期刊文献+
共找到829篇文章
< 1 2 42 >
每页显示 20 50 100
Improving long-tail classification via decoupling and regularisation
1
作者 Shuzheng Gao Chaozheng Wang +4 位作者 Cuiyun Gao Wenjian Luo Peiyi Han Qing Liao Guandong Xu 《CAAI Transactions on Intelligence Technology》 2025年第1期62-71,共10页
Real-world data always exhibit an imbalanced and long-tailed distribution,which leads to poor performance for neural network-based classification.Existing methods mainly tackle this problem by reweighting the loss fun... Real-world data always exhibit an imbalanced and long-tailed distribution,which leads to poor performance for neural network-based classification.Existing methods mainly tackle this problem by reweighting the loss function or rebalancing the classifier.However,one crucial aspect overlooked by previous research studies is the imbalanced feature space problem caused by the imbalanced angle distribution.In this paper,the authors shed light on the significance of the angle distribution in achieving a balanced feature space,which is essential for improving model performance under long-tailed distributions.Nevertheless,it is challenging to effectively balance both the classifier norms and angle distribution due to problems such as the low feature norm.To tackle these challenges,the authors first thoroughly analyse the classifier and feature space by decoupling the classification logits into three key components:classifier norm(i.e.the magnitude of the classifier vector),feature norm(i.e.the magnitude of the feature vector),and cosine similarity between the classifier vector and feature vector.In this way,the authors analyse the change of each component in the training process and reveal three critical problems that should be solved,that is,the imbalanced angle distribution,the lack of feature discrimination,and the low feature norm.Drawing from this analysis,the authors propose a novel loss function that incorporates hyperspherical uniformity,additive angular margin,and feature norm regularisation.Each component of the loss function addresses a specific problem and synergistically contributes to achieving a balanced classifier and feature space.The authors conduct extensive experiments on three popular benchmark datasets including CIFAR-10/100-LT,ImageNet-LT,and iNaturalist 2018.The experimental results demonstrate that the authors’loss function outperforms several previous state-of-the-art methods in addressing the challenges posed by imbalanced and longtailed datasets,that is,by improving upon the best-performing baselines on CIFAR-100-LT by 1.34,1.41,1.41 and 1.33,respectively. 展开更多
关键词 computer vision image classification long-tailed data machine learning
在线阅读 下载PDF
Diurnal brooding behavior of long-tailed tits (Aegithalos caudatus glaucogularis) 被引量:2
2
作者 Jin YU Peng-Cheng WANG +7 位作者 Lei LU Zheng-Wang ZHANG Yong WANG Ji-Liang XU Jian-Qiang LI Bo XI Jia-Gui ZHU Zhi-Yong DU 《Zoological Research》 CAS CSCD 2016年第2期84-89,共6页
Brooding is a major breeding investment of parental birds during the early nestling stage, and has important effects on the development and survival of nestlings. Investigating brooding behavior can help to understand... Brooding is a major breeding investment of parental birds during the early nestling stage, and has important effects on the development and survival of nestlings. Investigating brooding behavior can help to understand avian breeding investment strategies. From January to June in 2013 and 2014, we studied the brooding behaviors of long-tailed tits (Aegithalos caudatus