Polyurethane-fluorinated polysiloxane(PU-^(F)PDMS)with high-strength,high-bonding and low surface en-ergy is synthesized as the matrix,and the PU-^(F)PDMS/MCs/Ag marine anti-fouling coating on the sur-face of imitatio...Polyurethane-fluorinated polysiloxane(PU-^(F)PDMS)with high-strength,high-bonding and low surface en-ergy is synthesized as the matrix,and the PU-^(F)PDMS/MCs/Ag marine anti-fouling coating on the sur-face of imitation crab shells is constructed by assembling butenolide@1,1-stilbene-modified hydrolyzed polyglycidyl methacrylate/graphene oxide microcapsules(Bu@PGMAm/GO MCs)with compact multi-shell structure and Ag nanoparticles(AgNPs)step by step on the PU-^(F)PDMS matrix.The PU-^(F)PDMS/MCs/Ag bionic anti-fouling coatings achieve long-term and stable anti-fouling effect under the combination of robust low-surface-energy PU-^(F)PDMS matrix,steady-state sustained release of butenolide encapsulated by the compact multi-shell,bionic surface formed by the microcapsules and AgNPs,and the release of Ag^(+).The shear strength,tensile strength,and elongation at break of the PU-^(F)PDMS/MCs/Ag are 3.53 MPa,6.7 MPa,and 192.83%,respectively.Its static contact angle and sliding angle are 161.8°and 3.6°,respectively.The antibacterial rate of PU-^(F)PDMS/MCs/Ag against Escherichia coli,Staphylococcus aureus,and Candida albicans can reach 100%.Compared with glass blank,PU,PU-^(F)PDMS,PU-^(F)PDMS/Ag,and PU-^(F)PDMS/MCs,both the adhesion number and coverage percentage of chlorella adhere to PU-^(F)PDMS/MCs/Ag are the minimum values,which are 600 cell mm^(-2) and 1.53%,respectively.After 6 months of marine field test,the primer blank,PU,PU-^(F)PDMS all show different degrees of attachment by shellfish,spirorbis,al-gae and other biofouling,while the PU-^(F)PDMS/MCs/Ag coating is still not covered with biofouling,while the PU-^(F)PDMS/MCs/Ag coatings still exhibit little attachment of marine fouling.The PU-^(F)PDMS/MCs/Ag bionic anti-fouling coatings are expected to be widely used in the fields of anti-fouling,anti-icing,anti-fogging,drag reduction,self-cleaning,and antibacterial.展开更多
Objective:Triple-negative breast cancer(TNBC)is a highly aggressive subtype that lacks targeted therapies,leading to a poorer prognosis.However,some patients achieve long-term recurrence-free survival(RFS),offering va...Objective:Triple-negative breast cancer(TNBC)is a highly aggressive subtype that lacks targeted therapies,leading to a poorer prognosis.However,some patients achieve long-term recurrence-free survival(RFS),offering valuable insights into tumor biology and potential treatment strategies.Methods:We conducted a comprehensive multi-omics analysis of 132 patients with American Joint Committee on Cancer(AJCC)stage III TNBC,comprising 36 long-term survivors(RFS≥8 years),62 moderate-term survivors(RFS:3-8 years),and 34 short-term survivors(RFS<3 years).Analyses investigated clinicopathological factors,whole-exome sequencing,germline mutations,copy number alterations(CNAs),RNA sequences,and metabolomic profiles.Results:Long-term survivors exhibited fewer metastatic regional lymph nodes,along with tumors showing reduced stromal fibrosis and lower Ki67 index.Molecularly,these tumors exhibited multiple alterations in genes related to homologous recombination repair,with higher frequencies of germline mutations and somatic CNAs.Additionally,tumors from long-term survivors demonstrated significant downregulation of the RTK-RAS signaling pathway.Metabolomic profiling revealed decreased levels of lipids and carbohydrate,particularly those involved in glycerophospholipid,fructose,and mannose metabolism,in long-term survival group.Multivariate Cox analysis identified fibrosis[hazard ratio(HR):12.70,95%confidence interval(95%CI):2.19-73.54,P=0.005]and RAC1copy number loss/deletion(HR:0.22,95%CI:0.06-0.83,P=0.026)as independent predictors of RFS.Higher fructose/mannose metabolism was associated with worse overall survival(HR:1.30,95%CI:1.01-1.68,P=0.045).Our findings emphasize the association between biological determinants and prolonged survival in patients with TNBC.Conclusions:Our study systematically identified the key molecular and metabolic features associated with prolonged survival in AJCC stage III TNBC,suggesting potential therapeutic targets to improve patient outcomes.展开更多
The purpose of this study is to analyze the application of ultrasonic non-destructive testing technology in bridge engineering.During the research phase,based on literature collection and reading,as well as the analys...The purpose of this study is to analyze the application of ultrasonic non-destructive testing technology in bridge engineering.During the research phase,based on literature collection and reading,as well as the analysis of bridge inspection materials,the principle of ultrasonic non-destructive testing technology and its adaptability to bridge engineering are elaborated.Subsequently,starting from the preparation work before inspection until damage assessment,the entire process of ultrasonic non-destructive testing is studied,and finally,a technical system of ultrasonic non-destructive testing for bridge engineering that runs through the entire process is formed.It is hoped that this article can provide technical reference value for relevant units in China,and promote the high-quality development of China’s bridge engineering from a macro perspective.展开更多
Kawasaki disease(KD)is a significant pediatric vasculitis known for its potential to cause severe coronary artery complications.Despite the effectiveness of initial treatments,such as intravenous immunoglobulin,KD pat...Kawasaki disease(KD)is a significant pediatric vasculitis known for its potential to cause severe coronary artery complications.Despite the effectiveness of initial treatments,such as intravenous immunoglobulin,KD patients can experience long-term cardiovascular issues,as evidenced by a recent case report of an adult who suffered a ST-segment elevation myocardial infarction due to previous KD in the World Journal of Clinical Cases.This editorial emphasizes the critical need for long-term management and regular surveillance to prevent such complications.By drawing on recent research and case studies,we advocate for a structured approach to follow-up care that includes routine cardiac evaluations and preventive measures.展开更多
