Long-term responses of floating structures pose a great concern in their design phase. Existing approaches for addressing long-term extreme responses are extremely cumbersome for adoption. This work aims to develop an...Long-term responses of floating structures pose a great concern in their design phase. Existing approaches for addressing long-term extreme responses are extremely cumbersome for adoption. This work aims to develop an approach for the long-term extreme-response analysis of floating structures. A modified gradient-based retrieval algorithm in conjunction with the inverse first-order reliability method(IFORM) is proposed to enable the use of convolution models in long-term extreme analysis of structures with an analytical formula of response amplitude operator(RAO). The proposed algorithm ensures convergence stability and iteration accuracy and exhibits a higher computational efficiency than the traditional backtracking method. However, when the RAO of general offshore structures cannot be analytically expressed, the convolutional integration method fails to function properly. A numerical discretization approach is further proposed for offshore structures in the case when the analytical expression of the RAO is not feasible. Through iterative discretization of environmental contours(ECs) and RAOs, a detailed procedure is proposed to calculate the long-term response extremes of offshore structures. The validity and accuracy of the proposed approach are tested using a floating offshore wind turbine as a numerical example. The long-term extreme heave responses of various return periods are calculated via the IFORM in conjunction with a numerical discretization approach. The environmental data corresponding to N-year structural responses are located inside the ECs, which indicates that the selection of design points directly along the ECs yields conservative design results.展开更多
This paper investigates the reliability of internal marine combustion engines using an integrated approach that combines Fault Tree Analysis(FTA)and Bayesian Networks(BN).FTA provides a structured,top-down method for ...This paper investigates the reliability of internal marine combustion engines using an integrated approach that combines Fault Tree Analysis(FTA)and Bayesian Networks(BN).FTA provides a structured,top-down method for identifying critical failure modes and their root causes,while BN introduces flexibility in probabilistic reasoning,enabling dynamic updates based on new evidence.This dual methodology overcomes the limitations of static FTA models,offering a comprehensive framework for system reliability analysis.Critical failures,including External Leakage(ELU),Failure to Start(FTS),and Overheating(OHE),were identified as key risks.By incorporating redundancy into high-risk components such as pumps and batteries,the likelihood of these failures was significantly reduced.For instance,redundant pumps reduced the probability of ELU by 31.88%,while additional batteries decreased the occurrence of FTS by 36.45%.The results underscore the practical benefits of combining FTA and BN for enhancing system reliability,particularly in maritime applications where operational safety and efficiency are critical.This research provides valuable insights for maintenance planning and highlights the importance of redundancy in critical systems,especially as the industry transitions toward more autonomous vessels.展开更多
To study the durability of concrete in harsh environments in Northwest China,concrete was prepared with various durability-improving materials such as concrete anti-erosion inhibitor(SBT-TIA),acrylate polymer(AP),supe...To study the durability of concrete in harsh environments in Northwest China,concrete was prepared with various durability-improving materials such as concrete anti-erosion inhibitor(SBT-TIA),acrylate polymer(AP),super absorbent resin(SAP).The erosion mode and internal deterioration mechanism under salt freeze-thaw cycle and dry-wet cycle were explored.The results show that the addition of enhancing materials can effectively improve the resistance of concrete to salt freezing and sulfate erosion:the relevant indexes of concrete added with X-AP and T-AP are improved after salt freeze-thaw cycles;concrete added with SBTTIA shows optimal sulfate corrosion resistance;and concrete added with AP displays the best resistance to salt freezing.Microanalysis shows that the increase in the number of cycles decreases the generation of internal hydration products and defects in concrete mixed with enhancing materials and improves the related indexes.Based on the Wiener model analysis,the reliability of concrete with different lithologies and enhancing materials is improved,which may provide a reference for the application of manufactured sand concrete and enhancing materials in Northwest China,especially for the study of the improvement effects and mechanism of enhancing materials on the performance of concrete.展开更多
AIM:To investigate the long-term outcomes in acute primary angle closure(APAC)patients treated with lens extraction(LE)surgery and to identify risk factors for glaucomatous optic neuropathy(GON).METHODS:In this longit...AIM:To investigate the long-term outcomes in acute primary angle closure(APAC)patients treated with lens extraction(LE)surgery and to identify risk factors for glaucomatous optic neuropathy(GON).METHODS:In this longitudinal observational study,detailed medical histories of APAC patients and comprehensive ophthalmic examinations at final followup were collected.Logistic regression analysis was performed to identify predictors of blindness.Univariate and multivariate linear regression analyses were conducted to determine risk factors associated with visual outcomes.RESULTS:This study included 39 affected eyes of 31 subjects(26 females)with an average age of 74.1±8.0y.At 6.7±4.2y after APAC attack,2(5.7%)eyes had bestcorrected visual acuity(VA)worse than 3/60.Advanced glaucomatous visual field loss was observed in 15(39.5%)affected eyes and 5(25.0%)fellow eyes.Nine affected eyes(23.7%)had GON,and 11(28.9%)were blind.Six(15.4%)affected eyes and 2(9.1%)fellow eyes had suspicious progression.A significantly higher blindness rate in factory workers compared to office workers.Logistic regression identified that worse VA at attack(OR 10.568,95%CI 1.288-86.695;P=0.028)and worse early postoperative VA(OR 13.214,95%CI 1.157-150.881;P=0.038)were risk factors for blindness.Multivariate regression showed that longer duration of elevated intraocular pressure(P=0.004)and worse early postoperative VA(P=0.009)were associated with worse visual outcomes.CONCLUSION:Despite LE surgery,some APAC patients experience continued visual function deterioration.Lifelong monitoring is necessary.Target pressure and progression rates should be re-evaluated during follow-up.展开更多
Reliability-based design optimization (RBDO) is intrinsically a double-loop procedure since it involves an overall optimization and an iterative reliability assessment at each search point. Due to the double-loop pr...Reliability-based design optimization (RBDO) is intrinsically a double-loop procedure since it involves an overall optimization and an iterative reliability assessment at each search point. Due to the double-loop procedure, the computational expense of RBDO is normally very high. Current RBDO research focuses on problems with explicitly expressed performance functions and readily available gradients. This paper addresses a more challenging type of RBDO problem in which the performance functions are computation intensive. These computation intensive functions are often considered as a "black-box" and their gradients are not available or not reliable. On the basis of the reliable design space (RDS) concept proposed earlier by the authors, this paper proposes a Reliable Space Pursuing (RSP) approach, in which RDS is first identified and then gradually refined while optimization is performed. It fundamentally avoids the nested optimization and probabilistic assessment loop. Three well known RBDO problems from the literature are used for testing and demonstrating the effectiveness of the proposed RSP method.展开更多