glaucogularis) in Dongzhai National Nature Reserve, Henan Province, China. We analyzed the relationships between parental diurnal brooding duration and nestling age, brood size, temperature, relative breeding season, time of day and nestling frequencies during brooding duration. Results showed that female and male long-tailed tit parents had different breeding investment strategies during the early nestling stage. Female parents bore most of the brooding investment, while male parents performed most of the nestling feedings. In addition, helpers were not found to brood nestlings at the two cooperative breeding nests. Parental brooding duration was significantly associated with the food delivered to nestlings (F=86.10, dr=l, 193.94, P〈0.001), and was longer when the nestlings received more food. We found that parental brooding duration declined significantly as nestlings aged (F=5.99, dr=-1, 50.13, P=0.018). When nestlings were six days old, daytime parental brooding almost ceased, implying that long- tailed tit nestlings might be able to maintain their own body temperature by this age. In addition, brooding duration was affected by both brood size (F=12.74, dr=-1,32.08, P=0.001) and temperature (F=5.83, df=-l, 39.59, P=-0.021), with it being shorter in larger broods and when ambient temperature was higher. 展开更多
关键词 long-tailed tit Aegithalos caudatusglaucogularis BROODING DAYTIME Early nestling stage
在线阅读 下载PDF
Jinfengopteryx Compared to Archaeopteryx,with Comments on the Mosaic Evolution of Long-tailed Avialan Birds 被引量:1
3
作者 JI Shu'an JI Qiang 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2007年第3期337-343,共7页
Jinfengopteryx is a newly uncovered Archaeopteryx-like avialan bird outside Germany, which was found from the Jehol Biota of northern Hebei in northeastern China. It shares many characters only with Archaeopteryx by t... Jinfengopteryx is a newly uncovered Archaeopteryx-like avialan bird outside Germany, which was found from the Jehol Biota of northern Hebei in northeastern China. It shares many characters only with Archaeopteryx by the possession of three fenestrae in the antorbital cavity, 23 caudal vertebrae and long tail feathers attached to all the caudal vertebrae. But the former differs from the latter in the relatively short and high preorbital region of skull, more and closely packed teeth, much shorter forelimb compared to hindlimb. Such differences indicate Jinfengopteryx is even slightly more primitive than Archaeopteryx, although both birds can be placed at the root position of the avialan tree based on cladistic analysis. Shenzhouraptor is suggested to be slightly more advanced than Jinfengopteryx + Archaeopteryx, supported by some derived features in teeth, shoulder girdles and forelimbs such as the reduction of tooth number, dorsolaterally directed glenoid facet, very long forelimb and comparatively short manus. Meanwhile, the tail of Shenzhouraptor shows more primitive characters than those of Jinfengopteryx and Archaeopteryx, e.g., the strikingly longer tail composed of more caudal vertebrae and the long tail feathers attached only to distal caudal segments. The mixed primitive and advanced characters reveal the evident mosaic evolution among long-tailed avialan birds. 展开更多
关键词 Jinfengopteryx ARCHAEOPTERYX long-tailed avialans mosaic evolution MESOZOIC
在线阅读 下载PDF
Semi-supervised Long-tail Endoscopic Image Classification
4
作者 Runnan Cao Mengjie Fang +2 位作者 Hailing Li Jie Tian Di Dong 《Chinese Medical Sciences Journal》 CAS CSCD 2022年第3期171-180,I0002,共11页
