Hilly terrain pipeline is a common form of pipeline in oil and gas storage and transportation industry.Due to the hilly terrain influence, the liquid at the elbow of the gathering pipeline is easy to flow back and acc...Hilly terrain pipeline is a common form of pipeline in oil and gas storage and transportation industry.Due to the hilly terrain influence, the liquid at the elbow of the gathering pipeline is easy to flow back and accumulate to form slug flow, so it is necessary to remove the accumulated liquid by gas purging. In this paper, experiment is carried out in hilly terrain pipelines. Three flow patterns of stratified flow, slug flow and stratified entrained flow are observed. The process of gas purging accumulated liquid is divided into four stages, namely liquid accumulation, liquid rising, continuous outflow and tail outflow. At the same time, the flow pattern maps of each stage are drawn. The pressure drop signal is analyzed in time domain and frequency domain, and the contour map of pressure drop distribution is drawn. It is found that the ratio of range to average value can well distinguish the occurrence range of each flow pattern.Based on visualization, the transition process of slug flow to stratified flow and stratified entrained flow is studied, and the transition boundary prediction model is established. An image processing method is proposed to convert the image signal into a similarity curve, and PSD analysis is performed to calculate the slug frequency. The normal distribution is used to fit the slug frequency, and the predicted correlation is in good agreement with the experimental data.展开更多
Zero Trust Network(ZTN)enhances network security through strict authentication and access control.However,in the ZTN,optimizing flow control to improve the quality of service is still facing challenges.Software Define...Zero Trust Network(ZTN)enhances network security through strict authentication and access control.However,in the ZTN,optimizing flow control to improve the quality of service is still facing challenges.Software Defined Network(SDN)provides solutions through centralized control and dynamic resource allocation,but the existing scheduling methods based on Deep Reinforcement Learning(DRL)are insufficient in terms of convergence speed and dynamic optimization capability.To solve these problems,this paper proposes DRL-AMIR,which is an efficient flow scheduling method for software defined ZTN.This method constructs a flow scheduling optimization model that comprehensively considers service delay,bandwidth occupation,and path hops.Additionally,it balances the differentiated requirements of delay-critical K-flows,bandwidth-intensive D-flows,and background B-flows through adaptiveweighting.Theproposed framework employs a customized state space comprising node labels,link bandwidth,delaymetrics,and path length.It incorporates an action space derived fromnode weights and a hybrid reward function that integrates both single-step and multi-step excitation mechanisms.Based on these components,a hierarchical architecture is designed,effectively integrating the data plane,control plane,and knowledge plane.In particular,the adaptive expert mechanism is introduced,which triggers the shortest path algorithm in the training process to accelerate convergence,reduce trial and error costs,and maintain stability.Experiments across diverse real-world network topologies demonstrate that DRL-AMIR achieves a 15–20%reduction in K-flow transmission delays,a 10–15%improvement in link bandwidth utilization compared to SPR,QoSR,and DRSIR,and a 30%faster convergence speed via adaptive expert mechanisms.展开更多
Road traffic flow forecasting provides critical information for the operational management of road mobility challenges, and models are used to generate the forecast. This paper uses a random process to present a novel...Road traffic flow forecasting provides critical information for the operational management of road mobility challenges, and models are used to generate the forecast. This paper uses a random process to present a novel traffic modelling framework for aggregate traffic on urban roads. The main idea is that road traffic flow is random, even for the recurrent flow, such as rush hour traffic, which is predisposed to congestion. Therefore, the structure of the aggregate traffic flow model for urban roads should correlate well with the essential variables of the observed random dynamics of the traffic flow phenomena. The novelty of this paper is the developed framework, based on the Poisson process, the kinematics of urban road traffic flow, and the intermediate modelling approach, which were combined to formulate the model. Empirical data from an urban road in Ghana was used to explore the model’s fidelity. The results show that the distribution from the model correlates well with that of the empirical traffic, providing a strong validation of the new framework and instilling confidence in its potential for significantly improved forecasts and, hence, a more hopeful outlook for real-world traffic management.展开更多