Callovo-Oxfordian(COx)claystone has been considered as a potential host rock for geological radioactive waste disposal in France(Cigéo project).During the exploitation phase(100 years),the stability of drifts(e.g...Callovo-Oxfordian(COx)claystone has been considered as a potential host rock for geological radioactive waste disposal in France(Cigéo project).During the exploitation phase(100 years),the stability of drifts(e.g.galleries/alveoli)within the disposal is assured by the liner,which includes two layers:concrete arch segment and compressible material.The latter exhibits a significant deformation capacity(about 50%)under low stress(<3 MPa).Although the response of these underground structures can be governed by complex thermo-hydro-mechanical coupling,the creep behavior of COx claystone has been considered as the main factor controlling the increase of stress state in the concrete liner and hence the long-term stability of drifts.Therefore,by focusing only on the purely mechanical behavior,this study aims at investigating the uncertainty effect of the COx claystone time-dependent properties on the stability of an alveolus of Cigéo during the exploitation period.To describe the creep behavior of COx claystone,we use Lemaitre’s viscoplastic model with three parameters whose uncertainties are identified from laboratory creep tests.For the reliability analysis,an extension of a well-known Kriging metamodeling technique is proposed to assess the exceedance probability of acceptable stress in the concrete liner of the alveolus.The open-source code Code_Aster is chosen for the direct numerical evaluations of the performance function.The Kriging-based reliability analysis elucidates the effect of the uncertainty of COx claystone on the long-term stability of the concrete liner.Moreover,the role of the compressible material layer between the concrete liner and the host rock is also highlighted.展开更多
AIM: To assess the inter-observer agreement and reliability as well as intra-observer repeatability for lacrimal scintigraphy(LS) reports with and without considering the irrigation test results.METHODS: A prospective...AIM: To assess the inter-observer agreement and reliability as well as intra-observer repeatability for lacrimal scintigraphy(LS) reports with and without considering the irrigation test results.METHODS: A prospective, observational, cross sectional study. Two masked clinicians(lacrimal surgeon and nuclear medicine specialist) independently reported 100 LS images(50 patients of >6 years of age with unilateral anophthalmic socket) in a university hospital. The lacrimal surgeon performed a diagnostic irrigation test and repeated the report of the same LS images 2 y after the first report(intra-observer agreement). A weighted Kappa analysis was performed to determine inter-observer agreement and reliability as well as intra-observer repeatability for the type(normal, partial and complete obstruction) and location(presac, preduct, and intraduct) of the obstruction. Subgroup analysis was also performed with consideration of irrigation test results. RESULTS: A significantly moderate agreement was found between lacrimal surgeon and nuclear medicine specialist for both the type(Kappa=0.55) and location(Kappa=0.48) of obstruction. Agreement values were higher for the type(Kappa=0.61 vs 0.41) and location(Kappa=0.56 vs 0.31) of obstruction in cases with normal than abnormal irrigation test. Strong and significant intraobserver(lacrimal surgeon) repeatability was found for both the type(Kappa=0.66) and location(Kappa=0.69) of obstruction. LS showed no to slight reliability based on irrigation test.CONCLUSION: A moderate agreement is found between lacrimal surgeon and nuclear medicine specialist regarding the interpretation of LS suggesting the importance ofconsensus groups among nuclear medicine specialists and lacrimal surgeons to create a common language for interpretation of LS. Intra-observer repeatability is strong for the lacrimal surgeon.展开更多
The reservoir operation awakens numerous landslides with multiple sliding surfaces known as reservoir landslides,and the systematic stability analysis for such landslides is becoming increasingly urgent.Taking the Maj...The reservoir operation awakens numerous landslides with multiple sliding surfaces known as reservoir landslides,and the systematic stability analysis for such landslides is becoming increasingly urgent.Taking the Majiagou landslide as an example,this paper analyses the comprehensive performance of the landslide from a probabilistic point of view.Under a reservoir operation cycle,a series of numerical analyses are carried out to simulate the migration of the seepage field,then the dynamic stability of the landslide is quantified accordingly.Subsequently,the wetting-drying cycles test is used to model the weakening of strength parameters in hydro-fluctuation belt under the long-term reservoir operation.Considering the weakening effect of long-term reservoir operation on the hydrofluctuation belt,the system reliability is evaluated using the Ditlevsen's bounds.The results suggest that the reservoir operation can affect the stability of the landslide by changing the seepage field.The system failure probability gradually rises as the number of wetting-drying cycles increases.Compared with conventional probabilistic analysis that calculates the failure probability of each sliding surface mechanically,analyzing the landslide in terms of system reliability can effectively narrow the failure probability range,which provides an insightful idea for evaluating the systematic stability of analogous reservoir landslides.展开更多
Polyurethane-fluorinated polysiloxane(PU-^(F)PDMS)with high-strength,high-bonding and low surface en-ergy is synthesized as the matrix,and the PU-^(F)PDMS/MCs/Ag marine anti-fouling coating on the sur-face of imitatio...Polyurethane-fluorinated polysiloxane(PU-^(F)PDMS)with high-strength,high-bonding and low surface en-ergy is synthesized as the matrix,and the PU-^(F)PDMS/MCs/Ag marine anti-fouling coating on the sur-face of imitation crab shells is constructed by assembling butenolide@1,1-stilbene-modified hydrolyzed polyglycidyl methacrylate/graphene oxide microcapsules(Bu@PGMAm/GO MCs)with compact multi-shell structure and Ag nanoparticles(AgNPs)step by step on the PU-^(F)PDMS matrix.The PU-^(F)PDMS/MCs/Ag bionic anti-fouling coatings achieve long-term and stable anti-fouling effect under the combination of robust low-surface-energy PU-^(F)PDMS matrix,steady-state sustained release of butenolide encapsulated by the compact multi-shell,bionic surface formed by the microcapsules and AgNPs,and the release of Ag^(+).The shear strength,tensile strength,and elongation at break of the PU-^(F)PDMS/MCs/Ag are 3.53 MPa,6.7 MPa,and 192.83%,respectively.Its static contact angle and sliding angle are 161.8°and 3.6°,respectively.The antibacterial rate of PU-^(F)PDMS/MCs/Ag against Escherichia coli,Staphylococcus aureus,and Candida albicans can reach 100%.Compared with glass blank,PU,PU-^(F)PDMS,PU-^(F)PDMS/Ag,and PU-^(F)PDMS/MCs,both the adhesion number and coverage percentage of chlorella adhere to PU-^(F)PDMS/MCs/Ag are the minimum values,which are 600 cell mm^(-2) and 1.53%,respectively.After 6 months of marine field test,the primer blank,PU,PU-^(F)PDMS all show different degrees of attachment by shellfish,spirorbis,al-gae and other biofouling,while the PU-^(F)PDMS/MCs/Ag coating is still not covered with biofouling,while the PU-^(F)PDMS/MCs/Ag coatings still exhibit little attachment of marine fouling.The PU-^(F)PDMS/MCs/Ag bionic anti-fouling coatings are expected to be widely used in the fields of anti-fouling,anti-icing,anti-fogging,drag reduction,self-cleaning,and antibacterial.展开更多
Superhydrophobic surface is a promising strategy for antibacterial and corrosion protection.However,the use of harmful fluorine-containing materials,poor mechano-chemical stability,the addition of fungicides and poor ...Superhydrophobic surface is a promising strategy for antibacterial and corrosion protection.However,the use of harmful fluorine-containing materials,poor mechano-chemical stability,the addition of fungicides and poor corrosion resistance often limit its practical application.In this paper,a high-robustness pho-tothermal self-healing superhydrophobic coating is prepared by simply spraying a mixture of hydropho-bically modified epoxy resin and two kinds of modified nanofillers(carbon nanotubes and SiO2)for long-term anticorrosion and antibacterial applications.Multi-scale network and lubrication structures formed by cross-linking of modified carbon nanotubes and repeatable roughness endow coating with high ro-bustness,so that the coating maintains superhydrophobicity even after 100 Taber abrasion cycles,20 m sandpaper abrasion and 100 tape peeling cycles.The synergistic effect of antibacterial adhesion and pho-tothermal bactericidal activity endows coating with excellent antibacterial efficiency,which against Es-cherichia coli(E.coli)and Staphylococcus aureus(S.aureus)separately reaches 99.6% and 99.8%.Moreover,the influence of modified epoxy resin,superhydrophobicity,organic coating and coating thicknesses on the anticorrosion of magnesium(Mg)alloy is systematically studied and analyzed.More importantly,the prepared coating still exhibits excellent self-cleaning,anticorrosion and antibacterial abilities after 20 m abrasion.Furthermore,the coating exhibits excellent adhesion(level 4B),chemical stability,UV radiation resistance,high-low temperature alternation resistance,stable heat production capacity and photother-mal self-healing ability.All these excellent performances can promote its application in a wider range of fields.展开更多