With the depletion of fossil fuels and increasing environmental concerns,the development of renewable energy,such as wave energy,has become a critical component of global energy strategies.However,challenges persist i...With the depletion of fossil fuels and increasing environmental concerns,the development of renewable energy,such as wave energy,has become a critical component of global energy strategies.However,challenges persist in the field testing methodologies for wave energy converters(WECs).In this paper,a numerical wave field of the Dawanshan Island Sea Area in Zhuhai City is constructed based on the MIKE21 SW wave model and by using an NCEP wind field driving model.In conjunction with the IEC-62600-100 standard,by taking site testing of the“Wanshan”wave energy converter on which a sea trial has been conducted in Dawanshan Island of Zhuhai city as an example,research on-site testing method for a wave energy converter has been carried out.The wave measurement position for the“Wanshan”converter was determined by combining statistically analyzed field data with a validated numerical wave model.By comparing a valid wave height at the position where a wave rider is located with a valid wave height at the position where the“Wanshan”wave energy converter is situated,the correlation coefficient between simulation and observed data reached 0.90,with a root-mean-square error of 0.19.The representativeness of wave measurement data during site testing is verified and can be used as a basis for calculating the input energy of the“Wanshan”wave energy converter.展开更多
Subgrade engineering is a fundamental aspect of infrastructure construction in China.As the primary structural element responsible for bearing and distributing traffic loads,the subgrade must not only withstand the su...Subgrade engineering is a fundamental aspect of infrastructure construction in China.As the primary structural element responsible for bearing and distributing traffic loads,the subgrade must not only withstand the substantial pressures exerted by vehicles,trains,and other forms of transportation,but also efficiently transfer these loads to the underlying foundation,ensuring the stability and longevity of the roadway.In recent years,advancements in subgrade engineering technology have propelled the industry towards smarter,greener,and more sustainable practices,particularly in the areas of intelligent monitoring,disaster management,and innovative construction methods.This paper reviews the application and methodologies of intelligent testing equipment,including cone penetration testing(CPT)devices,soil resistivity testers,and intelligent rebound testers,in subgrade engineering.It examines the operating principles,advantages,limitations,and application ranges of these tools in subgrade testing.Additionally,the paper evaluates the practical use of advanced equipment from both domestic and international perspectives,addressing the challenges encountered by various instruments in realworld applications.These devices enable precise,comprehensive testing and evaluation of subgrade conditions at different stages,providing real-time data analysis and intelligent early warnings.This supports effective subgrade health management and maintenance.As intelligent technologies continue to evolve and integrate,these tools will increasingly enhance the accuracy,efficiency,and sustainability of subgrade monitoring.展开更多
Shotcrete is one of the common solutions for shallow sliding.It works by forming a protective layer with high strength and cementing the loose soil particles on the slope surface to prevent shallow sliding.However,the...Shotcrete is one of the common solutions for shallow sliding.It works by forming a protective layer with high strength and cementing the loose soil particles on the slope surface to prevent shallow sliding.However,the solidification time of conventional cement paste is long when shotcrete is used to treat cohesionless soil landslide.The idea of reinforcing slope with polyurethane solidified soil(i.e.,mixture of polyurethane and sand)was proposed.Model tests and finite element analysis were carried out to study the effectiveness of the proposed new method on the emergency treatment of cohesionless soil landslide.Surcharge loading on the crest of the slope was applied step by step until landslide was triggered so as to test and compare the stability and bearing capacity of slope models with different conditions.The simulated slope displacements were relatively close to the measured results,and the simulated slope deformation characteristics were in good agreement with the observed phenomena,which verifies the accuracy of the numerical method.Under the condition of surcharge loading on the crest of the slope,the unreinforced slope slid when the surcharge loading exceeded 30 k Pa,which presented a failure mode of local instability and collapse at the shallow layer of slope top.The reinforced slope remained stable even when the surcharge loading reached 48 k Pa.The displacement of the reinforced slope was reduced by more than 95%.Overall,this study verifies the effectiveness of polyurethane in the emergency treatment of cohesionless soil landslide and should have broad application prospects in the field of geological disasters concerning the safety of people's live.展开更多
Bedding parallel stepped rock slopes exist widely in nature and are used in slope engineering.They are characterized by complex topography and geological structure and are vulnerable to shattering under strong earthqu...Bedding parallel stepped rock slopes exist widely in nature and are used in slope engineering.They are characterized by complex topography and geological structure and are vulnerable to shattering under strong earthquakes.However,no previous studies have assessed the mechanisms underlying seismic failure in rock slopes.In this study,large-scale shaking table tests and numerical simulations were conducted to delineate the seismic failure mechanism in terms of acceleration,displacement,and earth pressure responses combined with shattering failure phenomena.The results reveal that acceleration response mutations usually occur within weak interlayers owing to their inferior performance,and these mutations may transform into potential sliding surfaces,thereby intensifying the nonlinear seismic response characteristics.Cumulative permanent displacements at the internal corners of the berms can induce quasi-rigid displacements at the external corners,leading to greater permanent displacements at the internal corners.Therefore,the internal corners are identified as the most susceptible parts of the slope.In addition,the concept of baseline offset was utilized to explain the mechanism of earth pressure responses,and the result indicates that residual earth pressures at the internal corners play a dominant role in causing deformation or shattering damage.Four evolutionary deformation phases characterize the processes of seismic responses and shattering failure of the bedding parallel stepped rock slope,i.e.the formation of tensile cracks at the internal corners of the berm,expansion of tensile cracks and bedding surface dislocation,development of vertical tensile cracks at the rear edge,and rock mass slipping leading to slope instability.Overall,this study provides a scientific basis for the seismic design of engineering slopes and offers valuable insights for further studies on preventing seismic disasters in bedding parallel stepped rock slopes.展开更多