Objective To explore the semi-supervised learning(SSL) algorithm for long-tail endoscopic image classification with limited annotations.Method We explored semi-supervised long-tail endoscopic image classification in H... Objective To explore the semi-supervised learning(SSL) algorithm for long-tail endoscopic image classification with limited annotations.Method We explored semi-supervised long-tail endoscopic image classification in HyperKvasir,the largest gastrointestinal public dataset with 23 diverse classes.Semi-supervised learning algorithm FixMatch was applied based on consistency regularization and pseudo-labeling.After splitting the training dataset and the test dataset at a ratio of 4:1,we sampled 20%,50%,and 100% labeled training data to test the classification with limited annotations.Results The classification performance was evaluated by micro-average and macro-average evaluation metrics,with the Mathews correlation coefficient(MCC) as the overall evaluation.SSL algorithm improved the classification performance,with MCC increasing from 0.8761 to 0.8850,from 0.8983 to 0.8994,and from 0.9075 to 0.9095 with 20%,50%,and 100% ratio of labeled training data,respectively.With a 20% ratio of labeled training data,SSL improved both the micro-average and macro-average classification performance;while for the ratio of 50% and 100%,SSL improved the micro-average performance but hurt macro-average performance.Through analyzing the confusion matrix and labeling bias in each class,we found that the pseudo-based SSL algorithm exacerbated the classifier’ s preference for the head class,resulting in improved performance in the head class and degenerated performance in the tail class.Conclusion SSL can improve the classification performance for semi-supervised long-tail endoscopic image classification,especially when the labeled data is extremely limited,which may benefit the building of assisted diagnosis systems for low-volume hospitals.However,the pseudo-labeling strategy may amplify the effect of class imbalance,which hurts the classification performance for the tail class. 展开更多
关键词 endoscopic image artificial intelligence semi-supervised learning long-tail distribution image classification
在线阅读 下载PDF
M^(2)LC-Net: A Multi-Modal Multi-Disease Long-Tailed Classification Network for Real Clinical Scenes
5
作者 Zhonghong Ou Wenjun Chai +9 位作者 Lifei Wang Ruru Zhang Jiawen He Meina Song Lifei Yuan Shengjuan Zhang Yanhui Wang Huan Li Xin Jia Rujian Huang 《China Communications》 SCIE CSCD 2021年第9期210-220,共11页
Leveraging deep learning-based techniques to classify diseases has attracted extensive research interest in recent years.Nevertheless,most of the current studies only consider single-modal medical images,and the numbe... Leveraging deep learning-based techniques to classify diseases has attracted extensive research interest in recent years.Nevertheless,most of the current studies only consider single-modal medical images,and the number of ophthalmic diseases that can be classified is relatively small.Moreover,imbalanced data distribution of different ophthalmic diseases is not taken into consideration,which limits the application of deep learning techniques in realistic clinical scenes.In this paper,we propose a Multimodal Multi-disease Long-tailed Classification Network(M^(2)LC-Net)in response to the challenges mentioned above.M^(2)LC-Net leverages ResNet18-CBAM to extract features from fundus images and Optical Coherence Tomography(OCT)images,respectively,and conduct feature fusion to classify 