The swelling behavior and stability in solid electrolyte interphase(SEI)have been proved to determine the battery cycle life.A high swollen,unstable SEI shows a high permeability to electrolyte,which results in the ra...The swelling behavior and stability in solid electrolyte interphase(SEI)have been proved to determine the battery cycle life.A high swollen,unstable SEI shows a high permeability to electrolyte,which results in the rapid battery performance degradation.Here,we customize two SEIs with different spatial structures(bilayer and mosaic)by simply regulating the proportion of additive fluoroethylene carbonate.Surprisingly,due to the uniform distribution of dense inorganic nano-crystals in the inner,the bilayer SEI exhibits low-swelling and excellent mechanical properties,so the undesirable side reactions of the electrolyte are effectively suppressed.In addition,we put forward the growth rate of swelling ratio(GSR)as a key indicator to reveal the swelling change in SEI.The GSR of bilayer SEI merely increases from1.73 to 3.16 after the 300th cycle,which enables the corresponding graphite‖Li battery to achieve longer cycle stability.The capacity retention is improved by 47.5% after 300 cycles at 0.5 C.The correlation among SEI spatial structure,swelling behavior,and battery performance provides a new direction for electrolyte optimization and interphase structure design of high energy density batteries.展开更多
We investigate the chaotic and regular spatial structures of Bose–Einstein condensates(BECs)with a spatially modulated atom-atom interaction and without an external trapping potential.A BEC with a spatially modulated...We investigate the chaotic and regular spatial structures of Bose–Einstein condensates(BECs)with a spatially modulated atom-atom interaction and without an external trapping potential.A BEC with a spatially modulated atom-atom interaction is equivalent to being constrained by a nonlinear optical lattice.Theoretical analyses show the existence of a steady atomic current in the BEC with a spatially varying phase.Under perturbative conditions,the Melnikov chaos criteria of BECs with a spatially varying phase and a constant one are theoretically obtained,respectively.When the perturbative conditions cannot be satisfied,for a repulsive BEC with a spatially varying phase,numerical simulations demonstrate that changing the initial condition can eliminate the chaotic spatial structure and then the system transitions into a biperiodic spatial structure.Increasing the chemical potential can result in a transition from the biperiodic spatial structure to a single-periodic spatial structure.For an attractive BEC with a spatially varying phase,numerical simulations show that decreasing the chemical potential can lead to a high atomic density,but when the wave number of the laser inducing the optical Feshbach resonance exceeds a critical value,the atomic density falls back to a finite range.Regardless of whether the BEC has a spatially varying phase or a constant one,modulating the laser wave number can effectively suppress the chaotic spatial structure in the BEC and then force it into a regular spatial structure.展开更多
We tested the effectiveness of the gradual removal of Scots pine(Pinus sylvestris L.)in former plantations of this species in Roztocze National Park(SE Poland)to support the restoration of natural herbaceous flora and...We tested the effectiveness of the gradual removal of Scots pine(Pinus sylvestris L.)in former plantations of this species in Roztocze National Park(SE Poland)to support the restoration of natural herbaceous flora and forest structure.We compared 0.5-ha study plots subjected to selective removal of pine trees with control plots excluded from any kind of human intervention for half a century.The observed changes in forest floor vegetation in the converted plots showed naturalization towards habitat-specific species.However,differences in the spatial distribution of trees between the treatment and control plots showed no universal pattern and revealed subtle but positive shifts from regular to random or clustered patterns.The mean tree diameters were higher in plots subjected to Scots pine removal,which resulted from the vigorous growth of tree species,consistent with habitat types.We conclude that forest restoration through the removal of planted trees can support the naturalization of former Scots pine plantations in protected areas.However,the selection of an appropriate method and its intensity are of vital importance.Methods that resemble typical management practices,such as selection thinning,are not always the best approach,as they may preserve or even increase the regular distribution of trees.Therefore,for restoration purposes,we recommend testing other methods that increase spatial heterogeneity,including systematic cutting or emulating natural disturbances.In addition,low-intensity thinning may not be sufficient to support the restoration of natural forest floor vegetation and the variability in forest stand structure.展开更多