The construction and operation of atmospheric nonthermal plasma jet, ANPJ, are presented in this work as well as the experimental investigations of its electrical parameters, the configuration of plasma jet column and...The construction and operation of atmospheric nonthermal plasma jet, ANPJ, are presented in this work as well as the experimental investigations of its electrical parameters, the configuration of plasma jet column and its temperature. The device is energized by a low-cost Neon power supply of (10 kV, 30 mA, and 20 kHz) and the discharge takes place by using N2 gas with different flow rates from 3 to 25 L/min and input voltage of 6 kV. Diagnostic techniques such as voltage divider, Lissajous figure, image processing and thermometer are used. The electrical characteristics of discharge at different flow rates of N2 gas such as discharge voltage, current, mean power, power efficiency, and mean energy have been studied. The experimental results show that the maximum plasma jet length of 14 mm is detected at flow rate of 12 L/min. The results of plasma jet (heavy particles) temperature along the jet length show that jet plasma has approximately a room temperature at the jet column end. The results of zero flow rate effect on the ANPJ operation show damage in the Teflon insulator and a corrosion in the Aluminum electrodes.展开更多
Zero mass flux jets, synthesized by acoustic actuators, have been used for the purpose of jet mixing enhancement and jet vectoring. Zero mass flux jets composed of entirely entrained fluid allow momentum transfer into...Zero mass flux jets, synthesized by acoustic actuators, have been used for the purpose of jet mixing enhancement and jet vectoring. Zero mass flux jets composed of entirely entrained fluid allow momentum transfer into the embedding flow. In the present experiments, miniature scale high aspect ratio actuator jets are placed along the long sides and near the exit plane of a primary two dimensional jet. In different modes, the primary jet can be vectored either towards or away from the actuator jets and the jet mixing is enhanced. The disturbance of the excitation frequency is developed while the unstable frequency of the primary jet is completely suppressed.展开更多
A novel method based on the selective pressure of particle size (particle-size cultivation method, PSCM) was developed for the cultivation and operation of aerobic granular sludge in a continuous-flow reactor, and c...A novel method based on the selective pressure of particle size (particle-size cultivation method, PSCM) was developed for the cultivation and operation of aerobic granular sludge in a continuous-flow reactor, and compared with the conventional method based on the selective pressure of settling velocity (settling-velocity cultivation method, SVCM). Results indicated that aerobic granules could be cultivated in continuous operation mode by this developed method within 14 days. Although in the granulation process, under particle-size selective pressure, mixed liquor suspended solids (MLSS) in the reactor fluctuated greatly and filamentous bacteria dominated the sludge system during the initial operation days, no obvious difference in profile was found between the aerobic granules cultivated by PSCM and SVCM. Moreover, aerobic granules cultivated by PSCM presented larger diameter, lower water content and higher specific rates of nitrification, denitrifieation and phosphorus removal, but lower settling velocity. Under long term operation of more than 30 days, aerobic granules in the continuous-flow reactor could remain stable and obtain good chemical oxygen demand (COD), NH4^+-N, total nitrogen (TN) and total phosphorus (TP) removal. The results indicate that PSCM was dependent on the cultivation and maintenance of the stability of aerobic granules in continuous-flow bioreactors.展开更多
We present methods to characterize mesenchymal stromal cells (MSC) over long time periods in vitro. The methods entail passaging cells multiple times and performing differentiation studies with the cells at each passa...We present methods to characterize mesenchymal stromal cells (MSC) over long time periods in vitro. The methods entail passaging cells multiple times and performing differentiation studies with the cells at each passage. Using an array of surface markers and flow cytometric quantification, the data can be correlated to traditional measures of differentiation such as PCR and staining. Using these methods to quantify the amount of differentiation, we concluded that many common MSC markers do not specifically define MSCs with true stem cell properties. Additionally, adipose-derived as opposed to bone marrow-derived MSCs show long-term CD34+ labeling. The methods described can be used to help identify stem cell markers and to characterize the state of stem cells in vitro. Compiling these data from multiple laboratories would be helpful to determine source, extraction and culture methods needed to obtain high yields of useful stem cells.展开更多
Blood flow in artery was treated as the flow under equilibrium state (the steady flow under mean pressure)combined with the periodically small pulsatile flow.Using vascular strain energy function advanced by Fung,the ...Blood flow in artery was treated as the flow under equilibrium state (the steady flow under mean pressure)combined with the periodically small pulsatile flow.Using vascular strain energy function advanced by Fung,the vascular stress_strain relationship under equilibrium state was analyzed and the circumferential and axial elastic moduli were deduced that are expressed while the arterial strains around the equilibrium state are relatively small, so that the equations of vessel wall motion under the pulsatile pressure could be established here.Through solving both the vessel equations and the linear Navier_Stokes equations,the analytic expressions of the blood flow velocities and the vascular displacements were obtained.The influence of the difference between vascular circumferential and axial elasticities on pulsatile blood flow and vascular motion was discussed in details.展开更多