Point-of-care testing(POCT)refers to a category of diagnostic tests that are performed at or near to the site of the patients(also called bedside testing)and is capable of obtaining accurate results in a short time by...Point-of-care testing(POCT)refers to a category of diagnostic tests that are performed at or near to the site of the patients(also called bedside testing)and is capable of obtaining accurate results in a short time by using portable diagnostic devices,avoiding sending samples to the medical laboratories.It has been extensively explored for diagnosing and monitoring patients’diseases and health conditions with the assistance of development in biochemistry and microfluidics.Microfluidic paper-based analytical devices(μPADs)have gained dramatic popularity in POCT because of their simplicity,user-friendly,fast and accurate result reading and low cost.SeveralμPADs have been successfully commercialized and received excellent feedback during the past several decades.This review briefly discusses the main types ofμPADs,preparation methods and their detection principles,followed by a few representative examples.The future perspectives of the development inμPADs are also provided.展开更多
The study of the charge conjugation and parity(CP)violation of hyperon is the precision frontier for probing possible new CP violation sources beyond the standard model(SM).With the large number of quantum entangled h...The study of the charge conjugation and parity(CP)violation of hyperon is the precision frontier for probing possible new CP violation sources beyond the standard model(SM).With the large number of quantum entangled hyperonantihyperon pairs to be produced at Super Tau-Charm Facility(STCF),the CP asymmetry of hyperon is expected to be tested with a statistical sensitivity of 10^(−4) or even better.To cope with the statistical precision,the systematic effects from various aspects are critical and need to be studied in detail.In this paper,the sensitivity effects on the CP violation parameters associated with the detector resolution,including those of the position and momentum,are studied and discussed in detail.The results provide valuable guidance for the design of STCF detector.展开更多
Extensive spatiotemporal analyses of long-trend surface ozone in the Yangtze River Delta(YRD)region and itsmeteorology-related and emission-related have not been systematically analyzed.In this study,by using 8-year-l...Extensive spatiotemporal analyses of long-trend surface ozone in the Yangtze River Delta(YRD)region and itsmeteorology-related and emission-related have not been systematically analyzed.In this study,by using 8-year-long(2015–2022)surface ozone observation data,we attempted to reveal the variation ofmultiple timescale components using the Kolmogorov–Zurbenko filter,and the effects of meteorology and emissions were quantitatively isolated using multiple linear regression with meteorological variables.The results showed that the short-term,seasonal,and long-term components accounted for daily maximum 8-hr average O_(3)(O_(3–8)hr)concentration,46.4%,45.9%,and 1.0%,respectively.The meteorological impacts account for an average of 71.8%of O_(3–8)hr,and the YRD’s eastern and northern sections aremeteorology-sensitive areas.Based on statistical analysis technology with empirical orthogonal function,the contribution of meteorology,local emission,and transport in the long-term component of O_(3–8)hr were 0.21%,0.12%,and 0.6%,respectively.The spatiotemporal analysis indicated that a distinct decreasing spatial pattern could be observed from coastal cities towards the northwest,influenced by the monsoon and synoptic conditions.The central urban agglomeration north and south of the YRD was particularly susceptible to local pollution.Among the cities studied,Shanghai,Anqing,and Xuancheng,located at similar latitudes,were significantly impacted by atmospheric transmission—the contribution of Shanghai,the maximum accounting for 3.6%.展开更多
Penetration testing plays a critical role in ensuring security in an increasingly interconnected world. Despite advancements in technology leading to smaller, more portable devices, penetration testing remains reliant...Penetration testing plays a critical role in ensuring security in an increasingly interconnected world. Despite advancements in technology leading to smaller, more portable devices, penetration testing remains reliant on traditional laptops and computers, which, while portable, lack true ultra-portability. This paper explores the potential impact of developing a dedicated, ultra-portable, low-cost device for on-the-go penetration testing. Such a device could replicate the core functionalities of advanced penetration testing tools, including those found in Kali Linux, within a compact form factor that fits easily into a pocket. By offering the convenience and portability akin to a smartphone, this innovative device could redefine the way penetration testers operate, enabling them to carry essential tools wherever they go and ensuring they are always prepared to conduct security assessments efficiently. This approach aims to revolutionize penetration testing by merging high functionality with unparalleled portability.展开更多
NOx sensors, as a core component of diesel engine exhaust treatment system, play an important role in exhaust emission control, which can accurately and quickly detect the NOx and O2 concentration. It has become a nec...NOx sensors, as a core component of diesel engine exhaust treatment system, play an important role in exhaust emission control, which can accurately and quickly detect the NOx and O2 concentration. It has become a necessary option for the detection of existing exhaust emission standards. At present, there is limited and scattered information on knowledge and test methods of NOx sensors, the research of NOx sensors has become a challenging research topic at home and abroad. Based on these requirements, the article systematically integrates the knowledge of principle and testing methods. First of all, through introducing functional description of NOx sensors and the basic principle of NOx sensors, the relevant scholars can have an overall understanding of the product and master the operation mode of products. Secondly, the current status of performance test bench and methods of NOx sensors were described, which can contribute to having a clear understanding of the development process. After that, a new structure of NOx sensors test bench was purposed, which contains six major units including standard gas source, gas mixing unit, analyzer measurement unit, sensor measurement unit, data processing and display unit, exhaust gas treatment unit. And the test bench was validated. The experimental results show that the test bench has the advantages of high-repeatability, high reliability and low cost. And it can realize automatic detection of multiple target values, which is worthy further promotion. Thereby, the article can contribute to the development of its technology indirectly.展开更多