In the new phase of sustainable development,agriculture is seeking sustainable management of the water-land-energy-economy-environment-food nexus.At present,there are few studies on optimizing crop planting structure ...In the new phase of sustainable development,agriculture is seeking sustainable management of the water-land-energy-economy-environment-food nexus.At present,there are few studies on optimizing crop planting structure and analyzing its spatial layout with consideration of natural and socio-economic factors.Herein,we proposed a framework for addressing this issue.In this framework,the NSGA-II algorithm was used to construct the multi-objective optimization model of crop planting structures with consideration of water and energy consumption,greenhouse gas(GHG)emissions,economic benefits,as well as food,land,and water security constraints,while the model for planting spatial layout optimization was established with consideration of crop suitability using the MaxEnt model and the improved Hungarian algorithm.This framework was further applied in the Black Soil Region of Northeast China(BSRNC)for analyzing optimized crop planting structures and spatial layouts of three main crops(rice,maize,and soybean)under various scenarios.This study showed that the sown area of rice in the BSRNC decreased by up to 40.73%and 35.30%in the environmental priority scenario and economic-environmental balance scenario,respectively,whereas that of soybean increased by up to 112.44%and 63.31%,respectively.In the economic priority scenario,the sown area of rice increased by up to 93.98%.Expanding the sown area of soybean was effective in reducing GHG emissions.On the contrary,rice production led to greater environmental costs though it provided higher economic returns.Among the three crops,maize exhibited an advantage in balancing environmental and economic benefits.Hegang-Jixi area in the northeast of the BSRNC was identified as the key area with the most intense crop planting transfer among different scenarios.Overall,this framework provides a new methodology for optimizing crop planting structures and spatial layouts with con-sideration of the nexus of various factors.Moreover,the case study demonstrates the applicability and expansion potential of the framework in the fields of sustainable agricultural development and food security assurance.展开更多
With the increment of the complexity of structural systems and the span of spatial structures, the interactions between parts of the structures, especially between some flexible substructures, become too complex to be...With the increment of the complexity of structural systems and the span of spatial structures, the interactions between parts of the structures, especially between some flexible substructures, become too complex to be analyzed clearly. In this paper, taking an actual gymnasium of a long-span spatial steel-cable-membrane hybrid structure as the calculation model, the static and dynamic analyses of the hybrid structures are performed by employing the global analysis of the whole hybrid structure and the substructural analysis of the truss arch substructure, the cable-membrane substructure, etc. In addition, the comparison of stresses and displacements of structural members in the global and substructural analyses is made. The numerical results show that serious errors exist in the substructural analysis of the hybrid structure, and the global analysis is necessary for the hybrid structure under the excitation of static loads and seismic loads.展开更多
Background:As is widely known,an increasing number of forest areas were managed to preserve and enhance the health of forest ecosystems.However,previous research on forest management has often overlooked the importanc...Background:As is widely known,an increasing number of forest areas were managed to preserve and enhance the health of forest ecosystems.However,previous research on forest management has often overlooked the importance of structure-based.Aims:Our objectives were to define the direction of structure-based forest management.Subsequently,we investigated the relationships between forest structure and the regeneration,growth,and mortality of trees under different thinning treatments.Ultimately,the drivers of forest structural change were explored.Methods:On the basis of 92 sites selected from northeastern China,with different recovery time (from 1 to 15years) and different thinning intensities (0–59.9%) since the last thinning.Principal component analysis (PCA)identified relationships among factors determining forest spatial structure.The structural equation model (SEM)was used to analyze the driving factors behind the changes in forest spatial structure after thinning.Results:Light thinning (0–20%trees removed) promoted forest regeneration,and heavy thinning (over 35% of trees removed) facilitated forest growth.However,only moderate thinning (20%–35%trees removed) created a reasonable spatial structure.While dead trees were clustered,and they were hardly affected by thinning intensity.Additionally,thinning intensity,recovery time,and altitude indirectly improve the spatial structure of the forest by influencing diameter at breast height (DBH) and canopy area.Conclusion:Creating larger DBH and canopy area through thinning will promote the formation of complex forest structures,which cultivates healthy and stable forests.展开更多