An in situ calibration system is a versatile exploration instrument for electrochemical sensors investigating the biochemical properties of the marine environment. The purpose of this paper is to describe the design o...An in situ calibration system is a versatile exploration instrument for electrochemical sensors investigating the biochemical properties of the marine environment. The purpose of this paper is to describe the design of an auto-calibrating system for electrochemical (pH) sensors, which permits two-point in situ calibration, suitable for long-term measurement in deep sea aqueous environments. Holding multiple sensors, the instrument is designed to perform long-term measurements and in situ calibrations at abyssal depth (up to 4000 m). The instrument is composed of a compact fluid control system which is pressure-equilibrated and designed for deep-sea operation. In situ calibration capability plays a key role in the quality and reproducibility of the data. This paper focuses on methods for extending the lifetime of the instrument, considering the fluidics design, mechanical design, and low-power consumption of the electronics controller. The instrument can last 46 d under normal operating conditions, fulfilling the need for long-term operation. Data concerning pH measured during the KNOX18RR cruise (Mid-Atlantic Ridge, July-August, 2008) illustrate the desirable properties of the instrument. Combined with different electrodes (pH, H2, H2S, etc.), it should be of great utility for the study of deep ocean environments, including water column and diffuse-flow hydrothermal fluids.展开更多
By using the constraint relating potential and eigenfunctions, the decomposition of each equation in the Boussinesq hierarchy into two commuting finite-dimensional integrable Hamiltonian system (FDIHS) is presented. A...By using the constraint relating potential and eigenfunctions, the decomposition of each equation in the Boussinesq hierarchy into two commuting finite-dimensional integrable Hamiltonian system (FDIHS) is presented. A method to construct the Lax representations for both x- and t(n)- constrained flows via reduction of the adjoint representations of the auxiliary linear problems is developed.展开更多
This paper proposes a hybrid decoupled power flow method for balanced power distribution systems with distributed generation sources. The method formulates the power flow equations in active power and reactive power d...This paper proposes a hybrid decoupled power flow method for balanced power distribution systems with distributed generation sources. The method formulates the power flow equations in active power and reactive power decoupled form with polar coordinates. Second-order terms are included in the active power mismatch iteration, and constant Jacobian and Hessian matrices are used. A hybrid direct and indirect solution technique is used to achieve efficiency and robustness of the algorithm. Active power correction is solved by means of a sparse lower triangular and upper triangular (LU) decomposition algorithm with partial pivoting, and the reactive power correction is solved by means of restarted generalized minimal residual algorithm with an incomplete LU pre-conditioner. Typical distribution generation models and distribution load models are included. The impact of zero-impedance branches is explicitly modeled through reconfiguring of the adjacent branches with impedances. Numerical examples on a sample distribution system with widespread photovoltaic installations are given to demonstrate the effectiveness of the proposed method.展开更多
基金supported by the Basic Science Center Program for Ordered Energy Conversion of the National Natural Science Foundation of China(No.52488201)the National Natural Science Foundation of China(No.52422606).
文摘Hilly terrain pipeline is a common form of pipeline in oil and gas storage and transportation industry.Due to the hilly terrain influence, the liquid at the elbow of the gathering pipeline is easy to flow back and accumulate to form slug flow, so it is necessary to remove the accumulated liquid by gas purging. In this paper, experiment is carried out in hilly terrain pipelines. Three flow patterns of stratified flow, slug flow and stratified entrained flow are observed. The process of gas purging accumulated liquid is divided into four stages, namely liquid accumulation, liquid rising, continuous outflow and tail outflow. At the same time, the flow pattern maps of each stage are drawn. The pressure drop signal is analyzed in time domain and frequency domain, and the contour map of pressure drop distribution is drawn. It is found that the ratio of range to average value can well distinguish the occurrence range of each flow pattern.Based on visualization, the transition process of slug flow to stratified flow and stratified entrained flow is studied, and the transition boundary prediction model is established. An image processing method is proposed to convert the image signal into a similarity curve, and PSD analysis is performed to calculate the slug frequency. The normal distribution is used to fit the slug frequency, and the predicted correlation is in good agreement with the experimental data.
基金supported in part by Scientific Research Fund of Zhejiang Provincial Education Department under Grant Y202351110in part by Huzhou Science and Technology Plan Project under Grant 2024YZ23+1 种基金in part by Research Fund of National Key Laboratory of Advanced Communication Networks under Grant SCX23641X004in part by Postgraduate Research and Innovation Project of Huzhou University under Grant 2024KYCX50.
