In the field of civil engineering, magnetorheological fluid (MRF) damper-based semi-active control systems have received considerable attention for use in protecting structures from natural hazards such as strong ea...In the field of civil engineering, magnetorheological fluid (MRF) damper-based semi-active control systems have received considerable attention for use in protecting structures from natural hazards such as strong earthquakes and high winds. In this paper, the MRF damper-based semi-active control system is applied to a long-span spatially extended structure and its feasibility is discussed. Meanwhile, a _trust-region method based instantaneous optimal semi-active control algorithm (TIOC) is proposed to improve the performance of the semi-active control system in a multiple damper situation. The proposed TIOC describes the control process as a bounded constraint optimization problem, in which an optimal semi- active control force vector is solved by the trust-region method in every control step to minimize the structural responses. A numerical example of a railway station roof structure installed with MRF-04K dampers is presented. First, a modified Bouc- Wen model is utilized to describe the behavior of the selected MRF-04K damper. Then, two semi-active control systems, including the well-known clipped-optimal controller and the proposed TIOC controller, are considered. Based on the characteristics of the long-span spatially extended structure, the performance of the control system is evaluated under uniform earthquake excitation and travelling-wave excitation with different apparent velocities. The simulation results indicate that the MR fluid damper-based semi-active control systems have the potential to mitigate the responses of full-scale long-span spatially extended structures under earthquake hazards. The superiority of the proposed TIOC controller is demonstrated by comparing its control effectiveness with the clipped-optimal controller for several different cases.展开更多
We investigate the chaotic and regular spatial structures of Bose–Einstein condensates(BECs)with a spatially modulated atom-atom interaction and without an external trapping potential.A BEC with a spatially modulated...We investigate the chaotic and regular spatial structures of Bose–Einstein condensates(BECs)with a spatially modulated atom-atom interaction and without an external trapping potential.A BEC with a spatially modulated atom-atom interaction is equivalent to being constrained by a nonlinear optical lattice.Theoretical analyses show the existence of a steady atomic current in the BEC with a spatially varying phase.Under perturbative conditions,the Melnikov chaos criteria of BECs with a spatially varying phase and a constant one are theoretically obtained,respectively.When the perturbative conditions cannot be satisfied,for a repulsive BEC with a spatially varying phase,numerical simulations demonstrate that changing the initial condition can eliminate the chaotic spatial structure and then the system transitions into a biperiodic spatial structure.Increasing the chemical potential can result in a transition from the biperiodic spatial structure to a single-periodic spatial structure.For an attractive BEC with a spatially varying phase,numerical simulations show that decreasing the chemical potential can lead to a high atomic density,but when the wave number of the laser inducing the optical Feshbach resonance exceeds a critical value,the atomic density falls back to a finite range.Regardless of whether the BEC has a spatially varying phase or a constant one,modulating the laser wave number can effectively suppress the chaotic spatial structure in the BEC and then force it into a regular spatial structure.展开更多
Background:Tertiary lymphoid structure(TLS),ectopic lymphoid aggregates formed in response to chronic inflammation,have emerged as potential prognostic biomarkers and mediators of anti-tumor immunity in various cancer...Background:Tertiary lymphoid structure(TLS),ectopic lymphoid aggregates formed in response to chronic inflammation,have emerged as potential prognostic biomarkers and mediators of anti-tumor immunity in various cancers.However,the heterogeneity of TLS spatial distribution,maturity,and their prognostic and immunological significance in prostate cancer(PCa)remain poorly characterized.Methods:We utilized immunohistochemistry,multispectral fluorescence immunohistochemistry(mIHC)and spatial multi-omics analyses to evaluate the heterogeneity of TLS and its relationship with immune components in the tumor microenvironment(TME).Prognostic implications were assessed in 701 PCa patients from the TCGA and Fudan University Shanghai Cancer Center cohorts.The association between TLS heterogeneity and immunoreactivity was assessed through the quantification of immune cell infiltration.CellTreck and robust cell type decomposition deconvolution algorithms were used to decipher the colocalization features of each cell,cell-cell communication and ligand-receptor features within TLS regions.Results:In PCa,TLSs were detected in approximately 20%of patients across both cohorts,with intratumoral TLS(intra-TLS)being twice as prevalent as peritumoral TLS(peri-TLS).Patients harboring intra-TLS exhibited significantly longer disease-free and progression-free survival.Compared to peri-TLS,intra-TLS were more mature,characterized by increased T-effector cell infiltration,activation of interferon pathways,and the presence of follicular dendritic cell centers and B cell aggregates.Notably,compared with immature TLS,mature TLS were markedly associated with reduced PD-L1 expression,lower regulatory T cells(Tregs)infiltration,and increased high endothelial venules(HEVs)density,indicative of an immunologically active microenvironment.Spatial multi-omics analysis revealed that mature TLS exhibited enriched immune cell diversity and HEVs density,suggesting enhanced anti-tumor immunity.Furthermore,cell-cell communication analysis identified significant interactions between CCL5+dendritic cells and ACKR1+activated B cells within mature TLS,reflecting the enhanced capacity of mature TLS to orchestrate robust antigen presentation and B-cell-driven immune responses.Conclusions:In conclusion,this study highlights the prognostic and immunological implications of TLS heterogeneity in PCa,demonstrating that the spatial distribution and maturity of TLSs are closely linked to TME activation and improved clinical outcomes.These findings provide novel insights into the immune landscape of PCa and establish a foundation for immune-based precision stratification and therapeutic development.展开更多
In the new phase of sustainable development,agriculture is seeking sustainable management of the water-land-energy-economy-environment-food nexus.At present,there are few studies on optimizing crop planting structure ...In the new phase of sustainable development,agriculture is seeking sustainable management of the water-land-energy-economy-environment-food nexus.At present,there are few studies on optimizing crop planting structure and analyzing its spatial layout with consideration of natural and socio-economic factors.Herein,we proposed a framework for addressing this issue.In this framework,the NSGA-II algorithm was used to construct the multi-objective optimization model of crop planting structures with consideration of water and energy consumption,greenhouse gas(GHG)emissions,economic benefits,as well as food,land,and water security constraints,while the model for planting spatial layout optimization was established with consideration of crop suitability using the MaxEnt model and the improved Hungarian algorithm.This framework was further applied in the Black Soil Region of Northeast China(BSRNC)for analyzing optimized crop planting structures and spatial layouts of three main crops(rice,maize,and soybean)under various scenarios.This study showed that the sown area of rice in the BSRNC decreased by up to 40.73%and 35.30%in the environmental priority scenario and economic-environmental balance scenario,respectively,whereas that of soybean increased by up to 112.44%and 63.31%,respectively.In the economic priority scenario,the sown area of rice increased by up to 93.98%.Expanding the sown area of soybean was effective in reducing GHG emissions.On the contrary,rice production led to greater environmental costs though it provided higher economic returns.Among the three crops,maize exhibited an advantage in balancing environmental and economic benefits.Hegang-Jixi area in the northeast of the BSRNC was identified as the key area with the most intense crop planting transfer among different scenarios.Overall,this framework provides a new methodology for optimizing crop planting structures and spatial layouts with con-sideration of the nexus of various factors.Moreover,the case study demonstrates the applicability and expansion potential of the framework in the fields of sustainable agricultural development and food security assurance.展开更多