11 common ophthalmic diseases.Moreover,Class Activation Mapping(CAM)is employed to visualize each mode to improve interpretability of M^(2)LC-Net.We conduct comprehensive experiments on realistic dataset collected from a Grade III Level A ophthalmology hospital in China,including 34,396 images of 11 disease labels.Experimental results demonstrate effectiveness of our proposed model M^(2)LC-Net.Compared with the stateof-the-art,various performance metrics have been improved significantly.Specifically,Cohen’s kappa coefficient κ has been improved by 3.21%,which is a remarkable improvement. 展开更多
关键词 deep learning multi modal long-tail ophthalmic disease classification
在线阅读 下载PDF
Dual Channel with Involution for Long-Tailed Visual Recognition
6
作者 Mengxue Li 《Open Journal of Applied Sciences》 2022年第4期421-433,共13页
With the rapid increase of large-scale problems, the distribution of real-world datasets tends to be long-tailed. Existing solutions typically involve re-balancing strategies (i.e., re-sampling and re-weighting). Alth... With the rapid increase of large-scale problems, the distribution of real-world datasets tends to be long-tailed. Existing solutions typically involve re-balancing strategies (i.e., re-sampling and re-weighting). Although they can significantly promote the classifier learning of deep networks, they will unexpectedly impair the representative ability of the learned deep features to a certain extent. Therefore, this paper proposes a dual-channel learning algorithm with involution neural networks (DC-Invo) to take care of representation learning and classifier learning concurrently. In this work, the most important thing is to combine ResNet and involution to obtain higher classification accuracy because of involution’s wider coverage in the spatial dimension. The paper conducted extensive experiments on several benchmark vision tasks including Cifar-LT, Imagenet-LT, and Places-LT, showing that DC-Invo is able to achieve significant performance gained on long-tailed datasets. 展开更多
关键词 long-tailed Recognition Deep Neural Network Dual-Channel Structure INVOLUTION
在线阅读 下载PDF
Semi-Discrete Optimal Transpport for Long-Tailed Classification
7
作者 Lian-Bao Jin Na Lei +3 位作者 Zhong-Xuan Luo Jin Wu Chao Ai Xianfeng Gu 《Journal of Computer Science & Technology》 2025年第1期252-266,共15页
The long-tailed data distribution poses an enormous challenge for training neural networks in classification.A classification network can be decoupled into a feature extractor and a classifier.This paper takes a semi-... The long-tailed data distribution poses an enormous challenge for training neural networks in classification.A classification network can be decoupled into a feature extractor and a classifier.This paper takes a semi-discrete optimal transport(OT)perspective to analyze the long-tailed classification problem,where the feature space is viewed as a continuous source domain,and the classifier weights are viewed as a discrete target domain.The classifier is indeed to find a cell decomposition of the feature space with each cell corresponding to one class.An imbalanced training set causes the more frequent classes to have larger volume cells,which means that the classifier's decision boundary is biased towards less frequent classes,resulting in reduced classification performance in the inference phase.Therefore,we propose a novel OTdynamic softmax loss,which dynamically adjusts the decision boundary in the training phase to avoid overfitting in the tail classes.In addition,our method incorporates the supervised contrastive loss so that the feature space can satisfy the uniform distribution condition.Extensive and comprehensive experiments demonstrate that our method achieves state-ofthe-art performance on multiple long-tailed recognition benchmarks,including CIFAR-LT,ImageNet-LT,iNaturalist 2018,and Places-LT. 展开更多