String validation routines have been widely used in many real-world applications,such as email validation and postcode validation.String test cases are adopted to test these validation routines,to identify potential d...String validation routines have been widely used in many real-world applications,such as email validation and postcode validation.String test cases are adopted to test these validation routines,to identify potential defects and security risks.Random Testing(RT)is a well-known testing approach to randomly generate string test cases from the input domain(i.e.,the set of all possible test inputs),which is simple to implement at a low cost.However,its testing effectiveness may be unsatisfactory for string validation routines.The main reason for this is that RT may have a high probability to generate invalid rather than valid string test cases,due to its randomness property.This research proposes a new RT approach based on the output types(i.e.,valid and invalid strings)for string validation routines,namely Output-type-guided Random Testing(RTO),which attempts to randomly generate both valid and invalid string test cases with a certain probability.This research performed an empirical study involving several real-world string validation routines collected from ten Java open-source projects,to investigate and compare testing performances of RT-O against the previous two widely-used RT methods.The results show that the generated string test cases by RT-O outperform test cases generated by other RT methods.展开更多
Geomechanical properties of rocks vary across different measurement scales,primarily due to heterogeneity.Micro-scale geomechanical tests,including micro-scale“scratch tests”and nano-scale nanoindentation tests,are ...Geomechanical properties of rocks vary across different measurement scales,primarily due to heterogeneity.Micro-scale geomechanical tests,including micro-scale“scratch tests”and nano-scale nanoindentation tests,are attractive at different scales.Each method requires minimal sample volume,is low cost,and includes a relatively rapid measurement turnaround time.However,recent micro-scale test results–including scratch test results and nanoindentation results–exhibit tangible variance and uncertainty,suggesting a need to correlate mineral composition mapping to elastic modulus mapping to isolate the relative impact of specific minerals.Different research labs often utilize different interpretation methods,and it is clear that future micro-mechanical tests may benefit from standardized testing and interpretation procedures.The objectives of this study are to seek options for standardized testing and interpretation procedures,through two specific objectives:(1)Quantify chemical and physical controls on micro-mechanical properties and(2)Quantify the source of uncertainties associated with nanoindentation measurements.To reach these goals,we conducted mechanical tests on three different scales:triaxial compression tests,scratch tests,and nanoindentation tests.We found that mineral phase weight percentage is highly correlated with nanoindentation elastic modulus distribution.Finally,we conclude that nanoindentation testing is a mineralogy and microstructure-based method and generally yields significant uncertainty and overestimation.The uncertainty of the testing method is largely associated with not mapping pore space a priori.Lastly,the uncertainty can be reduced by combining phase mapping and modulus mapping with substantial and random data sampling.展开更多
This study presents the results of a Monte Carlo simulation to compare the statistical power of Siegel-Tukey and Savage tests.The main purpose of the study is to evaluate the statistical power of both tests in scenari...This study presents the results of a Monte Carlo simulation to compare the statistical power of Siegel-Tukey and Savage tests.The main purpose of the study is to evaluate the statistical power of both tests in scenarios involving Normal,Platykurtic and Skewed distributions over different sample sizes and standard deviation values.In the study,standard deviation ratios were set as 2,3,4,1/2,1/3 and 1/4 and power comparisons were made between small and large sample sizes.For equal sample sizes,small sample sizes of 5,8,10,12,16 and 20 and large sample sizes of 25,50,75 and 100 were used.For different sample sizes,the combinations of(4,16),(8,16),(10,20),(16,4),(16,8)and(20,10)small sample sizes and(10,30),(30,10),(50,75),(50,100),(75,50),(75,100),(100,50)and(100,75)large sample sizes were examined in detail.According to the findings,the power analysis under variance heterogeneity conditions shows that the Siegel-Tukey test has a higher statistical power than the other nonparametric Savage test at small and large sample sizes.In particular,the Siegel-Tukey test was reported to offer higher precision and power under variance heterogeneity,regardless of having equal or different sample sizes.展开更多
To investigate the evolution of load-bearing characteristics of pre-stressed beams throughout their service life and to provide a basis for accurately assessing the actual working state of damaged pre-stressed concret...To investigate the evolution of load-bearing characteristics of pre-stressed beams throughout their service life and to provide a basis for accurately assessing the actual working state of damaged pre-stressed concrete T-beams,destructive tests were conducted on full-scale pre-stressed concrete beams.Based on the measurement and ana-lysis of beam deflection,strain,and crack development under various loading levels during the research tests,combined with the verification coefficient indicators specified in the codes,the verification coefficients of bridges at different stages of damage can be examined.The results indicate that the T-beams experience complete,incom-plete linear,and non-linear stages during the destructive test process.In the complete linear elastic stage,both the deflection and bottom strain verification coefficients comply with the specifications,indicating a good structural load-bearing capacity no longer adheres to the code’s requirements.In the non-linear stage,both coefficients exhi-bit a sharp increase,resulting in a further decrease in the structure’s load-bearing capacity.According to the pro-visions of the current code,the beam can be in the incomplete linear stage when both values fall within the code’s specified range.The strain verification coefficient sourced from the compression zone at the bottom of theflange is not recommended for assessing the bridge’s load-bearing capacity.展开更多
基金supported by the National Natural Science Foundation of China(Nos.52003148 and 52261045)the State Key Laboratory of Marine Resource Utilization in South China Sea,Hainan University(No.MRUKF2021023)+3 种基金the Key Research and Development Project of Shaanxi Province(No.2023-YBGY-475)the Key Scientific Research Project of Education Department of Shaanxi Province(No.22JS003)the Industrialization Project of the State Key Laboratory of Biological Resources and Ecological Environment(Cultivation)of Qinba Region(No.SXC-2310)the key cultivation project funds of Shaanxi University of Technology(No.SLGKYXM2201).