With the increment of the complexity of structural systems and the span of spatial structures, the interactions between parts of the structures, especially between some flexible substructures, become too complex to be...With the increment of the complexity of structural systems and the span of spatial structures, the interactions between parts of the structures, especially between some flexible substructures, become too complex to be analyzed clearly. In this paper, taking an actual gymnasium of a long-span spatial steel-cable-membrane hybrid structure as the calculation model, the static and dynamic analyses of the hybrid structures are performed by employing the global analysis of the whole hybrid structure and the substructural analysis of the truss arch substructure, the cable-membrane substructure, etc. In addition, the comparison of stresses and displacements of structural members in the global and substructural analyses is made. The numerical results show that serious errors exist in the substructural analysis of the hybrid structure, and the global analysis is necessary for the hybrid structure under the excitation of static loads and seismic loads.展开更多
Many attentions for structural synthesis are paid to planar linkages and parallel mechanisms, while design novel pyramid deployable truss structure(PDTS) of satellite SAR mainly depends on experience of designer. To...Many attentions for structural synthesis are paid to planar linkages and parallel mechanisms, while design novel pyramid deployable truss structure(PDTS) of satellite SAR mainly depends on experience of designer. To design novel configuration of PDTS, a two-step topology structure synthesis and analysis approach is proposed. Firstly, a conceptual configuration of PDTS is synthesized. Weighted graph and weighted adjacency matrix are established to realize topological description for PDTS. Graph properties are then summarized to distinguish differentia between PDTS and other type structures. According to graph properties, a procedure for synthesis conceptual configuration of PDTS is presented. Secondly, join relationship of components in a PDTS is analyzed. Kinematic chain and corresponding incidence/adjacency matrix are employed to analyze join relationship of PDTS. Properties and simplified rules of kinematic chain are extracted to construct kinematic chain. A procedure for construction kinematic chain of PDTS is then established. Finally, with this two-step approach all 11 rectangular pyramid deployable structures whose folded state is planar are discovered and their kinematic chains are constructed. Based on synthesis results, a novel deployable support structure for satellite SAR is designed. The proposed research can be applied to obtain some novel PDTSs, which is of great importance to design some novel deployable support structures for satellite SAR antenna.展开更多
A theoretical model of a friction pendulum system (FPS) is introduced to examine its application for the seismic isolation of spatial lattice shell structures. An equation of motion of the lattice shell with FPS bea...A theoretical model of a friction pendulum system (FPS) is introduced to examine its application for the seismic isolation of spatial lattice shell structures. An equation of motion of the lattice shell with FPS bearings is developed. Then, seismic isolation studies are performed for both double-layer and single-layer lattice shell structures under different seismic input and design parameters of the FPS. The influence of frictional coefficients and radius of the FPS on seismic performance are discussed. Based on the study, some suggestions for seismic isolation design of lattice shells with FPS bearings are given and conclusions are made which could be helpful in the application of FPS.展开更多
This paper discusses the enrichment and depletion regularities for porphyry coppermolybdenum ore deposits in different regions and varied deposit genetic types in the same area, taking three porphyry copper-molybdenum...This paper discusses the enrichment and depletion regularities for porphyry coppermolybdenum ore deposits in different regions and varied deposit genetic types in the same area, taking three porphyry copper-molybdenum ore deposits (i.e., the Chengmenshan in Jiangxi, Wunugetushan in Inner Mongolia, Baishantang in Gansu) and two copper deposits in Gansu Province (the Huitongshan skarn deposit and Gongpoquan composite deposit) as case studies. The results show that porphyry Cu-Mo deposits or skarn copper deposits include both enrichment of the ore-forming elements and associated elements, and depletion of some lithophile dispersed elements, rare earth elements (REE) and some major elements. And the depleted elements vary with deposits, having generality and their own features. On a deposit scale, the positive anomalies of enriched elements and negative anomalies of depleted elements follow in a sequence to comprise regular anomaly models of spatial structures. The exploration in the Tongchang deposit in Jiangxi and Huitongshan deposit in Gansu suggests that anomaly models play a key role in the identification of mineral occurrences and deposits compared to one single enriched element anomaly. And the anomaly models exert a critical effect on the optimization of prospecting targets and their potential evaluation.展开更多
Piezoelectric sensor array-based spatial filter technology is a new promising method presented in research area of structural health monitoring (SHM) in the recent years. To apply this method to composite structures...Piezoelectric sensor array-based spatial filter technology is a new promising method presented in research area of structural health monitoring (SHM) in the recent years. To apply this method to composite structures and give the actual position of damage, this paper proposes a spatial filter-based damage imaging method improved by complex Shannon wavelet transform. The basic principle of spatial filter is analyzed first. Then, this paper proposes a method of using complex Shannon wavelet transform to construct analytic signals of time domain signals of PZT sensors array. The analytic signals are synthesized depending on the principle of the spatial filter to give a damage imaging in the form of angle-time. A method of converting the damage imaging to the form of angle-distance is discussed. Finally, an aircraft composite oil tank is adopted to validate the damage imaging method. The validating results show that this method can recognize angle and distance of damage successfully.展开更多
A laboratory experiment on alongshore currents is conducted for two plane beaches with slopes 1:40 and 1:i00 to investigate the instability of alongshore currents. The dye release experiment is also performed synchr...A laboratory experiment on alongshore currents is conducted for two plane beaches with slopes 1:40 and 1:i00 to investigate the instability of alongshore currents. The dye release experiment is also performed synchronously in surf zone. Complicated and strongly unstable motions of alongshore currents are observed in the experiment. To examine the spatial and temporal variations of the shear instabilities of longshore clearly, dye batches are released in surf zone. The deformation of the dye patch is observed efficiently and effectively with charge coupled device (CCD) system. Some essential characteristics of the shear instability are validated from the results of image analyses of the temporal variation of the dye patch. The influences of alongshore currents, Stokes drift, large-scale vorticity and the shear instabilities on the transport of dye are analyzed using the collected images. The spatial structure of the instabilities of longshore currents is studied by analyzing collected images of the dye patch. And the phase velocity of the meandering movements is obtained through measuring the movement distances of the oscillations of dye patch in alongshore direction with time. The results suggest that the propagation speed of the shear instability is approximately 5070 7570 of maximum of mean alongshore currents for irregular and regular waves. The calculated propagation speed using a linear instability analysis theory is compared with the experimental results. The comparison shows agreements between them.展开更多