关键词 semi-discrete optimal transport long-tailed classification decision boundary supervised contrastive loss
原文传递
Balanced Representation Learning for Long-tailed Skeleton-based Action Recognition
8
作者 Hongda Liu Yunlong Wang +4 位作者 Min Ren Junxing Hu Zhengquan Luo Guangqi Hou Zhenan Sun 《Machine Intelligence Research》 2025年第3期466-483,共18页
Skeleton-based action recognition has recently made significant progress.However,data imbalance is still a great challenge in real-world scenarios.The performance of current action recognition algorithms declines shar... Skeleton-based action recognition has recently made significant progress.However,data imbalance is still a great challenge in real-world scenarios.The performance of current action recognition algorithms declines sharply when training data suffers from heavy class imbalance.The imbalanced data actually degrades the representations learned by these methods and becomes the bottleneck for action recognition.How to learn unbiased representations from imbalanced action data is the key to long-tailed action recognition.In this paper,we propose a novel balanced representation learning method to address the long-tailed problem in action recognition.Firstly,a spatial-temporal action exploration strategy is presented to expand the sample space effectively,generating more valuable samples in a rebalanced manner.Secondly,we design a detached action-aware learning schedule to further mitigate the bias in the representation space.The schedule detaches the representation learning of tail classes from training and proposes an action-aware loss to impose more effective constraints.Additionally,a skip-type representation is proposed to provide complementary structural information.The proposed method is validated on four skeleton datasets,NTU RGB+D 60,NTU RGB+D 120,NW-UCLA and Kinetics.It not only achieves consistently large improvement compared to the state-of-the-art(SOTA)methods,but also demonstrates a superior generalization capacity through extensive experiments.Our code is available at https://github.com/firework8/BRL. 展开更多
关键词 Action recognition skeleton sequence long-tailed visual recognition imbalance learning.
原文传递
Long-tailed object detection of kitchen waste with class-instance balanced detector 被引量:3
9
作者 FANG LeYuan TANG Qi +4 位作者 OUYANG LiHan YU JunWu LIN JiaXing DING ShuaiYu TANG Lin 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2023年第8期2361-2372,共12页
Intelligent detection and classification of kitchen waste can promote ecological sustainability by replacing inefficient manual processes.However,the presence of non-degradable waste mixed in kitchen waste often follo... Intelligent detection and classification of kitchen waste can promote ecological sustainability by replacing inefficient manual processes.However,the presence of non-degradable waste mixed in kitchen waste often follows a long-tailed distribution,making it challenging to train convolutional neural network-based object detectors,which results in the unsatisfactory detection of tailclass waste.To address this challenge,we propose a class-instance balanced detector(CIB-Det) for intelligent detection and classification of kitchen waste.CIB-Det implements two strategies for the loss function:the class-balanced strategy(CBS)and the instance-balanced strategy(IBS).The CBS focuses more on tail classes,and the IBS concentrates on hard-to-classify instances adaptively during training.Consequently,CIB-Det comprehensively and adaptively addresses the long-tailed issue.Our experiments on a real dataset of kitchen waste images support the effectiveness of CIB-Det for kitchen waste detection. 展开更多