文摘Zero Trust Network(ZTN)enhances network security through strict authentication and access control.However,in the ZTN,optimizing flow control to improve the quality of service is still facing challenges.Software Defined Network(SDN)provides solutions through centralized control and dynamic resource allocation,but the existing scheduling methods based on Deep Reinforcement Learning(DRL)are insufficient in terms of convergence speed and dynamic optimization capability.To solve these problems,this paper proposes DRL-AMIR,which is an efficient flow scheduling method for software defined ZTN.This method constructs a flow scheduling optimization model that comprehensively considers service delay,bandwidth occupation,and path hops.Additionally,it balances the differentiated requirements of delay-critical K-flows,bandwidth-intensive D-flows,and background B-flows through adaptiveweighting.Theproposed framework employs a customized state space comprising node labels,link bandwidth,delaymetrics,and path length.It incorporates an action space derived fromnode weights and a hybrid reward function that integrates both single-step and multi-step excitation mechanisms.Based on these components,a hierarchical architecture is designed,effectively integrating the data plane,control plane,and knowledge plane.In particular,the adaptive expert mechanism is introduced,which triggers the shortest path algorithm in the training process to accelerate convergence,reduce trial and error costs,and maintain stability.Experiments across diverse real-world network topologies demonstrate that DRL-AMIR achieves a 15–20%reduction in K-flow transmission delays,a 10–15%improvement in link bandwidth utilization compared to SPR,QoSR,and DRSIR,and a 30%faster convergence speed via adaptive expert mechanisms.
文摘Road traffic flow forecasting provides critical information for the operational management of road mobility challenges, and models are used to generate the forecast. This paper uses a random process to present a novel traffic modelling framework for aggregate traffic on urban roads. The main idea is that road traffic flow is random, even for the recurrent flow, such as rush hour traffic, which is predisposed to congestion. Therefore, the structure of the aggregate traffic flow model for urban roads should correlate well with the essential variables of the observed random dynamics of the traffic flow phenomena. The novelty of this paper is the developed framework, based on the Poisson process, the kinematics of urban road traffic flow, and the intermediate modelling approach, which were combined to formulate the model. Empirical data from an urban road in Ghana was used to explore the model’s fidelity. The results show that the distribution from the model correlates well with that of the empirical traffic, providing a strong validation of the new framework and instilling confidence in its potential for significantly improved forecasts and, hence, a more hopeful outlook for real-world traffic management.
文摘The construction and operation of atmospheric nonthermal plasma jet, ANPJ, are presented in this work as well as the experimental investigations of its electrical parameters, the configuration of plasma jet column and its temperature. The device is energized by a low-cost Neon power supply of (10 kV, 30 mA, and 20 kHz) and the discharge takes place by using N2 gas with different flow rates from 3 to 25 L/min and input voltage of 6 kV. Diagnostic techniques such as voltage divider, Lissajous figure, image processing and thermometer are used. The electrical characteristics of discharge at different flow rates of N2 gas such as discharge voltage, current, mean power, power efficiency, and mean energy have been studied. The experimental results show that the maximum plasma jet length of 14 mm is detected at flow rate of 12 L/min. The results of plasma jet (heavy particles) temperature along the jet length show that jet plasma has approximately a room temperature at the jet column end. The results of zero flow rate effect on the ANPJ operation show damage in the Teflon insulator and a corrosion in the Aluminum electrodes.
文摘Zero mass flux jets, synthesized by acoustic actuators, have been used for the purpose of jet mixing enhancement and jet vectoring. Zero mass flux jets composed of entirely entrained fluid allow momentum transfer into the embedding flow. In the present experiments, miniature scale high aspect ratio actuator jets are placed along the long sides and near the exit plane of a primary two dimensional jet. In different modes, the primary jet can be vectored either towards or away from the actuator jets and the jet mixing is enhanced. The disturbance of the excitation frequency is developed while the unstable frequency of the primary jet is completely suppressed.
基金supported by the National Natural Science Foundation of China (No. 51208231)
文摘A novel method based on the selective pressure of particle size (particle-size cultivation method, PSCM) was developed for the cultivation and operation of aerobic granular sludge in a continuous-flow reactor, and compared with the conventional method based on the selective pressure of settling velocity (settling-velocity cultivation method, SVCM). Results indicated that aerobic granules could be cultivated in continuous operation mode by this developed method within 14 days. Although in the granulation process, under particle-size selective pressure, mixed liquor suspended solids (MLSS) in the reactor fluctuated greatly and filamentous bacteria dominated the sludge system during the initial operation days, no obvious difference in profile was found between the aerobic granules cultivated by PSCM and SVCM. Moreover, aerobic granules cultivated by PSCM presented larger diameter, lower water content and higher specific rates of nitrification, denitrifieation and phosphorus removal, but lower settling velocity. Under long term operation of more than 30 days, aerobic granules in the continuous-flow reactor could remain stable and obtain good chemical oxygen demand (COD), NH4^+-N, total nitrogen (TN) and total phosphorus (TP) removal. The results indicate that PSCM was dependent on the cultivation and maintenance of the stability of aerobic granules in continuous-flow bioreactors.