Under strong earthquakes, long-span spatial latticed structures may collapse due to dynamic instability or strength failure. The elasto-plastic dynamic behaviors of three spatial latticed structures, including two dou...Under strong earthquakes, long-span spatial latticed structures may collapse due to dynamic instability or strength failure. The elasto-plastic dynamic behaviors of three spatial latticed structures, including two double-layer cylindrical shells and one spherical shell constructed for the 2008 Olympic Games in Beijing, were quantitatively examined under multi-support excitation (MSE) and uniform support excitation (USE). In the numerical analyses, several important parameters were investigated such as the peak acceleration and displacement responses at key joints, the number and distribution of plastic members, and the deformation of the shell at the moment of collapse. Analysis results reveal the features and the failure mechanism of the spatial latticed structures under MSE and USE. In both scenarios, the double-layer reticulated shell collapses in the "overflow" mode, and the collapse is governed by the number of invalid plastic members rather than the total number of plastic members, beginning with damage to some of the local regions near the supports. By comparing the numbers and distributions of the plastic members under MSE to those under USE, it was observed that the plastic members spread more sufficiently and the internal forces are more uniform under MSE, especially in cases of lower apparent velocities in soils. Due to the effects of pseudo-static displacement, the stresses in the members near the supports under MSE are higher than those under USE.展开更多
This paper compares data from linearized and nonlinear Zebiak-Cane model, as constrained by observed sea surface temperature anomaly (SSTA), in simulating central Pacific (CP) and eastern Pacific (EP) E1 Nino. T...This paper compares data from linearized and nonlinear Zebiak-Cane model, as constrained by observed sea surface temperature anomaly (SSTA), in simulating central Pacific (CP) and eastern Pacific (EP) E1 Nino. The difference between the temperature advections (determined by subtracting those of the linearized model from those of the nonlinear model), referred to here as the nonlinearly induced temperature advection change (NTA), is analyzed. The results demonstrate that the NTA records warming in the central equatorial Pacific during CP E1 Nino and makes fewer contributions to the structural distinctions of the CP E1 Nino, whereas it records warming in the eastern equatorial Pacific during EP E1 Nino, and thus significantly promotes EP E1 Nino during E1 Nino-type selection. The NTA for CP and EP E1 Nino varies in its amplitude, and is smaller in CP E1 Nino than it is in EP E1 Nino. These results demonstrate that CP E1 Nino are weakly modulated by small intensities of NTA, and may be controlled by weak nonlinearity; whereas, EP E1 Nino are significantly enhanced by large amplitudes of NTA, and are therefore likely to be modulated by relatively strong nonlinearity. These data could explain why CP E1 Nino are weaker than EP E1 Nino. Because the NTA for CP and EP E1 Nino differs in spatial structures and intensities, as well as their roles within different E1 Nino modes, the diversity of E1 Nino may be closely related to changes in the nonlinear characteristics of the tropical Pacific.展开更多
The swelling behavior and stability in solid electrolyte interphase(SEI)have been proved to determine the battery cycle life.A high swollen,unstable SEI shows a high permeability to electrolyte,which results in the ra...The swelling behavior and stability in solid electrolyte interphase(SEI)have been proved to determine the battery cycle life.A high swollen,unstable SEI shows a high permeability to electrolyte,which results in the rapid battery performance degradation.Here,we customize two SEIs with different spatial structures(bilayer and mosaic)by simply regulating the proportion of additive fluoroethylene carbonate.Surprisingly,due to the uniform distribution of dense inorganic nano-crystals in the inner,the bilayer SEI exhibits low-swelling and excellent mechanical properties,so the undesirable side reactions of the electrolyte are effectively suppressed.In addition,we put forward the growth rate of swelling ratio(GSR)as a key indicator to reveal the swelling change in SEI.The GSR of bilayer SEI merely increases from1.73 to 3.16 after the 300th cycle,which enables the corresponding graphite‖Li battery to achieve longer cycle stability.The capacity retention is improved by 47.5% after 300 cycles at 0.5 C.The correlation among SEI spatial structure,swelling behavior,and battery performance provides a new direction for electrolyte optimization and interphase structure design of high energy density batteries.展开更多
Under the background of China's rapid urbanization, study on comparative analysis of the spatial structure of urban agglomerations between China and the US can provide the policy proposals of space optimization fo...Under the background of China's rapid urbanization, study on comparative analysis of the spatial structure of urban agglomerations between China and the US can provide the policy proposals of space optimization for the Chinese government. Taking the Beijing-Tianjin-Hebei(BTH) and Boswash as study area, we mapped the subpixel-level impervious surface coverage of the BTH and Boswash, respectively, from 1972 to 2011. Further, landscape metrics, gravitational model and spatial analysis were used to analyze the differences of the spatial structures between the BTH and Boswash. The results showed that(1) the area of the impervious surface increased rapidly in the BTH, while those remained stable in the Boswash.(2) The spatial structure of the BTH experienced different periods including isolated cities stage, dual-core cities stage, group cities stage and network-style cities stage, while those of the Boswash was more stable, and its spatial pattern showed a "point-axis" structure.(3) The spatial pattern of high-high assembling regions of the impervious surface exhibited a "standing pancake" feature in the BTH, while those showed a "multi-center, local aggregation and global discrete" feature in the Boswash.(4) All the percentages of the impervious surface of ecological, living, and production land of the BTH were higher than those of the Boswash. At last, from the perspective of space optimization of urban agglomeration, the development proposals for the BTH were proposed.展开更多
To achieve rational and precise seismic response predictions of large span spatial structures(LSSSs),the inherent non-uniformity and multidimensionality characteristics of earthquake ground motions should be properly ...To achieve rational and precise seismic response predictions of large span spatial structures(LSSSs),the inherent non-uniformity and multidimensionality characteristics of earthquake ground motions should be properly taken into consideration.However,due to the limitations of available earthquake stations to record seismic rotational components,the effects of rocking and torsional earthquake components are commonly neglected in the seismic analyses of LSSSs.In this study,a newly developed method to extract the rocking and torsion components at any point along the area of a deployed dense array from the translational earthquake recordings is applied to obtain the rotational seismic inputs for a LSSS.The numerical model of an actual LSSS,the Dalian International Conference Center(DICC),is developed to study the influences of multi-support and multidimensional excitations on the seismic responses of LSSSs.The numerical results reveal that the non-uniformity and multidimensionality of ground motion input can considerably affect the dynamic response of the DICC.The specific degree of influence on the overall and local structural displacements,deformations and forces are comprehensively investigated and discussed.展开更多
High spatial frequency laser induced periodic surface structures(HSFLs)on silicon substrates are often developed on flat surfaces at low fluences near ablation threshold of 0.1 J/cm2,seldom on microstructures or micro...High spatial frequency laser induced periodic surface structures(HSFLs)on silicon substrates are often developed on flat surfaces at low fluences near ablation threshold of 0.1 J/cm2,seldom on microstructures or microgrooves at relatively higher fluences above 1 J/cm^2.This work aims to enrich the variety of HSFLs-containing hierarchical microstructures,by femtosecond laser(pulse duration:457 fs,wavelength:1045 nm,and repetition rate:100 kHz)in liquids(water and acetone)at laser fluence of 1.7 J/cm^2.The period of Si-HSFLs in the range of 110–200 nm is independent of the scanning speeds(0.1,0.5,1 and 2 mm/s),line intervals(5,15 and 20μm)of scanning lines and scanning directions(perpendicular or parallel to light polarization direction).It is interestingly found that besides normal HSFLs whose orientations are perpendicular to the direction of light polarization,both clockwise or anticlockwise randomly tilted HSFLs with a maximal deviation angle of 50°as compared to those of normal HSFLSs are found on the microstructures with height gradients.Raman spectra and SEM characterization jointly clarify that surface melting and nanocapillary waves play important roles in the formation of Si-HSFLs.The fact that no HSFLs are produced by laser ablation in air indicates that moderate melting facilitated with ultrafast liquid cooling is beneficial for the formation of HSFLs by LALs.On the basis of our findings and previous reports,a synergistic formation mechanism for HSFLs at high fluence was proposed and discussed,including thermal melting with the concomitance of ultrafast cooling in liquids,transformation of the molten layers into ripples and nanotips by surface plasmon polaritons(SPP)and second-harmonic generation(SHG),and modulation of Si-HSFLs direction by both nanocapillary waves and the localized electric field coming from the excited large Si particles.展开更多