Structured illumination microscopy(SIM)achieves super-resolution(SR)by modulating the high-frequency information of the sample into the passband of the optical system and subsequent image reconstruction.The traditiona...Structured illumination microscopy(SIM)achieves super-resolution(SR)by modulating the high-frequency information of the sample into the passband of the optical system and subsequent image reconstruction.The traditional Wiener-filtering-based reconstruction algorithm operates in the Fourier domain,it requires prior knowledge of the sinusoidal illumination patterns which makes the time-consuming procedure of parameter estimation to raw datasets necessary,besides,the parameter estimation is sensitive to noise or aberration-induced pattern distortion which leads to reconstruction artifacts.Here,we propose a spatial-domain image reconstruction method that does not require parameter estimation but calculates patterns from raw datasets,and a reconstructed image can be obtained just by calculating the spatial covariance of differential calculated patterns and differential filtered datasets(the notch filtering operation is performed to the raw datasets for attenuating and compensating the optical transfer function(OTF)).Experiments on reconstructing raw datasets including nonbiological,biological,and simulated samples demonstrate that our method has SR capability,high reconstruction speed,and high robustness to aberration and noise.展开更多
Traditional deconvolution methods based on single-channel inversion do not consider the spatial structural relation between channels,and hence,they yield high-resolution results with the existing transverse inconsiste...Traditional deconvolution methods based on single-channel inversion do not consider the spatial structural relation between channels,and hence,they yield high-resolution results with the existing transverse inconsistency or discontinuity.Therefore,in this study,the local dip angle was used to obtain the structural information and construct the spatial structurally constraint operator.This operator is then introduced into multichannel deconvolution as a regularization operator to improve the resolution and maintain the transverse continuity of seismic data.Model tests and actual seismic data processing have demonstrated the effectiveness and practicability of this method.展开更多
With the deepening of the Guangdong-Hong Kong-Macao Greater Bay Area strategy and the accelerated integration and development of the east and west sides of the Pearl River Estuary,Zhuhai’s hub position is becoming mo...With the deepening of the Guangdong-Hong Kong-Macao Greater Bay Area strategy and the accelerated integration and development of the east and west sides of the Pearl River Estuary,Zhuhai’s hub position is becoming more and more prominent.The city of Zhuhai has a dense water network and is divided into two urban areas,the east and the west,under the influence of the Mordor Gate waterway.Based on the theory of spatial syntax,this paper carries out an analytical study on the urban spatial structure of Zhuhai,identifies the distribution characteristics of urban POIs,and provides theoretical support for the urban development of Zhuhai.展开更多
Megaregion has emerged as a global urban form,typically based on the polycentric strategy to enhance regional development.How to measure megaregional spatial structure and discriminate different roles of cities has be...Megaregion has emerged as a global urban form,typically based on the polycentric strategy to enhance regional development.How to measure megaregional spatial structure and discriminate different roles of cities has become increasingly important to enrich the knowledge of the formation of a megaregion.Meanwhile,various indices have been used to identify vital nodes in the field of complex network.Which indices,however,are suitable for megaregion analysis remain unsolved.To address this requirement,this study first reviewed the typical indices for identifying vital nodes in the complex network theory,and pointed out that in a weighted city network scenario,weighted degree centrality,hub&authority score,and S-core decomposition(which represent network centrality,connectivity,and structures,respectively)are suitable for analyzing megaregional spatial structures.Then,we explored the city hierarchies and spatial structure in Guangdong Province,China,using