文摘Polyurethane-fluorinated polysiloxane(PU-^(F)PDMS)with high-strength,high-bonding and low surface en-ergy is synthesized as the matrix,and the PU-^(F)PDMS/MCs/Ag marine anti-fouling coating on the sur-face of imitation crab shells is constructed by assembling butenolide@1,1-stilbene-modified hydrolyzed polyglycidyl methacrylate/graphene oxide microcapsules(Bu@PGMAm/GO MCs)with compact multi-shell structure and Ag nanoparticles(AgNPs)step by step on the PU-^(F)PDMS matrix.The PU-^(F)PDMS/MCs/Ag bionic anti-fouling coatings achieve long-term and stable anti-fouling effect under the combination of robust low-surface-energy PU-^(F)PDMS matrix,steady-state sustained release of butenolide encapsulated by the compact multi-shell,bionic surface formed by the microcapsules and AgNPs,and the release of Ag^(+).The shear strength,tensile strength,and elongation at break of the PU-^(F)PDMS/MCs/Ag are 3.53 MPa,6.7 MPa,and 192.83%,respectively.Its static contact angle and sliding angle are 161.8°and 3.6°,respectively.The antibacterial rate of PU-^(F)PDMS/MCs/Ag against Escherichia coli,Staphylococcus aureus,and Candida albicans can reach 100%.Compared with glass blank,PU,PU-^(F)PDMS,PU-^(F)PDMS/Ag,and PU-^(F)PDMS/MCs,both the adhesion number and coverage percentage of chlorella adhere to PU-^(F)PDMS/MCs/Ag are the minimum values,which are 600 cell mm^(-2) and 1.53%,respectively.After 6 months of marine field test,the primer blank,PU,PU-^(F)PDMS all show different degrees of attachment by shellfish,spirorbis,al-gae and other biofouling,while the PU-^(F)PDMS/MCs/Ag coating is still not covered with biofouling,while the PU-^(F)PDMS/MCs/Ag coatings still exhibit little attachment of marine fouling.The PU-^(F)PDMS/MCs/Ag bionic anti-fouling coatings are expected to be widely used in the fields of anti-fouling,anti-icing,anti-fogging,drag reduction,self-cleaning,and antibacterial.
基金supported by grants from the Medical Engineering Jiont Fund of the Fudan University(No.IDH2310117)。
文摘Objective:Triple-negative breast cancer(TNBC)is a highly aggressive subtype that lacks targeted therapies,leading to a poorer prognosis.However,some patients achieve long-term recurrence-free survival(RFS),offering valuable insights into tumor biology and potential treatment strategies.Methods:We conducted a comprehensive multi-omics analysis of 132 patients with American Joint Committee on Cancer(AJCC)stage III TNBC,comprising 36 long-term survivors(RFS≥8 years),62 moderate-term survivors(RFS:3-8 years),and 34 short-term survivors(RFS<3 years).Analyses investigated clinicopathological factors,whole-exome sequencing,germline mutations,copy number alterations(CNAs),RNA sequences,and metabolomic profiles.Results:Long-term survivors exhibited fewer metastatic regional lymph nodes,along with tumors showing reduced stromal fibrosis and lower Ki67 index.Molecularly,these tumors exhibited multiple alterations in genes related to homologous recombination repair,with higher frequencies of germline mutations and somatic CNAs.Additionally,tumors from long-term survivors demonstrated significant downregulation of the RTK-RAS signaling pathway.Metabolomic profiling revealed decreased levels of lipids and carbohydrate,particularly those involved in glycerophospholipid,fructose,and mannose metabolism,in long-term survival group.Multivariate Cox analysis identified fibrosis[hazard ratio(HR):12.70,95%confidence interval(95%CI):2.19-73.54,P=0.005]and RAC1copy number loss/deletion(HR:0.22,95%CI:0.06-0.83,P=0.026)as independent predictors of RFS.Higher fructose/mannose metabolism was associated with worse overall survival(HR:1.30,95%CI:1.01-1.68,P=0.045).Our findings emphasize the association between biological determinants and prolonged survival in patients with TNBC.Conclusions:Our study systematically identified the key molecular and metabolic features associated with prolonged survival in AJCC stage III TNBC,suggesting potential therapeutic targets to improve patient outcomes.
文摘The purpose of this study is to analyze the application of ultrasonic non-destructive testing technology in bridge engineering.During the research phase,based on literature collection and reading,as well as the analysis of bridge inspection materials,the principle of ultrasonic non-destructive testing technology and its adaptability to bridge engineering are elaborated.Subsequently,starting from the preparation work before inspection until damage assessment,the entire process of ultrasonic non-destructive testing is studied,and finally,a technical system of ultrasonic non-destructive testing for bridge engineering that runs through the entire process is formed.It is hoped that this article can provide technical reference value for relevant units in China,and promote the high-quality development of China’s bridge engineering from a macro perspective.