Femtosecond laser-induced periodic surface structures(LIPSS)have been extensively studied over the past few decades.In particular,the period and groove width of high-spatial-frequency LIPSS(HSFL)is much smaller than t...Femtosecond laser-induced periodic surface structures(LIPSS)have been extensively studied over the past few decades.In particular,the period and groove width of high-spatial-frequency LIPSS(HSFL)is much smaller than the diffraction limit,making it a useful method for efficient nanomanufacturing.However,compared with the low-spatial-frequency LIPSS(LSFL),the structure size of the HSFL is smaller,and it is more easily submerged.Therefore,the formation mechanism of HSFL is complex and has always been a research hotspot in this field.In this study,regular LSFL with a period of 760 nm was fabricated in advance on a silicon surface with two-beam interference using an 800 nm,50 fs femtosecond laser.The ultrafast dynamics of HSFL formation on the silicon surface of prefabricated LSFL under single femtosecond laser pulse irradiation were observed and analyzed for the first time using collinear pump-probe imaging method.In general,the evolution of the surface structure undergoes five sequential stages:the LSFL begins to split,becomes uniform HSFL,degenerates into an irregular LSFL,undergoes secondary splitting into a weakly uniform HSFL,and evolves into an irregular LSFL or is submerged.The results indicate that the local enhancement of the submerged nanocavity,or the nanoplasma,in the prefabricated LSFL ridge led to the splitting of the LSFL,and the thermodynamic effect drove the homogenization of the splitting LSFL,which evolved into HSFL.展开更多
Food web structures are well known to vary widely among ecosystems. Moreover, many food web studies of lakes have generally attempted to characterize the overall food web structure and have largely ignored internal sp...Food web structures are well known to vary widely among ecosystems. Moreover, many food web studies of lakes have generally attempted to characterize the overall food web structure and have largely ignored internal spatial and environmental variations. In this study, we hypothesize that there is a high degree of spatial heterogeneity within an ecosystem and such heterogeneity may lead to strong variations in environmental conditions and resource availability, in turn resulting in dif ferent trophic pathways. Stable carbon and nitrogen isotopes were employed for the whole food web to describe the structure of the food web in different sub-basins within Taihu Lake. This lake is a large eutrophic freshwater lake that has been intensively managed and highly influenced by human activities for more than 50 years. The results show significant isotopic dif ferences between basins with dif ferent environmental characteristics. Such differences likely result from isotopic baseline dif ferences combining with a shift in food web structure. Both are related to local spatial heterogeneity in nutrient loading in waters. Such variation should be explicitly considered in future food web studies and ecosystem-based management in this lake ecosystem.展开更多
Traditional deconvolution methods based on single-channel inversion do not consider the spatial structural relation between channels,and hence,they yield high-resolution results with the existing transverse inconsiste...Traditional deconvolution methods based on single-channel inversion do not consider the spatial structural relation between channels,and hence,they yield high-resolution results with the existing transverse inconsistency or discontinuity.Therefore,in this study,the local dip angle was used to obtain the structural information and construct the spatial structurally constraint operator.This operator is then introduced into multichannel deconvolution as a regularization operator to improve the resolution and maintain the transverse continuity of seismic data.Model tests and actual seismic data processing have demonstrated the effectiveness and practicability of this method.展开更多
Multi-source data fusion provides high-precision spatial situational awareness essential for analyzing granular urban social activities.This study used Shanghai’s catering industry as a case study,leveraging electron...Multi-source data fusion provides high-precision spatial situational awareness essential for analyzing granular urban social activities.This study used Shanghai’s catering industry as a case study,leveraging electronic reviews and consumer data sourced from third-party restaurant platforms collected in 2021.By performing weighted processing on two-dimensional point-of-interest(POI)data,clustering hotspots of high-dimensional restaurant data were identified.A hierarchical network of restaurant hotspots was constructed following the Central Place Theory(CPT)framework,while the Geo-Informatic Tupu method was employed to resolve the challenges posed by network deformation in multi-scale processes.These findings suggest the necessity of enhancing the spatial balance of Shanghai’s urban centers by moderately increasing the number and service capacity of suburban centers at the urban periphery.Such measures would contribute to a more optimized urban structure and facilitate the outward dispersion of comfort-oriented facilities such as the restaurant industry.At a finer spatial scale,the distribution of restaurant hotspots demonstrates a polycentric and symmetric spatial pattern,with a developmental trend radiating outward along the city’s ring roads.This trend can be attributed to the efforts of restaurants to establish connections with other urban functional spaces,leading to the reconfiguration of urban spaces,expansion of restaurant-dedicated land use,and the reorganization of associated commercial activities.The results validate the existence of a polycentric urban structure in Shanghai but also highlight the instability of the restaurant hotspot network during cross-scale transitions.展开更多
基金Supported by:National Science Fund for Distinguished Young Scholars of China Under Grant No. 50425824the National Natural Science Foundation of China Under Grant No.50578109,90715034 and 90715032
文摘In the field of civil engineering, magnetorheological fluid (MRF) damper-based semi-active control systems have received considerable attention for use in protecting structures from natural hazards such as strong earthquakes and high winds. In this paper, the MRF damper-based semi-active control system is applied to a long-span spatially extended structure and its feasibility is discussed. Meanwhile, a _trust-region method based instantaneous optimal semi-active control algorithm (TIOC) is proposed to improve the performance of the semi-active control system in a multiple damper situation. The proposed TIOC describes the control process as a bounded constraint optimization problem, in which an optimal semi- active control force vector is solved by the trust-region method in every control step to minimize the structural responses. A numerical example of a railway station roof structure installed with MRF-04K dampers is presented. First, a modified Bouc- Wen model is utilized to describe the behavior of the selected MRF-04K damper. Then, two semi-active control systems, including the well-known clipped-optimal controller and the proposed TIOC controller, are considered. Based on the characteristics of the long-span spatially extended structure, the performance of the control system is evaluated under uniform earthquake excitation and travelling-wave excitation with different apparent velocities. The simulation results indicate that the MR fluid damper-based semi-active control systems have the potential to mitigate the responses of full-scale long-span spatially extended structures under earthquake hazards. The superiority of the proposed TIOC controller is demonstrated by comparing its control effectiveness with the clipped-optimal controller for several different cases.