the three indices.The hierarchical structure of the weighted city network in Guangdong Province had been identified using S-core decomposition.From the perspective of polycentric structure,Guangzhou and Shenzhen have the strongest node degrees and strength of mobility flows,while the Guangzhou-Dongguan-Shenzhen corridor has been identified via the hub&authority score which is designed to evaluate the connectivity in a weighted network.Moreover,we conducted a comparison analysis of three indices.The findings of this study not only enrich the understanding of city hierarchies and the structure of a megaregion,but also highlight that although various indices are available,they should be applied selectively in accordance with the study context.展开更多
In the field of civil engineering, magnetorheological fluid (MRF) damper-based semi-active control systems have received considerable attention for use in protecting structures from natural hazards such as strong ea...In the field of civil engineering, magnetorheological fluid (MRF) damper-based semi-active control systems have received considerable attention for use in protecting structures from natural hazards such as strong earthquakes and high winds. In this paper, the MRF damper-based semi-active control system is applied to a long-span spatially extended structure and its feasibility is discussed. Meanwhile, a _trust-region method based instantaneous optimal semi-active control algorithm (TIOC) is proposed to improve the performance of the semi-active control system in a multiple damper situation. The proposed TIOC describes the control process as a bounded constraint optimization problem, in which an optimal semi- active control force vector is solved by the trust-region method in every control step to minimize the structural responses. A numerical example of a railway station roof structure installed with MRF-04K dampers is presented. First, a modified Bouc- Wen model is utilized to describe the behavior of the selected MRF-04K damper. Then, two semi-active control systems, including the well-known clipped-optimal controller and the proposed TIOC controller, are considered. Based on the characteristics of the long-span spatially extended structure, the performance of the control system is evaluated under uniform earthquake excitation and travelling-wave excitation with different apparent velocities. The simulation results indicate that the MR fluid damper-based semi-active control systems have the potential to mitigate the responses of full-scale long-span spatially extended structures under earthquake hazards. The superiority of the proposed TIOC controller is demonstrated by comparing its control effectiveness with the clipped-optimal controller for several different cases.展开更多
We report a comprehensive numerical study of super resolution (SR) structured illumination microscopy (SIM) utilizing the classic Heintzmann-Cremer SIM process and algorithm. In particular, we investigated the impact ...We report a comprehensive numerical study of super resolution (SR) structured illumination microscopy (SIM) utilizing the classic Heintzmann-Cremer SIM process and algorithm. In particular, we investigated the impact of the diffraction limit of the underlying imaging system on the optimal SIM grating frequency that can be used to obtain the highest SR enhancement with non-continuous spatial frequency support. Besides confirming the previous theoretical and experimental work that SR-SIM can achieve an enhancement close to 3 times the diffraction limit with grating pattern illuminations, we also observe and report a series of more subtle effects of SR-SIM with non-continuous spatial frequency support. Our simulations show that when the SIM grating frequency exceeds twice that of the diffraction limit, the higher SIM grating frequency can help achieve a higher SR enhancement for the underlying imaging systems whose diffraction limit is low, though this enhancement is obtained at the cost of losing resolution at some lower resolution targets. Our simulations also show that, for underlying imaging systems with high diffraction limits, however, SR-SIM grating frequencies above twice the diffraction limits tend to bring no significant extra enhancement. Furthermore, we observed that there exists a limit grating frequency above which the SR enhancement effect is lost, and the reconstructed images essentially have the same resolution as the one obtained directly from the underlying imaging system without using the SIM process.展开更多