文摘Kawasaki disease(KD)is a significant pediatric vasculitis known for its potential to cause severe coronary artery complications.Despite the effectiveness of initial treatments,such as intravenous immunoglobulin,KD patients can experience long-term cardiovascular issues,as evidenced by a recent case report of an adult who suffered a ST-segment elevation myocardial infarction due to previous KD in the World Journal of Clinical Cases.This editorial emphasizes the critical need for long-term management and regular surveillance to prevent such complications.By drawing on recent research and case studies,we advocate for a structured approach to follow-up care that includes routine cardiac evaluations and preventive measures.
基金supported by the“National Ocean Technology Center Innovation Fund”under Project No.N3220Z002,led by Ning Jia.The official website of the National Ocean Technology Center is accessible at:http://www.notcsoa.org.cn/.
文摘With the depletion of fossil fuels and increasing environmental concerns,the development of renewable energy,such as wave energy,has become a critical component of global energy strategies.However,challenges persist in the field testing methodologies for wave energy converters(WECs).In this paper,a numerical wave field of the Dawanshan Island Sea Area in Zhuhai City is constructed based on the MIKE21 SW wave model and by using an NCEP wind field driving model.In conjunction with the IEC-62600-100 standard,by taking site testing of the“Wanshan”wave energy converter on which a sea trial has been conducted in Dawanshan Island of Zhuhai city as an example,research on-site testing method for a wave energy converter has been carried out.The wave measurement position for the“Wanshan”converter was determined by combining statistically analyzed field data with a validated numerical wave model.By comparing a valid wave height at the position where a wave rider is located with a valid wave height at the position where the“Wanshan”wave energy converter is situated,the correlation coefficient between simulation and observed data reached 0.90,with a root-mean-square error of 0.19.The representativeness of wave measurement data during site testing is verified and can be used as a basis for calculating the input energy of the“Wanshan”wave energy converter.
基金supported by the National Natural Science Foundation of China for Distinguished Young Scholars(Grant No.42225206)National Natural Science Foundation of China(42207180,42477209,42302320).
文摘Subgrade engineering is a fundamental aspect of infrastructure construction in China.As the primary structural element responsible for bearing and distributing traffic loads,the subgrade must not only withstand the substantial pressures exerted by vehicles,trains,and other forms of transportation,but also efficiently transfer these loads to the underlying foundation,ensuring the stability and longevity of the roadway.In recent years,advancements in subgrade engineering technology have propelled the industry towards smarter,greener,and more sustainable practices,particularly in the areas of intelligent monitoring,disaster management,and innovative construction methods.This paper reviews the application and methodologies of intelligent testing equipment,including cone penetration testing(CPT)devices,soil resistivity testers,and intelligent rebound testers,in subgrade engineering.It examines the operating principles,advantages,limitations,and application ranges of these tools in subgrade testing.Additionally,the paper evaluates the practical use of advanced equipment from both domestic and international perspectives,addressing the challenges encountered by various instruments in realworld applications.These devices enable precise,comprehensive testing and evaluation of subgrade conditions at different stages,providing real-time data analysis and intelligent early warnings.This supports effective subgrade health management and maintenance.As intelligent technologies continue to evolve and integrate,these tools will increasingly enhance the accuracy,efficiency,and sustainability of subgrade monitoring.
基金the financial support from the Fujian Science Foundation for Outstanding Youth(2023J06039)the National Natural Science Foundation of China(Grant No.41977259,U2005205,41972268)the Independent Research Project of Technology Innovation Center for Monitoring and Restoration Engineering of Ecological Fragile Zone in Southeast China(KY-090000-04-2022-019)。
文摘Shotcrete is one of the common solutions for shallow sliding.It works by forming a protective layer with high strength and cementing the loose soil particles on the slope surface to prevent shallow sliding.However,the solidification time of conventional cement paste is long when shotcrete is used to treat cohesionless soil landslide.The idea of reinforcing slope with polyurethane solidified soil(i.e.,mixture of polyurethane and sand)was proposed.Model tests and finite element analysis were carried out to study the effectiveness of the proposed new method on the emergency treatment of cohesionless soil landslide.Surcharge loading on the crest of the slope was applied step by step until landslide was triggered so as to test and compare the stability and bearing capacity of slope models with different conditions.The simulated slope displacements were relatively close to the measured results,and the simulated slope deformation characteristics were in good agreement with the observed phenomena,which verifies the accuracy of the numerical method.Under the condition of surcharge loading on the crest of the slope,the unreinforced slope slid when the surcharge loading exceeded 30 k Pa,which presented a failure mode of local instability and collapse at the shallow layer of slope top.The reinforced slope remained stable even when the surcharge loading reached 48 k Pa.The displacement of the reinforced slope was reduced by more than 95%.Overall,this study verifies the effectiveness of polyurethane in the emergency treatment of cohesionless soil landslide and should have broad application prospects in the field of geological disasters concerning the safety of people's live.
基金supported by the National Natural Science Foundation of China (Grant No.52108361)the Sichuan Science and Technology Program of China (Grant No.2023YFS0436)the State Key Laboratory of Geohazard Prevention and Geoenvironment Protection Independent Research Project (Grant No.SKLGP2022Z015).