基金Projects supported by the Natural Science Foundation of Hunan Province(2016JJ6020)the Scientific Research Fund of Hunan Provincial Education Department(18A436)the Scientific Research Fund of Hunan First normal University(XYS13N16)。
文摘We investigate the chaotic and regular spatial structures of Bose–Einstein condensates(BECs)with a spatially modulated atom-atom interaction and without an external trapping potential.A BEC with a spatially modulated atom-atom interaction is equivalent to being constrained by a nonlinear optical lattice.Theoretical analyses show the existence of a steady atomic current in the BEC with a spatially varying phase.Under perturbative conditions,the Melnikov chaos criteria of BECs with a spatially varying phase and a constant one are theoretically obtained,respectively.When the perturbative conditions cannot be satisfied,for a repulsive BEC with a spatially varying phase,numerical simulations demonstrate that changing the initial condition can eliminate the chaotic spatial structure and then the system transitions into a biperiodic spatial structure.Increasing the chemical potential can result in a transition from the biperiodic spatial structure to a single-periodic spatial structure.For an attractive BEC with a spatially varying phase,numerical simulations show that decreasing the chemical potential can lead to a high atomic density,but when the wave number of the laser inducing the optical Feshbach resonance exceeds a critical value,the atomic density falls back to a finite range.Regardless of whether the BEC has a spatially varying phase or a constant one,modulating the laser wave number can effectively suppress the chaotic spatial structure in the BEC and then force it into a regular spatial structure.
基金supported by grants from Non-communicable Chronic Diseases-National Science and Technology Major Project(grant number:2023ZD0510300)National Natural Science Foundation of China(grant numbers:82403377,82473192,82474506,81760463)+4 种基金China Postdoctoral Science Foundation(grant number:2024M750538)Shanghai Anticancer Association EYAS PROJECT(grant numbers:SACA-CY23A02,SACA-CY23C04)Beijing Xisike Clinical Oncology Research Foundation(grant numbers:Y-Young2024-0138,Y-HR2020MS-0948)Central Government Funds for Guiding Local Scientific and Technological Development(grant number:2021ZY0037)Natural Science Found of In-ner Mongolia(grant number:2023MS08015).
文摘Background:Tertiary lymphoid structure(TLS),ectopic lymphoid aggregates formed in response to chronic inflammation,have emerged as potential prognostic biomarkers and mediators of anti-tumor immunity in various cancers.However,the heterogeneity of TLS spatial distribution,maturity,and their prognostic and immunological significance in prostate cancer(PCa)remain poorly characterized.Methods:We utilized immunohistochemistry,multispectral fluorescence immunohistochemistry(mIHC)and spatial multi-omics analyses to evaluate the heterogeneity of TLS and its relationship with immune components in the tumor microenvironment(TME).Prognostic implications were assessed in 701 PCa patients from the TCGA and Fudan University Shanghai Cancer Center cohorts.The association between TLS heterogeneity and immunoreactivity was assessed through the quantification of immune cell infiltration.CellTreck and robust cell type decomposition deconvolution algorithms were used to decipher the colocalization features of each cell,cell-cell communication and ligand-receptor features within TLS regions.Results:In PCa,TLSs were detected in approximately 20%of patients across both cohorts,with intratumoral TLS(intra-TLS)being twice as prevalent as peritumoral TLS(peri-TLS).Patients harboring intra-TLS exhibited significantly longer disease-free and progression-free survival.Compared to peri-TLS,intra-TLS were more mature,characterized by increased T-effector cell infiltration,activation of interferon pathways,and the presence of follicular dendritic cell centers and B cell aggregates.Notably,compared with immature TLS,mature TLS were markedly associated with reduced PD-L1 expression,lower regulatory T cells(Tregs)infiltration,and increased high endothelial venules(HEVs)density,indicative of an immunologically active microenvironment.Spatial multi-omics analysis revealed that mature TLS exhibited enriched immune cell diversity and HEVs density,suggesting enhanced anti-tumor immunity.Furthermore,cell-cell communication analysis identified significant interactions between CCL5+dendritic cells and ACKR1+activated B cells within mature TLS,reflecting the enhanced capacity of mature TLS to orchestrate robust antigen presentation and B-cell-driven immune responses.Conclusions:In conclusion,this study highlights the prognostic and immunological implications of TLS heterogeneity in PCa,demonstrating that the spatial distribution and maturity of TLSs are closely linked to TME activation and improved clinical outcomes.These findings provide novel insights into the immune landscape of PCa and establish a foundation for immune-based precision stratification and therapeutic development.
基金funded by the Foundation for Innovative Research Groups of the National Natural Science Foundation of China(Grant No.72221002)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA28060200)National Natural Science Foundation of Youth Project(Grant No.72303087).