关键词 kitchen waste detection and classification object detection long-tailed distribution convolutional neural networks
原文传递
Federated learning on non-IID and long-tailed data viadual-decoupling 被引量:1
10
作者 Zhaohui WANG Hongjiao LI +2 位作者 Jinguo LI Renhao HU Baojin WANG 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2024年第5期728-741,共14页
Federated learning(FL),a cutting-edge distributed machine learning training paradigm,aims to generate a global model by collaborating on the training of client models without revealing local private data.The co-occurr... Federated learning(FL),a cutting-edge distributed machine learning training paradigm,aims to generate a global model by collaborating on the training of client models without revealing local private data.The co-occurrence of non-independent and identically distributed(non-IID)and long-tailed distribution in FL is one challenge that substantially degrades aggregate performance.In this paper,we present a corresponding solution called federated dual-decoupling via model and logit calibration(FedDDC)for non-IID and long-tailed distributions.The model is characterized by three aspects.First,we decouple the global model into the feature extractor and the classifier to fine-tune the components affected by the joint problem.For the biased feature extractor,we propose a client confidence re-weighting scheme to assist calibration,which assigns optimal weights to each client.For the biased classifier,we apply the classifier re-balancing method for fine-tuning.Then,we calibrate and integrate the client confidence re-weighted logits with the re-balanced logits to obtain the unbiased logits.Finally,we use decoupled knowledge distillation for the first time in the joint problem to enhance the accuracy of the global model by extracting the knowledge of the unbiased model.Numerous experiments demonstrate that on non-IID and long-tailed data in FL,our approach outperforms state-of-the-art methods. 展开更多
关键词 Federated learning Non-IID long-tailed data Decoupling learning Knowledge distillation
原文传递
Cross-modal learning using privileged information for long-tailed image classification
11
作者 Xiangxian Li Yuze Zheng +3 位作者 Haokai Ma Zhuang Qi Xiangxu Meng Lei Meng 《Computational Visual Media》 SCIE EI CSCD 2024年第5期981-992,共12页
The prevalence of long-tailed distributions in real-world data often results in classification models favoring the dominant classes,neglecting the less frequent ones.Current approaches address the issues in long-taile... The prevalence of long-tailed distributions in real-world data often results in classification models favoring the dominant classes,neglecting the less frequent ones.Current approaches address the issues in long-tailed image classification by rebalancing data,optimizing weights,and augmenting information.However,these methods often struggle to balance the performance between dominant and minority classes because of inadequate representation learning of the latter.To address these problems,we introduce descriptional words into images as cross-modal privileged information