Objective:Triple-negative breast cancer(TNBC)is a highly aggressive subtype that lacks targeted therapies,leading to a poorer prognosis.However,some patients achieve long-term recurrence-free survival(RFS),offering va...Objective:Triple-negative breast cancer(TNBC)is a highly aggressive subtype that lacks targeted therapies,leading to a poorer prognosis.However,some patients achieve long-term recurrence-free survival(RFS),offering valuable insights into tumor biology and potential treatment strategies.Methods:We conducted a comprehensive multi-omics analysis of 132 patients with American Joint Committee on Cancer(AJCC)stage III TNBC,comprising 36 long-term survivors(RFS≥8 years),62 moderate-term survivors(RFS:3-8 years),and 34 short-term survivors(RFS<3 years).Analyses investigated clinicopathological factors,whole-exome sequencing,germline mutations,copy number alterations(CNAs),RNA sequences,and metabolomic profiles.Results:Long-term survivors exhibited fewer metastatic regional lymph nodes,along with tumors showing reduced stromal fibrosis and lower Ki67 index.Molecularly,these tumors exhibited multiple alterations in genes related to homologous recombination repair,with higher frequencies of germline mutations and somatic CNAs.Additionally,tumors from long-term survivors demonstrated significant downregulation of the RTK-RAS signaling pathway.Metabolomic profiling revealed decreased levels of lipids and carbohydrate,particularly those involved in glycerophospholipid,fructose,and mannose metabolism,in long-term survival group.Multivariate Cox analysis identified fibrosis[hazard ratio(HR):12.70,95%confidence interval(95%CI):2.19-73.54,P=0.005]and RAC1copy number loss/deletion(HR:0.22,95%CI:0.06-0.83,P=0.026)as independent predictors of RFS.Higher fructose/mannose metabolism was associated with worse overall survival(HR:1.30,95%CI:1.01-1.68,P=0.045).Our findings emphasize the association between biological determinants and prolonged survival in patients with TNBC.Conclusions:Our study systematically identified the key molecular and metabolic features associated with prolonged survival in AJCC stage III TNBC,suggesting potential therapeutic targets to improve patient outcomes.展开更多
Road traffic flow forecasting provides critical information for the operational management of road mobility challenges, and models are used to generate the forecast. This paper uses a random process to present a novel...Road traffic flow forecasting provides critical information for the operational management of road mobility challenges, and models are used to generate the forecast. This paper uses a random process to present a novel traffic modelling framework for aggregate traffic on urban roads. The main idea is that road traffic flow is random, even for the recurrent flow, such as rush hour traffic, which is predisposed to congestion. Therefore, the structure of the aggregate traffic flow model for urban roads should correlate well with the essential variables of the observed random dynamics of the traffic flow phenomena. The novelty of this paper is the developed framework, based on the Poisson process, the kinematics of urban road traffic flow, and the intermediate modelling approach, which were combined to formulate the model. Empirical data from an urban road in Ghana was used to explore the model’s fidelity. The results show that the distribution from the model correlates well with that of the empirical traffic, providing a strong validation of the new framework and instilling confidence in its potential for significantly improved forecasts and, hence, a more hopeful outlook for real-world traffic management.展开更多
Kawasaki disease(KD)is a significant pediatric vasculitis known for its potential to cause severe coronary artery complications.Despite the effectiveness of initial treatments,such as intravenous immunoglobulin,KD pat...Kawasaki disease(KD)is a significant pediatric vasculitis known for its potential to cause severe coronary artery complications.Despite the effectiveness of initial treatments,such as intravenous immunoglobulin,KD patients can experience long-term cardiovascular issues,as evidenced by a recent case report of an adult who suffered a ST-segment elevation myocardial infarction due to previous KD in the World Journal of Clinical Cases.This editorial emphasizes the critical need for long-term management and regular surveillance to prevent such complications.By drawing on recent research and case studies,we advocate for a structured approach to follow-up care that includes routine cardiac evaluations and preventive measures.展开更多
Autonomous Underwater Vehicles(AUVs)are pivotal for deep-sea exploration and resource exploitation,yet their reliability in extreme underwater environments remains a critical barrier to widespread deployment.Through s...Autonomous Underwater Vehicles(AUVs)are pivotal for deep-sea exploration and resource exploitation,yet their reliability in extreme underwater environments remains a critical barrier to widespread deployment.Through systematic analysis of 150 peer-reviewed studies employing mixed-methods research,this review yields three principal advancements to the reliability analysis of AUVs.First,based on the hierarchical functional division of AUVs into six subsystems(propulsion system,navigation system,communication system,power system,environmental detection system,and emergency system),this study systematically identifies the primary failure modes and potential failure causes of each subsystem,providing theoretical support for fault diagnosis and reliability optimization.Subsequently,a comprehensive review of AUV reliability analysis methods is conducted from three perspectives:analytical methods,simulated methods,and surrogate model methods.The applicability and limitations of each method are critically analyzed to offer insights into their suitability for engineering applications.Finally,the study highlights key challenges and research hotpots in AUV reliability analysis,including reliability analysis under limited data,AI-driven reliability analysis,and human reliability analysis.Furthermore,the potential of multi-sensor data fusion,edge computing,and advanced materials in enhancing AUV environmental adaptability and reliability is explored.展开更多
Aqueous sodium-ion batteries(ASIBs) offer significant advantages for energy storage on a large scale,attributed to their economical cost,secure operatio n,and eco-friend ly natu re.Among the leading cathode materials ...Aqueous sodium-ion batteries(ASIBs) offer significant advantages for energy storage on a large scale,attributed to their economical cost,secure operatio n,and eco-friend ly natu re.Among the leading cathode materials for ASIBs,Na_(3)V_(2)(PO_(4))_(3)(NVP) exhibits excellent structural stability and a high Na+diffusion coefficient,making it a promising option.However,the high solubility of vanadium-based materials in aqueous electrolytes engenders suboptimal cycling stability for Na_(3)V_(2)(PO_(4))_(3),constraining its application in ASIBs.Herein,the Cr-substituted Na_(3)V_(1.3)Cr_(0.7)(PO_(4))3@C(NV_(1.3)Cr_(0.7)P) cathode material was synthesized via a simple sol-gel method.It is found that Cr substitution reduces the cell parameters of NV_(1.3)Cr_(0.7)P,effectively reinforcing the crystal structure.Furthermore,NV_(1.3)Cr_(0.7)P alters the Na^(+)insertion/extraction mechanism,transforming the typical two-phase reaction between Na_(1)V_(2)(PO_(4))_(3)and Na_(3)V_(2)(PO_(4))3into continuous solid-solution reactions with stable intermediates.The Cr substitution diminishes the sodium-ion diffusion energy barrier in NV_(1.3)Cr_(0.7)P,leading to smoother Na+insertion and extraction processes.Consequently,NV_(1.3)Cr_(0.7)P exhibits impressive cycling stability,retaining 74.8% of its capacity after 5,000 cycles at a current density of 5 A g^(-1),along with an outstanding rate performance of 79,2% at 10 A g^(-1).This work elucidates the stable Na^(+)insertion/extraction processes in Cr-substituted NV_(1.3)Cr_(0.7)P,offering insights into the application of vanadium-based materials in aqueous sodium-ion batteries.展开更多