文摘In the new phase of sustainable development,agriculture is seeking sustainable management of the water-land-energy-economy-environment-food nexus.At present,there are few studies on optimizing crop planting structure and analyzing its spatial layout with consideration of natural and socio-economic factors.Herein,we proposed a framework for addressing this issue.In this framework,the NSGA-II algorithm was used to construct the multi-objective optimization model of crop planting structures with consideration of water and energy consumption,greenhouse gas(GHG)emissions,economic benefits,as well as food,land,and water security constraints,while the model for planting spatial layout optimization was established with consideration of crop suitability using the MaxEnt model and the improved Hungarian algorithm.This framework was further applied in the Black Soil Region of Northeast China(BSRNC)for analyzing optimized crop planting structures and spatial layouts of three main crops(rice,maize,and soybean)under various scenarios.This study showed that the sown area of rice in the BSRNC decreased by up to 40.73%and 35.30%in the environmental priority scenario and economic-environmental balance scenario,respectively,whereas that of soybean increased by up to 112.44%and 63.31%,respectively.In the economic priority scenario,the sown area of rice increased by up to 93.98%.Expanding the sown area of soybean was effective in reducing GHG emissions.On the contrary,rice production led to greater environmental costs though it provided higher economic returns.Among the three crops,maize exhibited an advantage in balancing environmental and economic benefits.Hegang-Jixi area in the northeast of the BSRNC was identified as the key area with the most intense crop planting transfer among different scenarios.Overall,this framework provides a new methodology for optimizing crop planting structures and spatial layouts with con-sideration of the nexus of various factors.Moreover,the case study demonstrates the applicability and expansion potential of the framework in the fields of sustainable agricultural development and food security assurance.
文摘With the increment of the complexity of structural systems and the span of spatial structures, the interactions between parts of the structures, especially between some flexible substructures, become too complex to be analyzed clearly. In this paper, taking an actual gymnasium of a long-span spatial steel-cable-membrane hybrid structure as the calculation model, the static and dynamic analyses of the hybrid structures are performed by employing the global analysis of the whole hybrid structure and the substructural analysis of the truss arch substructure, the cable-membrane substructure, etc. In addition, the comparison of stresses and displacements of structural members in the global and substructural analyses is made. The numerical results show that serious errors exist in the substructural analysis of the hybrid structure, and the global analysis is necessary for the hybrid structure under the excitation of static loads and seismic loads.
基金Supported by the College Discipline Innovation Wisdom Plan in China(Grant No.B07018)National Natural Science Foundation of China(Grant Nos.50935002,11002039)
文摘Many attentions for structural synthesis are paid to planar linkages and parallel mechanisms, while design novel pyramid deployable truss structure(PDTS) of satellite SAR mainly depends on experience of designer. To design novel configuration of PDTS, a two-step topology structure synthesis and analysis approach is proposed. Firstly, a conceptual configuration of PDTS is synthesized. Weighted graph and weighted adjacency matrix are established to realize topological description for PDTS. Graph properties are then summarized to distinguish differentia between PDTS and other type structures. According to graph properties, a procedure for synthesis conceptual configuration of PDTS is presented. Secondly, join relationship of components in a PDTS is analyzed. Kinematic chain and corresponding incidence/adjacency matrix are employed to analyze join relationship of PDTS. Properties and simplified rules of kinematic chain are extracted to construct kinematic chain. A procedure for construction kinematic chain of PDTS is then established. Finally, with this two-step approach all 11 rectangular pyramid deployable structures whose folded state is planar are discovered and their kinematic chains are constructed. Based on synthesis results, a novel deployable support structure for satellite SAR is designed. The proposed research can be applied to obtain some novel PDTSs, which is of great importance to design some novel deployable support structures for satellite SAR antenna.
基金National Natural Science Foundation of China Under Grand No.50778006Funding Project for Academic Human Resources Development in Institutions of Higher Learning Under the Jurisdiction of Beijing Municipality
文摘A theoretical model of a friction pendulum system (FPS) is introduced to examine its application for the seismic isolation of spatial lattice shell structures. An equation of motion of the lattice shell with FPS bearings is developed. Then, seismic isolation studies are performed for both double-layer and single-layer lattice shell structures under different seismic input and design parameters of the FPS. The influence of frictional coefficients and radius of the FPS on seismic performance are discussed. Based on the study, some suggestions for seismic isolation design of lattice shells with FPS bearings are given and conclusions are made which could be helpful in the application of FPS.
基金financially supported by the research special fund of public service sector from the Ministry of Land and Resources (No. 201111008)
文摘This paper discusses the enrichment and depletion regularities for porphyry coppermolybdenum ore deposits in different regions and varied deposit genetic types in the same area, taking three porphyry copper-molybdenum ore deposits (i.e., the Chengmenshan in Jiangxi, Wunugetushan in Inner Mongolia, Baishantang in Gansu) and two copper deposits in Gansu Province (the Huitongshan skarn deposit and Gongpoquan composite deposit) as case studies. The results show that porphyry Cu-Mo deposits or skarn copper deposits include both enrichment of the ore-forming elements and associated elements, and depletion of some lithophile dispersed elements, rare earth elements (REE) and some major elements. And the depleted elements vary with deposits, having generality and their own features. On a deposit scale, the positive anomalies of enriched elements and negative anomalies of depleted elements follow in a sequence to comprise regular anomaly models of spatial structures. The exploration in the Tongchang deposit in Jiangxi and Huitongshan deposit in Gansu suggests that anomaly models play a key role in the identification of mineral occurrences and deposits compared to one single enriched element anomaly. And the anomaly models exert a critical effect on the optimization of prospecting targets and their potential evaluation.
基金National Natural Science Foundation of China (50830201,10872217)Aeronautical Science Foundation of China (20090952015)+1 种基金Specialized Research Fund for the Doctoral Program of Higher Education(20103218110005)National Science Foundation of the General Program of Jiangsu Higher Education Institutions (09KJD520005)
文摘Piezoelectric sensor array-based spatial filter technology is a new promising method presented in research area of structural health monitoring (SHM) in the recent years. To apply this method to composite structures and give the actual position of damage, this paper proposes a spatial filter-based damage imaging method improved by complex Shannon wavelet transform. The basic principle of spatial filter is analyzed first. Then, this paper proposes a method of using complex Shannon wavelet transform to construct analytic signals of time domain signals of PZT sensors array. The analytic signals are synthesized depending on the principle of the spatial filter to give a damage imaging in the form of angle-time. A method of converting the damage imaging to the form of angle-distance is discussed. Finally, an aircraft composite oil tank is adopted to validate the damage imaging method. The validating results show that this method can recognize angle and distance of damage successfully.