and propose a cross-modal enhanced method for long-tailed image classification,referred to as CMLTNet.CMLTNet improves the learning of intraclass similarity of tail-class representations by cross-modal alignment and captures the difference between the head and tail classes in semantic space by cross-modal inference.After fusing the above information,CMLTNet achieved an overall performance that was better than those of benchmark long-tailed and cross-modal learning methods on the long-tailed cross-modal datasets,NUS-WIDE and VireoFood-172.The effectiveness of the proposed modules was further studied through ablation experiments.In a case study of feature distribution,the proposed model was better in learning representations of tail classes,and in the experiments on model attention,CMLTNet has the potential to help learn some rare concepts in the tail class through mapping to the semantic space. 展开更多
关键词 long-tailed classification cross-modal learning representation learning privileged infor-mation
原文传递
面向长尾分布的民众诉求层次多标签分类模型 被引量:1
12
作者 刘昕 杨大伟 +3 位作者 邵长恒 王海文 庞铭江 李艳茹 《计算机应用》 北大核心 2025年第1期82-89,共8页
接诉即办是实现社会治理智能化、提高人民满意度的重要举措,其中精准分析民众诉求智能匹配工单处理部门,实现诉求的快速响应、高效办理尤为关键;然而,民众诉求数据中的诉求描述不清晰、类别混淆且比例失衡会导致诉求类别分析困难,影响... 接诉即办是实现社会治理智能化、提高人民满意度的重要举措,其中精准分析民众诉求智能匹配工单处理部门,实现诉求的快速响应、高效办理尤为关键;然而,民众诉求数据中的诉求描述不清晰、类别混淆且比例失衡会导致诉求类别分析困难,影响了智能派单的效率与准确性。针对上述问题,提出编解码器结构的诉求层次多标签分类模型(HMCHotline)。首先,在文本编码器中引入诉求领域中的细粒度关键词先验知识以抑制噪声干扰,并融合诉求的时空信息提高语义特征的判别力;其次,利用标签层次结构生成具有层次与语义感知的标签嵌入,并构建基于Transformer模型的标签解码器,利用诉求的语义特征和标签嵌入进行标签解码;同时,在标签的层级依赖关系基础上引入动态标签表策略限制标签的解码范围,以解决标签不一致问题;最后,采用Softmax分组策略将样本数量相近的标签类别分为同组进行Softmax操作,从而缓解由标签长尾分布导致的分类准确率低的问题。在Hotline、RCV1(Reuters Corpus VolumeⅠ)-v2和WOS(Web Of Science)数据集上的实验结果表明,相较于层次感知的标签语义匹配网络(HiMatch),所提模型的Micro-F1分别提高了1.65、2.06和0.43个百分点,验证了模型的有效性。 展开更多
关键词 接诉即办 智能派单 层次多标签分类 先验知识 长尾分布 编解码器
在线阅读 下载PDF
数字普惠金融促进农民持续增收的理论逻辑与实践进路 被引量:2
13
作者 吴本健 罗玲 《农村经济》 北大核心 2025年第3期60-69,共10页
助力农民持续增收,数字普惠金融大有可为。数字普惠金融通过提供信贷支持、农技培训和农业保险推动规模经营与农民创业,促进经营性收入增长;通过优化小微企业融资环境并培育新业态以扩大农民就业,促进工资性收入增长;通过完善理财服务... 助力农民持续增收,数字普惠金融大有可为。数字普惠金融通过提供信贷支持、农技培训和农业保险推动规模经营与农民创业,促进经营性收入增长;通过优化小微企业融资环境并培育新业态以扩大农民就业,促进工资性收入增长;通过完善理财服务并盘活农村资产,促进财产性收入增长;通过提升补贴发放效率并强化政策激励,促进转移性收入增长。长期来看,数字普惠金融发展通过提升农民内生能力和完善资产变现机制促进农民持续增收。实践层面,数字普惠金融政策制度完善、金融基础设施和软环境改善、金融机构改革和产品服务创新等,优化了金融供给环境,提升金融服务效能和农民金融素养,进而促进了农民持续增收。然而,数字普惠金融支持农民增收仍面临金融排斥、技术成本及数据风险等挑战,应通过完善数字基础设施、推动技术创新共享、加快区块链建设及融合应用等措施加以应对。 展开更多
关键词 数字普惠金融 农民增收 长尾效应
原文传递
数字贸易壁垒对中国跨境电商出口产品质量的影响——来自长尾市场需求的新解释 被引量:4
14
作者 马述忠 王晔辰 刘锴 《宏观质量研究》 2025年第3期1-15,共15页
跨境电商成为中国对外贸易高质量发展的新动能。在数字贸易保护主义抬头的背景下,研究全球贸易格局的新变化对中国跨境电商出口的影响具有重要现实意义。文章基于国内领先跨境电商物流企业2017年至2019年的运单数据,探讨了数字贸易壁垒... 跨境电商成为中国对外贸易高质量发展的新动能。在数字贸易保护主义抬头的背景下,研究全球贸易格局的新变化对中国跨境电商出口的影响具有重要现实意义。文章基于国内领先跨境电商物流企业2017年至2019年的运单数据,探讨了数字贸易壁垒对于中国跨境电商出口产品质量的影响。实证结果表明:(1)数字贸易壁垒对中国跨境电商出口产品质量具有显著的抑制作用,这一结论在进行更换测量指标、考虑遗漏变量偏差和更换回归样本等处理后依然成立。(2)机制分析表明,数字贸易壁垒阻碍了出口商对于消费者需求信息的获取,削弱了跨境电商捕捉长尾市场偏好的优势,显著提高了贸易成本,进而导致产品质量下降。(3)数字贸易壁垒的质量抑制作用在低技术行业、消费品和中间品等样本中更加显著。 展开更多
关键词 数字贸易壁垒 出口产品质量 跨境电商 长尾市场
在线阅读 下载PDF
基于回指与逻辑推理的文档级关系抽取模型
15
作者 胡婕 吴翠 +1 位作者 孙军 张龑 《计算机应用》 北大核心 2025年第5期1496-1503,共8页
在文档级关系抽取(DocRE)任务中,现有模型主要侧重于学习文档中实体间的交互,忽略了对实体内部结构的学习,并很少关注到文档中的代词指代识别问题以及对逻辑规则的应用,这导致模型对文档中实体间关系的建模不够准确。因此,基于Transfor... 在文档级关系抽取(DocRE)任务中,现有模型主要侧重于学习文档中实体间的交互,忽略了对实体内部结构的学习,并很少关注到文档中的代词指代识别问题以及对逻辑规则的应用,这导致模型对文档中实体间关系的建模不够准确。因此,基于Transformer的架构融合关系回指图,建模实体间交互和实体内部结构,从而利用回指将更多上下文信息聚合到相应实体上以提高关系抽取的准确性。此外,采用数据驱动方式从关系注释中挖掘逻辑规则,增强对文本隐含逻辑关系的理解和推理能力。针对样本不平衡问题,引入加权长尾损失函数提高对稀有关系的识别准确性。在2个公开数据集DocRED(Document-level Relation Extraction Dataset)和Re-DocRED(Revisiting Documentlevel Relation Extraction Dataset)上的实验结果表明,所提模型性能表现最优,在DocRED测试集上,基于BERT编码器的模型的IgnF1和F1值比基线模型ATLOP(Adaptive Thresholding and Localized cOniext Pooling)分别提高了1.79和2.09个百分点,可见所提模型的综合性能较高。 展开更多