Extensive spatiotemporal analyses of long-trend surface ozone in the Yangtze River Delta(YRD)region and itsmeteorology-related and emission-related have not been systematically analyzed.In this study,by using 8-year-l...Extensive spatiotemporal analyses of long-trend surface ozone in the Yangtze River Delta(YRD)region and itsmeteorology-related and emission-related have not been systematically analyzed.In this study,by using 8-year-long(2015–2022)surface ozone observation data,we attempted to reveal the variation ofmultiple timescale components using the Kolmogorov–Zurbenko filter,and the effects of meteorology and emissions were quantitatively isolated using multiple linear regression with meteorological variables.The results showed that the short-term,seasonal,and long-term components accounted for daily maximum 8-hr average O_(3)(O_(3–8)hr)concentration,46.4%,45.9%,and 1.0%,respectively.The meteorological impacts account for an average of 71.8%of O_(3–8)hr,and the YRD’s eastern and northern sections aremeteorology-sensitive areas.Based on statistical analysis technology with empirical orthogonal function,the contribution of meteorology,local emission,and transport in the long-term component of O_(3–8)hr were 0.21%,0.12%,and 0.6%,respectively.The spatiotemporal analysis indicated that a distinct decreasing spatial pattern could be observed from coastal cities towards the northwest,influenced by the monsoon and synoptic conditions.The central urban agglomeration north and south of the YRD was particularly susceptible to local pollution.Among the cities studied,Shanghai,Anqing,and Xuancheng,located at similar latitudes,were significantly impacted by atmospheric transmission—the contribution of Shanghai,the maximum accounting for 3.6%.展开更多
Objective: To analyze the clinical manifestations of intraocular lens (IOL) opacity after cataract surgery through case reports, and to explore its pathogenesis and diagnosis and treatment ideas, so as to provide a ba...Objective: To analyze the clinical manifestations of intraocular lens (IOL) opacity after cataract surgery through case reports, and to explore its pathogenesis and diagnosis and treatment ideas, so as to provide a basis for the early diagnosis and correct treatment of IOL opacity. Methods: The clinical data of one patient diagnosed with IOL opacity and underwent intraocular lens replacement in the Department of Ophthalmology, Affiliated Hospital of Youjiang Medical College for Nationalities in December 2023 were reported. The characteristics of IOL opacity were observed, and the research progress and pathogenesis of IOL opacity were understood by consulting the literature. Results: This patient is the first case of IOL opacity in our hospital. The specific reason is unclear. It is considered to be related to the IOL material. Conclusion: Hydrophilic acrylic IOL is widely used in clinic because of its good histocompatibility. However, due to its hydrophilicity, there are more cases of IOL opacity than other types of IOL. At present, there is no unified conclusion on the etiology and mechanism of IOL opacity. IOL opacity can seriously affect vision and is easily misdiagnosed as a posterior cataract. We should fully disperse the large pupil and carefully observe under the slit lamp. The most effective treatment for this disease is IOL replacement.展开更多
Slow-release phosphate materials were prepared by activating insoluble phosphate with organic acid to stabilize high concentrations of Cd and Zn in contaminated smelter soil.The results showed that oxalic acid(0.1 mol...Slow-release phosphate materials were prepared by activating insoluble phosphate with organic acid to stabilize high concentrations of Cd and Zn in contaminated smelter soil.The results showed that oxalic acid(0.1 mol/L)activated tricalcium phosphate(TO-0.1)provided the most efficient stabilization of Cd and Zn.After 30 d treatment,leaching concentrations of Cd and Zn in soil were decreased from 3.17 and 16.60 mg/L to 0.078 and 0.32 mg/L,respectively.The acid-soluble fractions of Cd and Zn were transformed into reducible,oxidizable,and residual fractions.Notably,As mobility in TO-0.1 treated soils did not increase.In addition,acid rain leaching and 150 d of natural aging revealed that the slow-release phosphate material provided long-term stability for the stabilization of Cd and Zn.This study verifies the potential application of slow-release phosphate materials for the remediation of heavy metal contaminated soil at smelting sites.展开更多
BACKGROUND During the gradual decline of physical and social functioning associated with end-stage renal disease,patients might experience a premonition of impending death,resulting in a series of pre-mourning grief r...BACKGROUND During the gradual decline of physical and social functioning associated with end-stage renal disease,patients might experience a premonition of impending death,resulting in a series of pre-mourning grief responses called preparatory grief.The preparatory grief in advanced cancer patients(PGAC)scale is the most widely used preparatory grief scale for patients on hemodialysis in China.AIM To verify the reliability and validity of the PGAC scale in patients on hemodialysis.METHODS In total,327 patients undergoing regular hemodialysis in the blood purification center of three grade-A tertiary hospitals in Guangdong and Guizhou provinces were selected by convenience sampling.The assessment was administered using the general information questionnaire and the Chinese version of PGAC.SPSS 25.0 and Amos 24.0 were used for item analysis,confirmatory factor analysis(CFA),convergent validity,and internal consistency reliability estimation.RESULTS In the modified Chinese version of PGAC,7 dimensions covering 27 total items were retained.CFA revealed a good fit of the factor model(chi-square degree of freedom=2.056,standardized root mean square residual=0.0479,root mean square error of approximation=0.0570,GFI=0.872,AGFI=0.841,IFI=0.931,CFI=0.930,TLI=0.919).The factor loadings of the items ranged 0.503-0.884.The composite reliability ranged 0.664-0.914,and the average variance extracted ranged 0.366-0.747.Cronbach’sαof the scale was 0.945,and Cronbach’sαfor various dimensions ranged 0.662-0.914.CONCLUSION The modified PGAC has good reliability and validity,and it can effectively measure preparatory grief in patients on hemodialysis.展开更多
基金Supported by the National Natural Science Foundation of China (Grant Nos.52088102 and 51879287)National Key Research and Development Program of China (Grant No.2022YFB2602301)。
文摘Long-term responses of floating structures pose a great concern in their design phase. Existing approaches for addressing long-term extreme responses are extremely cumbersome for adoption. This work aims to develop an approach for the long-term extreme-response analysis of floating structures. A modified gradient-based retrieval algorithm in conjunction with the inverse first-order reliability method(IFORM) is proposed to enable the use of convolution models in long-term extreme analysis of structures with an analytical formula of response amplitude operator(RAO). The proposed algorithm ensures convergence stability and iteration accuracy and exhibits a higher computational efficiency than the traditional backtracking method. However, when the RAO of general offshore structures cannot be analytically expressed, the convolutional integration method fails to function properly. A numerical discretization approach is further proposed for offshore structures in the case when the analytical expression of the RAO is not feasible. Through iterative discretization of environmental contours(ECs) and RAOs, a detailed procedure is proposed to calculate the long-term response extremes of offshore structures. The validity and accuracy of the proposed approach are tested using a floating offshore wind turbine as a numerical example. The long-term extreme heave responses of various return periods are calculated via the IFORM in conjunction with a numerical discretization approach. The environmental data corresponding to N-year structural responses are located inside the ECs, which indicates that the selection of design points directly along the ECs yields conservative design results.
