据流相似性查询广泛应用于智能家居、环境监测等领域.当前以LCSS(longest common subsequence)作为相似性测度函数的研究并不多.NAIVE算法使用基本动态规划方法计算测度函数值,通过该值与相似阈值的比较得到查询结果,对基于LCSS的数据流相似性查询问题进行研究.针对NAIVE算法必须在动态规划矩阵所有成员取值的计算完成后才能得到查询结果的缺点,提出了一种基于PS(possible solution)-CC(column critical)域优化策略的数据流相似性查询处理算法.该算法划定了每个窗口上动态规划矩阵的PS域和CC域,很好地利用了这2个域中成员所具有的性质和相似性查询的特点,无须获得测度函数的最终值便可得到查询结果,省略了很多矩阵成员的计算.实验部分证明了该算法的有效性,与同类算法相比,在处理具有更高精度结果要求的查询时效果更好.
文摘为了提高运动目标轨迹分类的准确性,该文综合考虑了轨迹的位置信息和方向信息,提出了一种结合Hausdorff距离和最长公共子序列(Longest Common SubSequence,LCSS)的轨迹分类算法。该算法首先采用改进的Hausdorff距离对轨迹的位置信息进行相似性测量,然后采用改进的LCSS算法对轨迹的方向信息进行相似性测量。与其他轨迹聚类算法不同,该算法融合了Hausdorff距离和LCSS两种算法的优点,提高了轨迹分类的准确性。此外,为了进一步降低计算复杂度,该文还实现了一种基于插值的保距变换算法和一种LCSS快速算法。实验结果表明,该轨迹分类算法可以明显提高轨迹的聚类准确率,聚类准确率可达到96%;基于插值的保距变换算法和LCSS快速算法可以很大程度上降低算法的计算复杂度,下降幅度最大可达到80%。该方法可以同时满足轨迹分类对精确度、实时性和鲁棒性的要求。