关键词 文档级关系抽取 关系回指图 逻辑规则 样本不平衡 加权长尾损失函数
在线阅读 下载PDF
面向长尾异构数据的个性化联邦学习框架
16
作者 吴家皋 易婧 +1 位作者 周泽辉 刘林峰 《计算机科学》 北大核心 2025年第9期232-240,共9页
针对数据长尾分布和异构性引起的联邦学习模型性能下降的问题,提出了一种新的个性化联邦学习框架——平衡的个性化联邦学习(Balanced Personalized Federated Learning,BPFed),将整个联邦学习过程分为基于个性化联邦学习的表示学习和基... 针对数据长尾分布和异构性引起的联邦学习模型性能下降的问题,提出了一种新的个性化联邦学习框架——平衡的个性化联邦学习(Balanced Personalized Federated Learning,BPFed),将整个联邦学习过程分为基于个性化联邦学习的表示学习和基于全局特征增强的个性化分类器再训练两个阶段。在第一阶段,首先采用Mixup策略进行数据增强,然后提出基于参数解耦的个性化联邦学习特征提取器训练方法,在优化特征提取器性能的同时减少通信开销;在第二阶段,首先提出新的基于全局协方差矩阵的类级特征增强方法,然后提出基于样本权重的标签平滑损失函数对客户端分类器进行平衡的个性化再训练,以纠正头类置信过度并提高尾类的泛化能力。大量的实验结果表明,在不同的数据长尾分布和异构性设置下,BPFed模型的准确度相比其他代表性相关算法均有明显提升。此外,消融和超参数影响实验也进一步验证了所提方法和优化策略的有效性。 展开更多
关键词 个性化联邦学习 长尾分布 数据异构性 参数解耦 特征增强 优化策略
在线阅读 下载PDF
利用GRU双分支信息协同增强的长尾推荐模型
17
作者 钱忠胜 肖双龙 +2 位作者 朱辉 王晓闻 刘金平 《计算机科学与探索》 北大核心 2025年第2期476-489,共14页
长尾现象在序列推荐系统中长期存在,包括长尾用户和长尾项目两个方面。虽然现有许多研究缓解了序列推荐系统中的长尾问题,但大部分只是单方面地关注长尾用户或长尾项目。然而,长尾用户和长尾项目问题常常同时存在,只考虑其中一方会导致... 长尾现象在序列推荐系统中长期存在,包括长尾用户和长尾项目两个方面。虽然现有许多研究缓解了序列推荐系统中的长尾问题,但大部分只是单方面地关注长尾用户或长尾项目。然而,长尾用户和长尾项目问题常常同时存在,只考虑其中一方会导致另一方性能不佳,且未关注到长尾用户、长尾项目各自的信息匮乏问题。提出一种利用GRU双分支信息协同增强的长尾推荐模型(long-tail recommendation model utilizing gated recurrent unit dualbranch information collaboration enhancement,LT-GRU),从用户与项目两个方面共同缓解长尾问题,并通过协同增强的方式丰富长尾信息。该模型由长尾用户和长尾项目双分支组成,每个分支分别负责各自的信息处理,并相互训练以充实另一方的信息。同时,引入一种偏好机制,通过演算用户与项目的影响因子,以动态调整用户偏好与项目热度,进一步缓解长尾推荐中信息不足问题。在Amazon系列的6个真实数据集上与6种经典模型进行实验对比,相较于长尾推荐模型中最优的结果,所提模型LT-GRU在HR与NDCG两个指标上分别平均提高2.49%、3.80%。这表明,在不牺牲头部用户和热门项目推荐性能的情况下,有效地缓解了长尾用户和长尾项目问题。 展开更多
关键词 推荐系统 长尾推荐 信息协同增强 门控循环单元(GRU)
在线阅读 下载PDF
面向交通场景的强鲁棒性场景图生成网络
18
作者 周玮 闵卫东 《计算机工程》 北大核心 2025年第9期231-241,共11页
交通场景图是对交通场景进行结构化表示,在智能交通领域中发挥着重要作用。当前场景图生成方法通过预测实体对之间的关系以生成无偏场景图。然而,由于数据集的长尾分布与实体关系的模糊特征表示,因此现有方法生成的交通场景图无法为下... 交通场景图是对交通场景进行结构化表示,在智能交通领域中发挥着重要作用。当前场景图生成方法通过预测实体对之间的关系以生成无偏场景图。然而,由于数据集的长尾分布与实体关系的模糊特征表示,因此现有方法生成的交通场景图无法为下游任务提供准确且具有丰富含义的交通场景信息。为了解决上述问题,提出1个上下文语义嵌入(CSE)和粗细粒度混合(CFGB)的交通场景图生成网络CSE-CFGB。使用CSE模块建立实体与谓词的独特语义表示,使用CFGB网络对实体间关系谓词进行强鲁棒性预测,主干分支(MB)使用CSE表示对实体之间的关系进行直接预测,粗粒度分支(CB)使用重加权机制负责学习头部谓词的鲁棒特征,而细粒度分支(FB)使用Logit调整方法负责细化对尾部谓词的学习,再配备分支权重表,使2个辅助分支能很好地合作以帮助MB平衡头部和尾部谓词的预测结果。在Visual Genome数据集上的实验结果表明,所提的场景图生成网络在PredCls任务中取得了平均性能指标Mean@50和Mean@100分别为49.5%和51.7%,能有效解决模型训练中实体关系表示模糊和数据集长尾分布的问题。 展开更多
关键词 场景图生成 长尾分布 特征表示 上下文语义嵌入 粗细粒度混合
在线阅读 下载PDF
开放式创新社区长尾用户知识共享角色转化研究
19
作者 沈占波 刘峰 《科技创业月刊》 2025年第8期55-67,共13页
动态识别长尾用户行为特征,加快实现其向活跃用户类型角色转化,是推动开放式创新社区持续发展的重要举措。采用两阶段聚类识别追踪长尾用户向活跃用户类型转化情况,并通过扎根理论探索长尾用户动态转化路径。研究发现:第一,两阶段聚类... 动态识别长尾用户行为特征,加快实现其向活跃用户类型角色转化,是推动开放式创新社区持续发展的重要举措。采用两阶段聚类识别追踪长尾用户向活跃用户类型转化情况,并通过扎根理论探索长尾用户动态转化路径。研究发现:第一,两阶段聚类结果显示,尽管绝大部分长尾用户依旧保持低活跃状态,但确实有8.8%的长尾用户成功实现了向核心用户、领先用户和社交用户三类高活跃用户的转化;第二,通过扎根理论,归纳出社区支持服务、品牌形象魅力、社区社交契合、社会角色认同4条长尾用户转化为活跃用户的驱动路径,体现了长尾用户角色转化路径的多样性和差异性;第三,长尾用户向活跃用户角色转化不是简单的需求动因作用的结果,而是认知、情感和行为3个要素相互作用、相互促进的综合体现。 展开更多
关键词 开放式创新社区 知识共享 长尾用户 角色转化 扎根理论
在线阅读 下载PDF
网络舆论“后真相”传播及其闭环引导——基于被忽视的长尾期
20
作者 郭芙蓉 《北京科技大学学报(社会科学版)》 2025年第5期144-152,共9页
网络舆论引导是党的舆论工作的重中之重。在热点事件中,舆论主体易受情绪情感影响,呈现出“后真相”的传播症候,具体表现为:传播节点泛化使真相解读私人化碎片化;数字传播技术赋能公众去中介化的“真相”体验;海量信息即时刺激易磨灭公... 网络舆论引导是党的舆论工作的重中之重。在热点事件中,舆论主体易受情绪情感影响,呈现出“后真相”的传播症候,具体表现为:传播节点泛化使真相解读私人化碎片化;数字传播技术赋能公众去中介化的“真相”体验;海量信息即时刺激易磨灭公众还原真相的耐心;社交媒体炒作真相投喂公众的知情饥渴。网络舆论引导既要进行事前预警研判、事中联动疏导,更需要在长尾期进行闭环引导,以阻滞“后真相”传播中负面情绪的累积外溢,清扫道德偏见和快速修复受损伤的公信力。实现闭环引导需要舆论引导主体树立闭环引导的理念,贯彻全程报道的新闻执业要求,创建推送重大舆情事件历史卷宗和舆情简报,同时着力培养和提升公众抵御“后真相”的媒介素养。 展开更多
关键词 “后真相” 网络舆论 闭环引导 长尾期
在线阅读 下载PDF
上一页 1 2 42 下一页 到第
使用帮助 返回顶部