基金supported by Istanbul Technical University(Project No.45698)supported through the“Young Researchers’Career Development Project-training of doctoral students”of the Croatian Science Foundation.
文摘This paper investigates the reliability of internal marine combustion engines using an integrated approach that combines Fault Tree Analysis(FTA)and Bayesian Networks(BN).FTA provides a structured,top-down method for identifying critical failure modes and their root causes,while BN introduces flexibility in probabilistic reasoning,enabling dynamic updates based on new evidence.This dual methodology overcomes the limitations of static FTA models,offering a comprehensive framework for system reliability analysis.Critical failures,including External Leakage(ELU),Failure to Start(FTS),and Overheating(OHE),were identified as key risks.By incorporating redundancy into high-risk components such as pumps and batteries,the likelihood of these failures was significantly reduced.For instance,redundant pumps reduced the probability of ELU by 31.88%,while additional batteries decreased the occurrence of FTS by 36.45%.The results underscore the practical benefits of combining FTA and BN for enhancing system reliability,particularly in maritime applications where operational safety and efficiency are critical.This research provides valuable insights for maintenance planning and highlights the importance of redundancy in critical systems,especially as the industry transitions toward more autonomous vessels.
基金Funded by the National Natural Science Foundation of China(No.52178216)the Research on the Durability and Application of High-performance Concrete for Highway Engineering in the Cold and Arid Salt Areas of Northwest China(No.2022-24)the Construction Project of the Scientific Research Platform of Provincial Enterprises Supported by the Capital Operating Budget of Gansu Province(No.2023GZ018)。
文摘To study the durability of concrete in harsh environments in Northwest China,concrete was prepared with various durability-improving materials such as concrete anti-erosion inhibitor(SBT-TIA),acrylate polymer(AP),super absorbent resin(SAP).The erosion mode and internal deterioration mechanism under salt freeze-thaw cycle and dry-wet cycle were explored.The results show that the addition of enhancing materials can effectively improve the resistance of concrete to salt freezing and sulfate erosion:the relevant indexes of concrete added with X-AP and T-AP are improved after salt freeze-thaw cycles;concrete added with SBTTIA shows optimal sulfate corrosion resistance;and concrete added with AP displays the best resistance to salt freezing.Microanalysis shows that the increase in the number of cycles decreases the generation of internal hydration products and defects in concrete mixed with enhancing materials and improves the related indexes.Based on the Wiener model analysis,the reliability of concrete with different lithologies and enhancing materials is improved,which may provide a reference for the application of manufactured sand concrete and enhancing materials in Northwest China,especially for the study of the improvement effects and mechanism of enhancing materials on the performance of concrete.
文摘AIM:To investigate the long-term outcomes in acute primary angle closure(APAC)patients treated with lens extraction(LE)surgery and to identify risk factors for glaucomatous optic neuropathy(GON).METHODS:In this longitudinal observational study,detailed medical histories of APAC patients and comprehensive ophthalmic examinations at final followup were collected.Logistic regression analysis was performed to identify predictors of blindness.Univariate and multivariate linear regression analyses were conducted to determine risk factors associated with visual outcomes.RESULTS:This study included 39 affected eyes of 31 subjects(26 females)with an average age of 74.1±8.0y.At 6.7±4.2y after APAC attack,2(5.7%)eyes had bestcorrected visual acuity(VA)worse than 3/60.Advanced glaucomatous visual field loss was observed in 15(39.5%)affected eyes and 5(25.0%)fellow eyes.Nine affected eyes(23.7%)had GON,and 11(28.9%)were blind.Six(15.4%)affected eyes and 2(9.1%)fellow eyes had suspicious progression.A significantly higher blindness rate in factory workers compared to office workers.Logistic regression identified that worse VA at attack(OR 10.568,95%CI 1.288-86.695;P=0.028)and worse early postoperative VA(OR 13.214,95%CI 1.157-150.881;P=0.038)were risk factors for blindness.Multivariate regression showed that longer duration of elevated intraocular pressure(P=0.004)and worse early postoperative VA(P=0.009)were associated with worse visual outcomes.CONCLUSION:Despite LE surgery,some APAC patients experience continued visual function deterioration.Lifelong monitoring is necessary.Target pressure and progression rates should be re-evaluated during follow-up.
基金supported by Natural Science and Engineering Research Council (NSERC) of Canada
文摘Reliability-based design optimization (RBDO) is intrinsically a double-loop procedure since it involves an overall optimization and an iterative reliability assessment at each search point. Due to the double-loop procedure, the computational expense of RBDO is normally very high. Current RBDO research focuses on problems with explicitly expressed performance functions and readily available gradients. This paper addresses a more challenging type of RBDO problem in which the performance functions are computation intensive. These computation intensive functions are often considered as a "black-box" and their gradients are not available or not reliable. On the basis of the reliable design space (RDS) concept proposed earlier by the authors, this paper proposes a Reliable Space Pursuing (RSP) approach, in which RDS is first identified and then gradually refined while optimization is performed. It fundamentally avoids the nested optimization and probabilistic assessment loop. Three well known RBDO problems from the literature are used for testing and demonstrating the effectiveness of the proposed RSP method.