文摘We present methods to characterize mesenchymal stromal cells (MSC) over long time periods in vitro. The methods entail passaging cells multiple times and performing differentiation studies with the cells at each passage. Using an array of surface markers and flow cytometric quantification, the data can be correlated to traditional measures of differentiation such as PCR and staining. Using these methods to quantify the amount of differentiation, we concluded that many common MSC markers do not specifically define MSCs with true stem cell properties. Additionally, adipose-derived as opposed to bone marrow-derived MSCs show long-term CD34+ labeling. The methods described can be used to help identify stem cell markers and to characterize the state of stem cells in vitro. Compiling these data from multiple laboratories would be helpful to determine source, extraction and culture methods needed to obtain high yields of useful stem cells.
文摘Blood flow in artery was treated as the flow under equilibrium state (the steady flow under mean pressure)combined with the periodically small pulsatile flow.Using vascular strain energy function advanced by Fung,the vascular stress_strain relationship under equilibrium state was analyzed and the circumferential and axial elastic moduli were deduced that are expressed while the arterial strains around the equilibrium state are relatively small, so that the equations of vessel wall motion under the pulsatile pressure could be established here.Through solving both the vessel equations and the linear Navier_Stokes equations,the analytic expressions of the blood flow velocities and the vascular displacements were obtained.The influence of the difference between vascular circumferential and axial elasticities on pulsatile blood flow and vascular motion was discussed in details.
基金Project supported by National Natural Science Foundation of China (No. 40637037)the National High-Tech Research and Development Program (863) of China (No. 2007AA091901)+1 种基金the National Science Foundation of U.S. (No. 0525907)the China Scholarship Council (No. 2009632124)
文摘An in situ calibration system is a versatile exploration instrument for electrochemical sensors investigating the biochemical properties of the marine environment. The purpose of this paper is to describe the design of an auto-calibrating system for electrochemical (pH) sensors, which permits two-point in situ calibration, suitable for long-term measurement in deep sea aqueous environments. Holding multiple sensors, the instrument is designed to perform long-term measurements and in situ calibrations at abyssal depth (up to 4000 m). The instrument is composed of a compact fluid control system which is pressure-equilibrated and designed for deep-sea operation. In situ calibration capability plays a key role in the quality and reproducibility of the data. This paper focuses on methods for extending the lifetime of the instrument, considering the fluidics design, mechanical design, and low-power consumption of the electronics controller. The instrument can last 46 d under normal operating conditions, fulfilling the need for long-term operation. Data concerning pH measured during the KNOX18RR cruise (Mid-Atlantic Ridge, July-August, 2008) illustrate the desirable properties of the instrument. Combined with different electrodes (pH, H2, H2S, etc.), it should be of great utility for the study of deep ocean environments, including water column and diffuse-flow hydrothermal fluids.
文摘By using the constraint relating potential and eigenfunctions, the decomposition of each equation in the Boussinesq hierarchy into two commuting finite-dimensional integrable Hamiltonian system (FDIHS) is presented. A method to construct the Lax representations for both x- and t(n)- constrained flows via reduction of the adjoint representations of the auxiliary linear problems is developed.
文摘This paper proposes a hybrid decoupled power flow method for balanced power distribution systems with distributed generation sources. The method formulates the power flow equations in active power and reactive power decoupled form with polar coordinates. Second-order terms are included in the active power mismatch iteration, and constant Jacobian and Hessian matrices are used. A hybrid direct and indirect solution technique is used to achieve efficiency and robustness of the algorithm. Active power correction is solved by means of a sparse lower triangular and upper triangular (LU) decomposition algorithm with partial pivoting, and the reactive power correction is solved by means of restarted generalized minimal residual algorithm with an incomplete LU pre-conditioner. Typical distribution generation models and distribution load models are included. The impact of zero-impedance branches is explicitly modeled through reconfiguring of the adjacent branches with impedances. Numerical examples on a sample distribution system with widespread photovoltaic installations are given to demonstrate the effectiveness of the proposed method.