文摘Bedding parallel stepped rock slopes exist widely in nature and are used in slope engineering.They are characterized by complex topography and geological structure and are vulnerable to shattering under strong earthquakes.However,no previous studies have assessed the mechanisms underlying seismic failure in rock slopes.In this study,large-scale shaking table tests and numerical simulations were conducted to delineate the seismic failure mechanism in terms of acceleration,displacement,and earth pressure responses combined with shattering failure phenomena.The results reveal that acceleration response mutations usually occur within weak interlayers owing to their inferior performance,and these mutations may transform into potential sliding surfaces,thereby intensifying the nonlinear seismic response characteristics.Cumulative permanent displacements at the internal corners of the berms can induce quasi-rigid displacements at the external corners,leading to greater permanent displacements at the internal corners.Therefore,the internal corners are identified as the most susceptible parts of the slope.In addition,the concept of baseline offset was utilized to explain the mechanism of earth pressure responses,and the result indicates that residual earth pressures at the internal corners play a dominant role in causing deformation or shattering damage.Four evolutionary deformation phases characterize the processes of seismic responses and shattering failure of the bedding parallel stepped rock slope,i.e.the formation of tensile cracks at the internal corners of the berm,expansion of tensile cracks and bedding surface dislocation,development of vertical tensile cracks at the rear edge,and rock mass slipping leading to slope instability.Overall,this study provides a scientific basis for the seismic design of engineering slopes and offers valuable insights for further studies on preventing seismic disasters in bedding parallel stepped rock slopes.
文摘Point-of-care testing(POCT)refers to a category of diagnostic tests that are performed at or near to the site of the patients(also called bedside testing)and is capable of obtaining accurate results in a short time by using portable diagnostic devices,avoiding sending samples to the medical laboratories.It has been extensively explored for diagnosing and monitoring patients’diseases and health conditions with the assistance of development in biochemistry and microfluidics.Microfluidic paper-based analytical devices(μPADs)have gained dramatic popularity in POCT because of their simplicity,user-friendly,fast and accurate result reading and low cost.SeveralμPADs have been successfully commercialized and received excellent feedback during the past several decades.This review briefly discusses the main types ofμPADs,preparation methods and their detection principles,followed by a few representative examples.The future perspectives of the development inμPADs are also provided.
基金supported by the National Key R&D Program of China(2022YFA1602200)the International Partnership Program of the Chinese Academy of Sciences(211134KYSB20200057).
文摘The study of the charge conjugation and parity(CP)violation of hyperon is the precision frontier for probing possible new CP violation sources beyond the standard model(SM).With the large number of quantum entangled hyperonantihyperon pairs to be produced at Super Tau-Charm Facility(STCF),the CP asymmetry of hyperon is expected to be tested with a statistical sensitivity of 10^(−4) or even better.To cope with the statistical precision,the systematic effects from various aspects are critical and need to be studied in detail.In this paper,the sensitivity effects on the CP violation parameters associated with the detector resolution,including those of the position and momentum,are studied and discussed in detail.The results provide valuable guidance for the design of STCF detector.
基金supported by the National Natural Science Foundation of China(No.42075177)the National Key Research and Development Program of China(No.2017YFC0210003).
文摘Extensive spatiotemporal analyses of long-trend surface ozone in the Yangtze River Delta(YRD)region and itsmeteorology-related and emission-related have not been systematically analyzed.In this study,by using 8-year-long(2015–2022)surface ozone observation data,we attempted to reveal the variation ofmultiple timescale components using the Kolmogorov–Zurbenko filter,and the effects of meteorology and emissions were quantitatively isolated using multiple linear regression with meteorological variables.The results showed that the short-term,seasonal,and long-term components accounted for daily maximum 8-hr average O_(3)(O_(3–8)hr)concentration,46.4%,45.9%,and 1.0%,respectively.The meteorological impacts account for an average of 71.8%of O_(3–8)hr,and the YRD’s eastern and northern sections aremeteorology-sensitive areas.Based on statistical analysis technology with empirical orthogonal function,the contribution of meteorology,local emission,and transport in the long-term component of O_(3–8)hr were 0.21%,0.12%,and 0.6%,respectively.The spatiotemporal analysis indicated that a distinct decreasing spatial pattern could be observed from coastal cities towards the northwest,influenced by the monsoon and synoptic conditions.The central urban agglomeration north and south of the YRD was particularly susceptible to local pollution.Among the cities studied,Shanghai,Anqing,and Xuancheng,located at similar latitudes,were significantly impacted by atmospheric transmission—the contribution of Shanghai,the maximum accounting for 3.6%.
文摘Penetration testing plays a critical role in ensuring security in an increasingly interconnected world. Despite advancements in technology leading to smaller, more portable devices, penetration testing remains reliant on traditional laptops and computers, which, while portable, lack true ultra-portability. This paper explores the potential impact of developing a dedicated, ultra-portable, low-cost device for on-the-go penetration testing. Such a device could replicate the core functionalities of advanced penetration testing tools, including those found in Kali Linux, within a compact form factor that fits easily into a pocket. By offering the convenience and portability akin to a smartphone, this innovative device could redefine the way penetration testers operate, enabling them to carry essential tools wherever they go and ensuring they are always prepared to conduct security assessments efficiently. This approach aims to revolutionize penetration testing by merging high functionality with unparalleled portability.