文摘Callovo-Oxfordian(COx)claystone has been considered as a potential host rock for geological radioactive waste disposal in France(Cigéo project).During the exploitation phase(100 years),the stability of drifts(e.g.galleries/alveoli)within the disposal is assured by the liner,which includes two layers:concrete arch segment and compressible material.The latter exhibits a significant deformation capacity(about 50%)under low stress(<3 MPa).Although the response of these underground structures can be governed by complex thermo-hydro-mechanical coupling,the creep behavior of COx claystone has been considered as the main factor controlling the increase of stress state in the concrete liner and hence the long-term stability of drifts.Therefore,by focusing only on the purely mechanical behavior,this study aims at investigating the uncertainty effect of the COx claystone time-dependent properties on the stability of an alveolus of Cigéo during the exploitation period.To describe the creep behavior of COx claystone,we use Lemaitre’s viscoplastic model with three parameters whose uncertainties are identified from laboratory creep tests.For the reliability analysis,an extension of a well-known Kriging metamodeling technique is proposed to assess the exceedance probability of acceptable stress in the concrete liner of the alveolus.The open-source code Code_Aster is chosen for the direct numerical evaluations of the performance function.The Kriging-based reliability analysis elucidates the effect of the uncertainty of COx claystone on the long-term stability of the concrete liner.Moreover,the role of the compressible material layer between the concrete liner and the host rock is also highlighted.
文摘AIM: To assess the inter-observer agreement and reliability as well as intra-observer repeatability for lacrimal scintigraphy(LS) reports with and without considering the irrigation test results.METHODS: A prospective, observational, cross sectional study. Two masked clinicians(lacrimal surgeon and nuclear medicine specialist) independently reported 100 LS images(50 patients of >6 years of age with unilateral anophthalmic socket) in a university hospital. The lacrimal surgeon performed a diagnostic irrigation test and repeated the report of the same LS images 2 y after the first report(intra-observer agreement). A weighted Kappa analysis was performed to determine inter-observer agreement and reliability as well as intra-observer repeatability for the type(normal, partial and complete obstruction) and location(presac, preduct, and intraduct) of the obstruction. Subgroup analysis was also performed with consideration of irrigation test results. RESULTS: A significantly moderate agreement was found between lacrimal surgeon and nuclear medicine specialist for both the type(Kappa=0.55) and location(Kappa=0.48) of obstruction. Agreement values were higher for the type(Kappa=0.61 vs 0.41) and location(Kappa=0.56 vs 0.31) of obstruction in cases with normal than abnormal irrigation test. Strong and significant intraobserver(lacrimal surgeon) repeatability was found for both the type(Kappa=0.66) and location(Kappa=0.69) of obstruction. LS showed no to slight reliability based on irrigation test.CONCLUSION: A moderate agreement is found between lacrimal surgeon and nuclear medicine specialist regarding the interpretation of LS suggesting the importance ofconsensus groups among nuclear medicine specialists and lacrimal surgeons to create a common language for interpretation of LS. Intra-observer repeatability is strong for the lacrimal surgeon.
基金supported by the Postdoctoral Fellowship Program of CPSF(No.GZB20230607)the Fundamental Research Funds for the Central Universities(No.2682024CX125)+3 种基金the National Key R&D Program of China(No.2023YFC3007201)the National Natural Science Foundation of China(No.42377161)the Natural Science Foundation of Hubei Province(No.2023AFB580)the Guizhou Provincial Science and Technology Project(No.QKHZC[2023]YB127)。
文摘The reservoir operation awakens numerous landslides with multiple sliding surfaces known as reservoir landslides,and the systematic stability analysis for such landslides is becoming increasingly urgent.Taking the Majiagou landslide as an example,this paper analyses the comprehensive performance of the landslide from a probabilistic point of view.Under a reservoir operation cycle,a series of numerical analyses are carried out to simulate the migration of the seepage field,then the dynamic stability of the landslide is quantified accordingly.Subsequently,the wetting-drying cycles test is used to model the weakening of strength parameters in hydro-fluctuation belt under the long-term reservoir operation.Considering the weakening effect of long-term reservoir operation on the hydrofluctuation belt,the system reliability is evaluated using the Ditlevsen's bounds.The results suggest that the reservoir operation can affect the stability of the landslide by changing the seepage field.The system failure probability gradually rises as the number of wetting-drying cycles increases.Compared with conventional probabilistic analysis that calculates the failure probability of each sliding surface mechanically,analyzing the landslide in terms of system reliability can effectively narrow the failure probability range,which provides an insightful idea for evaluating the systematic stability of analogous reservoir landslides.
基金supported by the National Natural Science Foundation of China(Nos.52003148 and 52261045)the State Key Laboratory of Marine Resource Utilization in South China Sea,Hainan University(No.MRUKF2021023)+3 种基金the Key Research and Development Project of Shaanxi Province(No.2023-YBGY-475)the Key Scientific Research Project of Education Department of Shaanxi Province(No.22JS003)the Industrialization Project of the State Key Laboratory of Biological Resources and Ecological Environment(Cultivation)of Qinba Region(No.SXC-2310)the key cultivation project funds of Shaanxi University of Technology(No.SLGKYXM2201).
文摘Polyurethane-fluorinated polysiloxane(PU-^(F)PDMS)with high-strength,high-bonding and low surface en-ergy is synthesized as the matrix,and the PU-^(F)PDMS/MCs/Ag marine anti-fouling coating on the sur-face of imitation crab shells is constructed by assembling butenolide@1,1-stilbene-modified hydrolyzed polyglycidyl methacrylate/graphene oxide microcapsules(Bu@PGMAm/GO MCs)with compact multi-shell structure and Ag nanoparticles(AgNPs)step by step on the PU-^(F)PDMS matrix.The PU-^(F)PDMS/MCs/Ag bionic anti-fouling coatings achieve long-term and stable anti-fouling effect under the combination of robust low-surface-energy PU-^(F)PDMS matrix,steady-state sustained release of butenolide encapsulated by the compact multi-shell,bionic surface formed by the microcapsules and AgNPs,and the release of Ag^(+).The shear strength,tensile strength,and elongation at break of the PU-^(F)PDMS/MCs/Ag are 3.53 MPa,6.7 MPa,and 192.83%,respectively.Its static contact angle and sliding angle are 161.8°and 3.6°,respectively.The antibacterial rate of PU-^(F)PDMS/MCs/Ag against Escherichia coli,Staphylococcus aureus,and Candida albicans can reach 100%.Compared with glass blank,PU,PU-^(F)PDMS,PU-^(F)PDMS/Ag,and PU-^(F)PDMS/MCs,both the adhesion number and coverage percentage of chlorella adhere to PU-^(F)PDMS/MCs/Ag are the minimum values,which are 600 cell mm^(-2) and 1.53%,respectively.After 6 months of marine field test,the primer blank,PU,PU-^(F)PDMS all show different degrees of attachment by shellfish,spirorbis,al-gae and other biofouling,while the PU-^(F)PDMS/MCs/Ag coating is still not covered with biofouling,while the PU-^(F)PDMS/MCs/Ag coatings still exhibit little attachment of marine fouling.The PU-^(F)PDMS/MCs/Ag bionic anti-fouling coatings are expected to be widely used in the fields of anti-fouling,anti-icing,anti-fogging,drag reduction,self-cleaning,and antibacterial.