基金The National Natural Science Foundation of China under contract Nos 50479053 and 10672034the Program for the Changjiang Scholars and the Innovative Research Team in the University of Chinathe Shanxi Province Natural Science Foundation for Young Scholar of China under contract No.2011021025-1
文摘A laboratory experiment on alongshore currents is conducted for two plane beaches with slopes 1:40 and 1:i00 to investigate the instability of alongshore currents. The dye release experiment is also performed synchronously in surf zone. Complicated and strongly unstable motions of alongshore currents are observed in the experiment. To examine the spatial and temporal variations of the shear instabilities of longshore clearly, dye batches are released in surf zone. The deformation of the dye patch is observed efficiently and effectively with charge coupled device (CCD) system. Some essential characteristics of the shear instability are validated from the results of image analyses of the temporal variation of the dye patch. The influences of alongshore currents, Stokes drift, large-scale vorticity and the shear instabilities on the transport of dye are analyzed using the collected images. The spatial structure of the instabilities of longshore currents is studied by analyzing collected images of the dye patch. And the phase velocity of the meandering movements is obtained through measuring the movement distances of the oscillations of dye patch in alongshore direction with time. The results suggest that the propagation speed of the shear instability is approximately 5070 7570 of maximum of mean alongshore currents for irregular and regular waves. The calculated propagation speed using a linear instability analysis theory is compared with the experimental results. The comparison shows agreements between them.
文摘Under strong earthquakes, long-span spatial latticed structures may collapse due to dynamic instability or strength failure. The elasto-plastic dynamic behaviors of three spatial latticed structures, including two double-layer cylindrical shells and one spherical shell constructed for the 2008 Olympic Games in Beijing, were quantitatively examined under multi-support excitation (MSE) and uniform support excitation (USE). In the numerical analyses, several important parameters were investigated such as the peak acceleration and displacement responses at key joints, the number and distribution of plastic members, and the deformation of the shell at the moment of collapse. Analysis results reveal the features and the failure mechanism of the spatial latticed structures under MSE and USE. In both scenarios, the double-layer reticulated shell collapses in the "overflow" mode, and the collapse is governed by the number of invalid plastic members rather than the total number of plastic members, beginning with damage to some of the local regions near the supports. By comparing the numbers and distributions of the plastic members under MSE to those under USE, it was observed that the plastic members spread more sufficiently and the internal forces are more uniform under MSE, especially in cases of lower apparent velocities in soils. Due to the effects of pseudo-static displacement, the stresses in the members near the supports under MSE are higher than those under USE.
文摘This paper compares data from linearized and nonlinear Zebiak-Cane model, as constrained by observed sea surface temperature anomaly (SSTA), in simulating central Pacific (CP) and eastern Pacific (EP) E1 Nino. The difference between the temperature advections (determined by subtracting those of the linearized model from those of the nonlinear model), referred to here as the nonlinearly induced temperature advection change (NTA), is analyzed. The results demonstrate that the NTA records warming in the central equatorial Pacific during CP E1 Nino and makes fewer contributions to the structural distinctions of the CP E1 Nino, whereas it records warming in the eastern equatorial Pacific during EP E1 Nino, and thus significantly promotes EP E1 Nino during E1 Nino-type selection. The NTA for CP and EP E1 Nino varies in its amplitude, and is smaller in CP E1 Nino than it is in EP E1 Nino. These results demonstrate that CP E1 Nino are weakly modulated by small intensities of NTA, and may be controlled by weak nonlinearity; whereas, EP E1 Nino are significantly enhanced by large amplitudes of NTA, and are therefore likely to be modulated by relatively strong nonlinearity. These data could explain why CP E1 Nino are weaker than EP E1 Nino. Because the NTA for CP and EP E1 Nino differs in spatial structures and intensities, as well as their roles within different E1 Nino modes, the diversity of E1 Nino may be closely related to changes in the nonlinear characteristics of the tropical Pacific.
基金supported by the National Natural Science Foundation of China(22369011)the Gansu Key Research and Development Program(23YFGA0053 and 24YFGA025)the Hongliu Outstanding Youth Talent Support Program of Lanzhou University of Technology and Postgraduate research exploration project of Lanzhou University of Technology(256017)。
文摘The swelling behavior and stability in solid electrolyte interphase(SEI)have been proved to determine the battery cycle life.A high swollen,unstable SEI shows a high permeability to electrolyte,which results in the rapid battery performance degradation.Here,we customize two SEIs with different spatial structures(bilayer and mosaic)by simply regulating the proportion of additive fluoroethylene carbonate.Surprisingly,due to the uniform distribution of dense inorganic nano-crystals in the inner,the bilayer SEI exhibits low-swelling and excellent mechanical properties,so the undesirable side reactions of the electrolyte are effectively suppressed.In addition,we put forward the growth rate of swelling ratio(GSR)as a key indicator to reveal the swelling change in SEI.The GSR of bilayer SEI merely increases from1.73 to 3.16 after the 300th cycle,which enables the corresponding graphite‖Li battery to achieve longer cycle stability.The capacity retention is improved by 47.5% after 300 cycles at 0.5 C.The correlation among SEI spatial structure,swelling behavior,and battery performance provides a new direction for electrolyte optimization and interphase structure design of high energy density batteries.
基金National Natural Science Foundation of China,No.41671339
文摘Under the background of China's rapid urbanization, study on comparative analysis of the spatial structure of urban agglomerations between China and the US can provide the policy proposals of space optimization for the Chinese government. Taking the Beijing-Tianjin-Hebei(BTH) and Boswash as study area, we mapped the subpixel-level impervious surface coverage of the BTH and Boswash, respectively, from 1972 to 2011. Further, landscape metrics, gravitational model and spatial analysis were used to analyze the differences of the spatial structures between the BTH and Boswash. The results showed that(1) the area of the impervious surface increased rapidly in the BTH, while those remained stable in the Boswash.(2) The spatial structure of the BTH experienced different periods including isolated cities stage, dual-core cities stage, group cities stage and network-style cities stage, while those of the Boswash was more stable, and its spatial pattern showed a "point-axis" structure.(3) The spatial pattern of high-high assembling regions of the impervious surface exhibited a "standing pancake" feature in the BTH, while those showed a "multi-center, local aggregation and global discrete" feature in the Boswash.(4) All the percentages of the impervious surface of ecological, living, and production land of the BTH were higher than those of the Boswash. At last, from the perspective of space optimization of urban agglomeration, the development proposals for the BTH were proposed.
基金National Natural Science Foundation of China under Grant Nos.51738007,51808099the Fundamental Research Funds for the Central Universities under Grant No.DUT20RC(3)005。
文摘To achieve rational and precise seismic response predictions of large span spatial structures(LSSSs),the inherent non-uniformity and multidimensionality characteristics of earthquake ground motions should be properly taken into consideration.However,due to the limitations of available earthquake stations to record seismic rotational components,the effects of rocking and torsional earthquake components are commonly neglected in the seismic analyses of LSSSs.In this study,a newly developed method to extract the rocking and torsion components at any point along the area of a deployed dense array from the translational earthquake recordings is applied to obtain the rotational seismic inputs for a LSSS.The numerical model of an actual LSSS,the Dalian International Conference Center(DICC),is developed to study the influences of multi-support and multidimensional excitations on the seismic responses of LSSSs.The numerical results reveal that the non-uniformity and multidimensionality of ground motion input can considerably affect the dynamic response of the DICC.The specific degree of influence on the overall and local structural displacements,deformations and forces are comprehensively investigated and discussed.