文摘NOx sensors, as a core component of diesel engine exhaust treatment system, play an important role in exhaust emission control, which can accurately and quickly detect the NOx and O2 concentration. It has become a necessary option for the detection of existing exhaust emission standards. At present, there is limited and scattered information on knowledge and test methods of NOx sensors, the research of NOx sensors has become a challenging research topic at home and abroad. Based on these requirements, the article systematically integrates the knowledge of principle and testing methods. First of all, through introducing functional description of NOx sensors and the basic principle of NOx sensors, the relevant scholars can have an overall understanding of the product and master the operation mode of products. Secondly, the current status of performance test bench and methods of NOx sensors were described, which can contribute to having a clear understanding of the development process. After that, a new structure of NOx sensors test bench was purposed, which contains six major units including standard gas source, gas mixing unit, analyzer measurement unit, sensor measurement unit, data processing and display unit, exhaust gas treatment unit. And the test bench was validated. The experimental results show that the test bench has the advantages of high-repeatability, high reliability and low cost. And it can realize automatic detection of multiple target values, which is worthy further promotion. Thereby, the article can contribute to the development of its technology indirectly.
基金supported by the Science and Technology Development Fund of Macao,Macao SAR(Nos.0021/2023/RIA1 and 0046/2021/A)a Faculty Research Grant of Macao University of Science and Technology(No.FRG-22-103-FIE)supported by the National Natural Science Foundation of China(Nos.61872167 and 61502205).
文摘String validation routines have been widely used in many real-world applications,such as email validation and postcode validation.String test cases are adopted to test these validation routines,to identify potential defects and security risks.Random Testing(RT)is a well-known testing approach to randomly generate string test cases from the input domain(i.e.,the set of all possible test inputs),which is simple to implement at a low cost.However,its testing effectiveness may be unsatisfactory for string validation routines.The main reason for this is that RT may have a high probability to generate invalid rather than valid string test cases,due to its randomness property.This research proposes a new RT approach based on the output types(i.e.,valid and invalid strings)for string validation routines,namely Output-type-guided Random Testing(RTO),which attempts to randomly generate both valid and invalid string test cases with a certain probability.This research performed an empirical study involving several real-world string validation routines collected from ten Java open-source projects,to investigate and compare testing performances of RT-O against the previous two widely-used RT methods.The results show that the generated string test cases by RT-O outperform test cases generated by other RT methods.
基金support of this project through the Southwest Regional Partnership on Carbon Sequestration(Grant No.DE-FC26-05NT42591)Improving Production in the Emerging Paradox Oil Play(Grant No.DE-FE0031775).
文摘Geomechanical properties of rocks vary across different measurement scales,primarily due to heterogeneity.Micro-scale geomechanical tests,including micro-scale“scratch tests”and nano-scale nanoindentation tests,are attractive at different scales.Each method requires minimal sample volume,is low cost,and includes a relatively rapid measurement turnaround time.However,recent micro-scale test results–including scratch test results and nanoindentation results–exhibit tangible variance and uncertainty,suggesting a need to correlate mineral composition mapping to elastic modulus mapping to isolate the relative impact of specific minerals.Different research labs often utilize different interpretation methods,and it is clear that future micro-mechanical tests may benefit from standardized testing and interpretation procedures.The objectives of this study are to seek options for standardized testing and interpretation procedures,through two specific objectives:(1)Quantify chemical and physical controls on micro-mechanical properties and(2)Quantify the source of uncertainties associated with nanoindentation measurements.To reach these goals,we conducted mechanical tests on three different scales:triaxial compression tests,scratch tests,and nanoindentation tests.We found that mineral phase weight percentage is highly correlated with nanoindentation elastic modulus distribution.Finally,we conclude that nanoindentation testing is a mineralogy and microstructure-based method and generally yields significant uncertainty and overestimation.The uncertainty of the testing method is largely associated with not mapping pore space a priori.Lastly,the uncertainty can be reduced by combining phase mapping and modulus mapping with substantial and random data sampling.
文摘This study presents the results of a Monte Carlo simulation to compare the statistical power of Siegel-Tukey and Savage tests.The main purpose of the study is to evaluate the statistical power of both tests in scenarios involving Normal,Platykurtic and Skewed distributions over different sample sizes and standard deviation values.In the study,standard deviation ratios were set as 2,3,4,1/2,1/3 and 1/4 and power comparisons were made between small and large sample sizes.For equal sample sizes,small sample sizes of 5,8,10,12,16 and 20 and large sample sizes of 25,50,75 and 100 were used.For different sample sizes,the combinations of(4,16),(8,16),(10,20),(16,4),(16,8)and(20,10)small sample sizes and(10,30),(30,10),(50,75),(50,100),(75,50),(75,100),(100,50)and(100,75)large sample sizes were examined in detail.According to the findings,the power analysis under variance heterogeneity conditions shows that the Siegel-Tukey test has a higher statistical power than the other nonparametric Savage test at small and large sample sizes.In particular,the Siegel-Tukey test was reported to offer higher precision and power under variance heterogeneity,regardless of having equal or different sample sizes.
文摘To investigate the evolution of load-bearing characteristics of pre-stressed beams throughout their service life and to provide a basis for accurately assessing the actual working state of damaged pre-stressed concrete T-beams,destructive tests were conducted on full-scale pre-stressed concrete beams.Based on the measurement and ana-lysis of beam deflection,strain,and crack development under various loading levels during the research tests,combined with the verification coefficient indicators specified in the codes,the verification coefficients of bridges at different stages of damage can be examined.The results indicate that the T-beams experience complete,incom-plete linear,and non-linear stages during the destructive test process.In the complete linear elastic stage,both the deflection and bottom strain verification coefficients comply with the specifications,indicating a good structural load-bearing capacity no longer adheres to the code’s requirements.In the non-linear stage,both coefficients exhi-bit a sharp increase,resulting in a further decrease in the structure’s load-bearing capacity.According to the pro-visions of the current code,the beam can be in the incomplete linear stage when both values fall within the code’s specified range.The strain verification coefficient sourced from the compression zone at the bottom of theflange is not recommended for assessing the bridge’s load-bearing capacity.