基金the National Natural Science Foundation of China(Nos.U2106226,52105297)the Foundation for Innovative Research Groups of the National Natural Science Foundation of China(No.52021003)the Science and Technology Development Project of Jilin Province(Nos.20210203022SF,20210508029RQ).
文摘Superhydrophobic surface is a promising strategy for antibacterial and corrosion protection.However,the use of harmful fluorine-containing materials,poor mechano-chemical stability,the addition of fungicides and poor corrosion resistance often limit its practical application.In this paper,a high-robustness pho-tothermal self-healing superhydrophobic coating is prepared by simply spraying a mixture of hydropho-bically modified epoxy resin and two kinds of modified nanofillers(carbon nanotubes and SiO2)for long-term anticorrosion and antibacterial applications.Multi-scale network and lubrication structures formed by cross-linking of modified carbon nanotubes and repeatable roughness endow coating with high ro-bustness,so that the coating maintains superhydrophobicity even after 100 Taber abrasion cycles,20 m sandpaper abrasion and 100 tape peeling cycles.The synergistic effect of antibacterial adhesion and pho-tothermal bactericidal activity endows coating with excellent antibacterial efficiency,which against Es-cherichia coli(E.coli)and Staphylococcus aureus(S.aureus)separately reaches 99.6% and 99.8%.Moreover,the influence of modified epoxy resin,superhydrophobicity,organic coating and coating thicknesses on the anticorrosion of magnesium(Mg)alloy is systematically studied and analyzed.More importantly,the prepared coating still exhibits excellent self-cleaning,anticorrosion and antibacterial abilities after 20 m abrasion.Furthermore,the coating exhibits excellent adhesion(level 4B),chemical stability,UV radiation resistance,high-low temperature alternation resistance,stable heat production capacity and photother-mal self-healing ability.All these excellent performances can promote its application in a wider range of fields.
基金supported by grants from the Medical Engineering Jiont Fund of the Fudan University(No.IDH2310117)。
文摘Objective:Triple-negative breast cancer(TNBC)is a highly aggressive subtype that lacks targeted therapies,leading to a poorer prognosis.However,some patients achieve long-term recurrence-free survival(RFS),offering valuable insights into tumor biology and potential treatment strategies.Methods:We conducted a comprehensive multi-omics analysis of 132 patients with American Joint Committee on Cancer(AJCC)stage III TNBC,comprising 36 long-term survivors(RFS≥8 years),62 moderate-term survivors(RFS:3-8 years),and 34 short-term survivors(RFS<3 years).Analyses investigated clinicopathological factors,whole-exome sequencing,germline mutations,copy number alterations(CNAs),RNA sequences,and metabolomic profiles.Results:Long-term survivors exhibited fewer metastatic regional lymph nodes,along with tumors showing reduced stromal fibrosis and lower Ki67 index.Molecularly,these tumors exhibited multiple alterations in genes related to homologous recombination repair,with higher frequencies of germline mutations and somatic CNAs.Additionally,tumors from long-term survivors demonstrated significant downregulation of the RTK-RAS signaling pathway.Metabolomic profiling revealed decreased levels of lipids and carbohydrate,particularly those involved in glycerophospholipid,fructose,and mannose metabolism,in long-term survival group.Multivariate Cox analysis identified fibrosis[hazard ratio(HR):12.70,95%confidence interval(95%CI):2.19-73.54,P=0.005]and RAC1copy number loss/deletion(HR:0.22,95%CI:0.06-0.83,P=0.026)as independent predictors of RFS.Higher fructose/mannose metabolism was associated with worse overall survival(HR:1.30,95%CI:1.01-1.68,P=0.045).Our findings emphasize the association between biological determinants and prolonged survival in patients with TNBC.Conclusions:Our study systematically identified the key molecular and metabolic features associated with prolonged survival in AJCC stage III TNBC,suggesting potential therapeutic targets to improve patient outcomes.
文摘Road traffic flow forecasting provides critical information for the operational management of road mobility challenges, and models are used to generate the forecast. This paper uses a random process to present a novel traffic modelling framework for aggregate traffic on urban roads. The main idea is that road traffic flow is random, even for the recurrent flow, such as rush hour traffic, which is predisposed to congestion. Therefore, the structure of the aggregate traffic flow model for urban roads should correlate well with the essential variables of the observed random dynamics of the traffic flow phenomena. The novelty of this paper is the developed framework, based on the Poisson process, the kinematics of urban road traffic flow, and the intermediate modelling approach, which were combined to formulate the model. Empirical data from an urban road in Ghana was used to explore the model’s fidelity. The results show that the distribution from the model correlates well with that of the empirical traffic, providing a strong validation of the new framework and instilling confidence in its potential for significantly improved forecasts and, hence, a more hopeful outlook for real-world traffic management.
文摘Kawasaki disease(KD)is a significant pediatric vasculitis known for its potential to cause severe coronary artery complications.Despite the effectiveness of initial treatments,such as intravenous immunoglobulin,KD patients can experience long-term cardiovascular issues,as evidenced by a recent case report of an adult who suffered a ST-segment elevation myocardial infarction due to previous KD in the World Journal of Clinical Cases.This editorial emphasizes the critical need for long-term management and regular surveillance to prevent such complications.By drawing on recent research and case studies,we advocate for a structured approach to follow-up care that includes routine cardiac evaluations and preventive measures.
基金The National Key R&D Program Projects(Grant No.2022YFC2803601)the Natural Science Foundation of Shandong Province(Grant No.ZR2021YQ29)+1 种基金the Natural Science Foundation of Heilongjiang Province(Grant No.YQ2024E036)the Taishan Scholars Project(Grant No.tsqn202312317).
文摘Autonomous Underwater Vehicles(AUVs)are pivotal for deep-sea exploration and resource exploitation,yet their reliability in extreme underwater environments remains a critical barrier to widespread deployment.Through systematic analysis of 150 peer-reviewed studies employing mixed-methods research,this review yields three principal advancements to the reliability analysis of AUVs.First,based on the hierarchical functional division of AUVs into six subsystems(propulsion system,navigation system,communication system,power system,environmental detection system,and emergency system),this study systematically identifies the primary failure modes and potential failure causes of each subsystem,providing theoretical support for fault diagnosis and reliability optimization.Subsequently,a comprehensive review of AUV reliability analysis methods is conducted from three perspectives:analytical methods,simulated methods,and surrogate model methods.The applicability and limitations of each method are critically analyzed to offer insights into their suitability for engineering applications.Finally,the study highlights key challenges and research hotpots in AUV reliability analysis,including reliability analysis under limited data,AI-driven reliability analysis,and human reliability analysis.Furthermore,the potential of multi-sensor data fusion,edge computing,and advanced materials in enhancing AUV environmental adaptability and reliability is explored.