The Long Museum,with its distinctive T-shaped“umbrella-vault”structure,offers a rich array of spatial experiences.This article delves into space from both structural and compositional perspectives.As the constructio...The Long Museum,with its distinctive T-shaped“umbrella-vault”structure,offers a rich array of spatial experiences.This article delves into space from both structural and compositional perspectives.As the construction mediator,the umbrella vault embodies the consistency of construction and implies the causality of the surface.Presented as an element,the space flows freely,showing diverse fields and order.In terms of the liberation of its meaning,the space offers static perception and dynamic experience,creating a rich exhibition atmosphere.As a distinct entity,the umbrella-vault presents the physical nature,and the dialogue between the Long Museum and the city makes it a museum of art for the people.展开更多
Spatial structure of overlying strata existed and evolved dynamically with the exploitation scope (boundary conditions) changes in coal mines and to induce rockburst. Based on the“key strata”theory, the integrated...Spatial structure of overlying strata existed and evolved dynamically with the exploitation scope (boundary conditions) changes in coal mines and to induce rockburst. Based on the“key strata”theory, the integrated spatial structure of overlying strata was put forward, which was composed of “O-X” structure in the plane section and “F” structure in the vertical section. The formation and ongoing instability of the“O-X”and“F”structures were called as dynamic evolution cycle of the overlying strata. Three basic categories of “O-X”, “F” and “T” structures were defined, and the strata behaviors of each spatial structure were analyzed. According to energy theory, mechanism of rockburst induced by spatial structure instability was discussed. The research expanded the scope of traditional ground pressure theory and provided a guide for the prevention of rockburst and mining tremors induced by structure instability of overlying展开更多
[Objective] Surveys of phytoplankton were taken during the autumn of 2009 along Anhui-Jiangsu reaches of the Yangtze River to understand the species com- position and their spatial distributions. [Method] Phytoplankto...[Objective] Surveys of phytoplankton were taken during the autumn of 2009 along Anhui-Jiangsu reaches of the Yangtze River to understand the species com- position and their spatial distributions. [Method] Phytoplankton species, their quanti- ties, biomass and the Mcnaughton's dominance indices were all measured and their spatial distribution characteristics were determined using cluster analysis. [Result] There were 27 species, belonging to 5 phyla, namely Chlorophyta, Bacillariophyta, Cyanophyta, Euglenophyta and Cryptophyta, of phytoplankton collected and identified from the surveys. Results showed that Bacillariophyta was the predominant phyto- plankton with 16 species collected which accounted for 59.3% of the total species identified. The number of species collected belonging to Chlorophyta, Cyanophyta, Cryptophyta and Euglenophyta were 6, 2, 2, and 1, accounting for 22.2%, 7.4%, 7.4% and 3.7% of the total number identified, respectively. At the species level, the predominant species were Fragilaria crotonensis, Melosira italica, Navicula crypto- cephala, Cyclotella striata and Chroomonas acuta. Phytoplankton abundance was ranging from 5.68×10^4 to 7.08×10^4 cells/L with its average of 6.01×10^4 cells/L. Phyto- plankton biomass was ranging from 30.43 to 34.73 μg/L with its average of 32.46 μg/L. Compared with the previous reports, the number of phytoplankton species was decreased but its abundance and biomass was increased along the Jiangsu reach of the Yangtze River. However, Bacillariophyta species were still the predominant species and the phytoplankton community structure had not significantly changed from the previous studies. [Conclusion] These results might be explained as that the water quality in the Yangtze River was deteriorated but had not come to the worst. The results of similarity analysis gave two clusters of phytoplankton community as Nanjing, Wuhu and Jiangyin sampling sites were clustered into one group and Tongling and Anqing were clustered into another group.展开更多
Along with the coming of the low-carbon era, people have paid more and more attention to the natural environment and eco-tourism will embrace a huge development. From the perspectives of the market relationship of sup...Along with the coming of the low-carbon era, people have paid more and more attention to the natural environment and eco-tourism will embrace a huge development. From the perspectives of the market relationship of supply-demand in economics and of field competition in physics, this paper has discussed upon the present status of the spatial structure of eco-tourism, and analyzed the relationship between supply-demand and field, in order to clarify the direction for the balance between supply and demand in the field and to guide eco-tourism to the way of sustainable development.展开更多