文摘High spatial frequency laser induced periodic surface structures(HSFLs)on silicon substrates are often developed on flat surfaces at low fluences near ablation threshold of 0.1 J/cm2,seldom on microstructures or microgrooves at relatively higher fluences above 1 J/cm^2.This work aims to enrich the variety of HSFLs-containing hierarchical microstructures,by femtosecond laser(pulse duration:457 fs,wavelength:1045 nm,and repetition rate:100 kHz)in liquids(water and acetone)at laser fluence of 1.7 J/cm^2.The period of Si-HSFLs in the range of 110–200 nm is independent of the scanning speeds(0.1,0.5,1 and 2 mm/s),line intervals(5,15 and 20μm)of scanning lines and scanning directions(perpendicular or parallel to light polarization direction).It is interestingly found that besides normal HSFLs whose orientations are perpendicular to the direction of light polarization,both clockwise or anticlockwise randomly tilted HSFLs with a maximal deviation angle of 50°as compared to those of normal HSFLSs are found on the microstructures with height gradients.Raman spectra and SEM characterization jointly clarify that surface melting and nanocapillary waves play important roles in the formation of Si-HSFLs.The fact that no HSFLs are produced by laser ablation in air indicates that moderate melting facilitated with ultrafast liquid cooling is beneficial for the formation of HSFLs by LALs.On the basis of our findings and previous reports,a synergistic formation mechanism for HSFLs at high fluence was proposed and discussed,including thermal melting with the concomitance of ultrafast cooling in liquids,transformation of the molten layers into ripples and nanotips by surface plasmon polaritons(SPP)and second-harmonic generation(SHG),and modulation of Si-HSFLs direction by both nanocapillary waves and the localized electric field coming from the excited large Si particles.
基金supports from the National Natural Science Foundation of China(12074123,12174108)the Foundation of‘Manufacturing beyond limits’of Shanghai‘Talent Program'of Henan Academy of Sciences.
文摘Femtosecond laser-induced periodic surface structures(LIPSS)have been extensively studied over the past few decades.In particular,the period and groove width of high-spatial-frequency LIPSS(HSFL)is much smaller than the diffraction limit,making it a useful method for efficient nanomanufacturing.However,compared with the low-spatial-frequency LIPSS(LSFL),the structure size of the HSFL is smaller,and it is more easily submerged.Therefore,the formation mechanism of HSFL is complex and has always been a research hotspot in this field.In this study,regular LSFL with a period of 760 nm was fabricated in advance on a silicon surface with two-beam interference using an 800 nm,50 fs femtosecond laser.The ultrafast dynamics of HSFL formation on the silicon surface of prefabricated LSFL under single femtosecond laser pulse irradiation were observed and analyzed for the first time using collinear pump-probe imaging method.In general,the evolution of the surface structure undergoes five sequential stages:the LSFL begins to split,becomes uniform HSFL,degenerates into an irregular LSFL,undergoes secondary splitting into a weakly uniform HSFL,and evolves into an irregular LSFL or is submerged.The results indicate that the local enhancement of the submerged nanocavity,or the nanoplasma,in the prefabricated LSFL ridge led to the splitting of the LSFL,and the thermodynamic effect drove the homogenization of the splitting LSFL,which evolved into HSFL.
基金Supported by the"Chen Guang"Project of Shanghai Municipal Education Commission(No.10CG52)the Shanghai Education Development Foundation(No.11YZ155)the National Natural Science Foundation of China(Nos.41206124,41541024)
文摘Food web structures are well known to vary widely among ecosystems. Moreover, many food web studies of lakes have generally attempted to characterize the overall food web structure and have largely ignored internal spatial and environmental variations. In this study, we hypothesize that there is a high degree of spatial heterogeneity within an ecosystem and such heterogeneity may lead to strong variations in environmental conditions and resource availability, in turn resulting in dif ferent trophic pathways. Stable carbon and nitrogen isotopes were employed for the whole food web to describe the structure of the food web in different sub-basins within Taihu Lake. This lake is a large eutrophic freshwater lake that has been intensively managed and highly influenced by human activities for more than 50 years. The results show significant isotopic dif ferences between basins with dif ferent environmental characteristics. Such differences likely result from isotopic baseline dif ferences combining with a shift in food web structure. Both are related to local spatial heterogeneity in nutrient loading in waters. Such variation should be explicitly considered in future food web studies and ecosystem-based management in this lake ecosystem.
基金supported by the basic and forward-looking project(No.2023YQX302)。
文摘Traditional deconvolution methods based on single-channel inversion do not consider the spatial structural relation between channels,and hence,they yield high-resolution results with the existing transverse inconsistency or discontinuity.Therefore,in this study,the local dip angle was used to obtain the structural information and construct the spatial structurally constraint operator.This operator is then introduced into multichannel deconvolution as a regularization operator to improve the resolution and maintain the transverse continuity of seismic data.Model tests and actual seismic data processing have demonstrated the effectiveness and practicability of this method.
基金Under the auspices of the Key Program of National Natural Science Foundation of China(No.42030409)。
文摘Multi-source data fusion provides high-precision spatial situational awareness essential for analyzing granular urban social activities.This study used Shanghai’s catering industry as a case study,leveraging electronic reviews and consumer data sourced from third-party restaurant platforms collected in 2021.By performing weighted processing on two-dimensional point-of-interest(POI)data,clustering hotspots of high-dimensional restaurant data were identified.A hierarchical network of restaurant hotspots was constructed following the Central Place Theory(CPT)framework,while the Geo-Informatic Tupu method was employed to resolve the challenges posed by network deformation in multi-scale processes.These findings suggest the necessity of enhancing the spatial balance of Shanghai’s urban centers by moderately increasing the number and service capacity of suburban centers at the urban periphery.Such measures would contribute to a more optimized urban structure and facilitate the outward dispersion of comfort-oriented facilities such as the restaurant industry.At a finer spatial scale,the distribution of restaurant hotspots demonstrates a polycentric and symmetric spatial pattern,with a developmental trend radiating outward along the city’s ring roads.This trend can be attributed to the efforts of restaurants to establish connections with other urban functional spaces,leading to the reconfiguration of urban spaces,expansion of restaurant-dedicated land use,and the reorganization of associated commercial activities.The results validate the existence of a polycentric urban structure in Shanghai but also highlight the instability of the restaurant hotspot network during cross-scale transitions.