基金financially supported by the Scientific and Technological Plan Project of Guizhou Province ([2024]054)Additional support came from the Industry and Education Combination Innovation Platform of Intelligent Manufacturing and Graduate Joint Training Base at Guizhou University (2020-520000-83-01324061)the Guizhou Engineering Research Center for Smart Services (2203-520102-04-04-298868)。
文摘Aqueous sodium-ion batteries(ASIBs) offer significant advantages for energy storage on a large scale,attributed to their economical cost,secure operatio n,and eco-friend ly natu re.Among the leading cathode materials for ASIBs,Na_(3)V_(2)(PO_(4))_(3)(NVP) exhibits excellent structural stability and a high Na+diffusion coefficient,making it a promising option.However,the high solubility of vanadium-based materials in aqueous electrolytes engenders suboptimal cycling stability for Na_(3)V_(2)(PO_(4))_(3),constraining its application in ASIBs.Herein,the Cr-substituted Na_(3)V_(1.3)Cr_(0.7)(PO_(4))3@C(NV_(1.3)Cr_(0.7)P) cathode material was synthesized via a simple sol-gel method.It is found that Cr substitution reduces the cell parameters of NV_(1.3)Cr_(0.7)P,effectively reinforcing the crystal structure.Furthermore,NV_(1.3)Cr_(0.7)P alters the Na^(+)insertion/extraction mechanism,transforming the typical two-phase reaction between Na_(1)V_(2)(PO_(4))_(3)and Na_(3)V_(2)(PO_(4))3into continuous solid-solution reactions with stable intermediates.The Cr substitution diminishes the sodium-ion diffusion energy barrier in NV_(1.3)Cr_(0.7)P,leading to smoother Na+insertion and extraction processes.Consequently,NV_(1.3)Cr_(0.7)P exhibits impressive cycling stability,retaining 74.8% of its capacity after 5,000 cycles at a current density of 5 A g^(-1),along with an outstanding rate performance of 79,2% at 10 A g^(-1).This work elucidates the stable Na^(+)insertion/extraction processes in Cr-substituted NV_(1.3)Cr_(0.7)P,offering insights into the application of vanadium-based materials in aqueous sodium-ion batteries.
基金supported by the National Natural Science Foundation of China(No.42075177)the National Key Research and Development Program of China(No.2017YFC0210003).
文摘Extensive spatiotemporal analyses of long-trend surface ozone in the Yangtze River Delta(YRD)region and itsmeteorology-related and emission-related have not been systematically analyzed.In this study,by using 8-year-long(2015–2022)surface ozone observation data,we attempted to reveal the variation ofmultiple timescale components using the Kolmogorov–Zurbenko filter,and the effects of meteorology and emissions were quantitatively isolated using multiple linear regression with meteorological variables.The results showed that the short-term,seasonal,and long-term components accounted for daily maximum 8-hr average O_(3)(O_(3–8)hr)concentration,46.4%,45.9%,and 1.0%,respectively.The meteorological impacts account for an average of 71.8%of O_(3–8)hr,and the YRD’s eastern and northern sections aremeteorology-sensitive areas.Based on statistical analysis technology with empirical orthogonal function,the contribution of meteorology,local emission,and transport in the long-term component of O_(3–8)hr were 0.21%,0.12%,and 0.6%,respectively.The spatiotemporal analysis indicated that a distinct decreasing spatial pattern could be observed from coastal cities towards the northwest,influenced by the monsoon and synoptic conditions.The central urban agglomeration north and south of the YRD was particularly susceptible to local pollution.Among the cities studied,Shanghai,Anqing,and Xuancheng,located at similar latitudes,were significantly impacted by atmospheric transmission—the contribution of Shanghai,the maximum accounting for 3.6%.
文摘Objective: To analyze the clinical manifestations of intraocular lens (IOL) opacity after cataract surgery through case reports, and to explore its pathogenesis and diagnosis and treatment ideas, so as to provide a basis for the early diagnosis and correct treatment of IOL opacity. Methods: The clinical data of one patient diagnosed with IOL opacity and underwent intraocular lens replacement in the Department of Ophthalmology, Affiliated Hospital of Youjiang Medical College for Nationalities in December 2023 were reported. The characteristics of IOL opacity were observed, and the research progress and pathogenesis of IOL opacity were understood by consulting the literature. Results: This patient is the first case of IOL opacity in our hospital. The specific reason is unclear. It is considered to be related to the IOL material. Conclusion: Hydrophilic acrylic IOL is widely used in clinic because of its good histocompatibility. However, due to its hydrophilicity, there are more cases of IOL opacity than other types of IOL. At present, there is no unified conclusion on the etiology and mechanism of IOL opacity. IOL opacity can seriously affect vision and is easily misdiagnosed as a posterior cataract. We should fully disperse the large pupil and carefully observe under the slit lamp. The most effective treatment for this disease is IOL replacement.
基金supported by the Natural Science Foundation of Hunan Province,China(No.2024JJ1012)the Postgraduate Innovative Project of Central South University,China(No.2023ZZTS0459)the National Key Research and Development Program of China(No.2019YFC1803605)。
文摘Slow-release phosphate materials were prepared by activating insoluble phosphate with organic acid to stabilize high concentrations of Cd and Zn in contaminated smelter soil.The results showed that oxalic acid(0.1 mol/L)activated tricalcium phosphate(TO-0.1)provided the most efficient stabilization of Cd and Zn.After 30 d treatment,leaching concentrations of Cd and Zn in soil were decreased from 3.17 and 16.60 mg/L to 0.078 and 0.32 mg/L,respectively.The acid-soluble fractions of Cd and Zn were transformed into reducible,oxidizable,and residual fractions.Notably,As mobility in TO-0.1 treated soils did not increase.In addition,acid rain leaching and 150 d of natural aging revealed that the slow-release phosphate material provided long-term stability for the stabilization of Cd and Zn.This study verifies the potential application of slow-release phosphate materials for the remediation of heavy metal contaminated soil at smelting sites.
文摘BACKGROUND During the gradual decline of physical and social functioning associated with end-stage renal disease,patients might experience a premonition of impending death,resulting in a series of pre-mourning grief responses called preparatory grief.The preparatory grief in advanced cancer patients(PGAC)scale is the most widely used preparatory grief scale for patients on hemodialysis in China.AIM To verify the reliability and validity of the PGAC scale in patients on hemodialysis.METHODS In total,327 patients undergoing regular hemodialysis in the blood purification center of three grade-A tertiary hospitals in Guangdong and Guizhou provinces were selected by convenience sampling.The assessment was administered using the general information questionnaire and the Chinese version of PGAC.SPSS 25.0 and Amos 24.0 were used for item analysis,confirmatory factor analysis(CFA),convergent validity,and internal consistency reliability estimation.RESULTS In the modified Chinese version of PGAC,7 dimensions covering 27 total items were retained.CFA revealed a good fit of the factor model(chi-square degree of freedom=2.056,standardized root mean square residual=0.0479,root mean square error of approximation=0.0570,GFI=0.872,AGFI=0.841,IFI=0.931,CFI=0.930,TLI=0.919).The factor loadings of the items ranged 0.503-0.884.The composite reliability ranged 0.664-0.914,and the average variance extracted ranged 0.366-0.747.Cronbach’sαof the scale was 0.945,and Cronbach’sαfor various dimensions ranged 0.662-0.914.CONCLUSION The modified PGAC has good reliability and validity,and it can effectively measure preparatory grief in patients on hemodialysis.