Spatial structure of rural tourism in the urban agglomerations of Wuhan was analyzed by comprehensively studying relevant documents about rural tourism,and reviewing previous researches on the concept and spatial stru...Spatial structure of rural tourism in the urban agglomerations of Wuhan was analyzed by comprehensively studying relevant documents about rural tourism,and reviewing previous researches on the concept and spatial structure of rural tourism.Through investigating rural tourist resources in the study area,resource advantages and characteristics of 9 cities were introduced,and the Gini Coefficient was taken to quantitatively analyze spatial patterns of its rural tourist villages,the obviously imbalanced concentration of these villages was pointed out.By measuring connectivity and accessibility of regional spaces in the study area,its traffic connectivity was proved moderate,and accessibility of each tourist village and town was fine.Then an optimized spatial structure was proposed for the rural tourism development in Wuhan Urban Agglomerations,that is,"one core,one belt and three districts".展开更多
Taking Dongzhai Town in Ningwu County of Shanxi Province as example, this essay explores the spatial structure of towns and villages system from the following perspectives: scale structure, function structure, structu...Taking Dongzhai Town in Ningwu County of Shanxi Province as example, this essay explores the spatial structure of towns and villages system from the following perspectives: scale structure, function structure, structural characteristics of village land-use, and spatial distribution characteristics of Dongzhai villages. There are 5 grades of villages according to their scales, that is, villages have a population over 1 000, between 500 and 1 000, between 100 and 500, less than 100, less than 50. The function structure of Dongzhai Town is divided into 3 grades, Grade 1 (core village), is village with such functions as tourist service, transportation and distribution function. Grade 2 (characteristic village), is agricultural settlement with functions such as industrial function, transportation service, tourist service, and forestry function. Grade 3 (general village), is agricultural settlements with prominent agricultural functions (dry farming). This essay also predicts the change and responses of this town based on the population forecast models. It is predicted that the population of Jiancheng District will reach 4 750 in 2010, 6 400 in 2015, 8 700 in 2020. Returning farmland to forests in Fenhe River valley can ensure the conservation of water resources and the development of tourist service. The proportion of forest land, especially bushes land, and proportion of grassland, especially artificial grass will increase dramatically. The number of slope land will be down a bit. The Lands for settlement and transportation will increase with the development of ecological migration and tourist service. Specialized land such as water area and places of interest will skyrocket. Village patterns and spatial distribution under the system of towns and villages will be improved as well.展开更多
Many attentions for structural synthesis are paid to planar linkages and parallel mechanisms, while design novel pyramid deployable truss structure(PDTS) of satellite SAR mainly depends on experience of designer. To...Many attentions for structural synthesis are paid to planar linkages and parallel mechanisms, while design novel pyramid deployable truss structure(PDTS) of satellite SAR mainly depends on experience of designer. To design novel configuration of PDTS, a two-step topology structure synthesis and analysis approach is proposed. Firstly, a conceptual configuration of PDTS is synthesized. Weighted graph and weighted adjacency matrix are established to realize topological description for PDTS. Graph properties are then summarized to distinguish differentia between PDTS and other type structures. According to graph properties, a procedure for synthesis conceptual configuration of PDTS is presented. Secondly, join relationship of components in a PDTS is analyzed. Kinematic chain and corresponding incidence/adjacency matrix are employed to analyze join relationship of PDTS. Properties and simplified rules of kinematic chain are extracted to construct kinematic chain. A procedure for construction kinematic chain of PDTS is then established. Finally, with this two-step approach all 11 rectangular pyramid deployable structures whose folded state is planar are discovered and their kinematic chains are constructed. Based on synthesis results, a novel deployable support structure for satellite SAR is designed. The proposed research can be applied to obtain some novel PDTSs, which is of great importance to design some novel deployable support structures for satellite SAR antenna.展开更多
Diversity-biomass relationships(DBRs)in terrestrial ecosystems tend to vary across spatial scales,but,particularly in hyperdiverse forests,the mechanisms driving these trends remain uncertain.Until now,few have simult...Diversity-biomass relationships(DBRs)in terrestrial ecosystems tend to vary across spatial scales,but,particularly in hyperdiverse forests,the mechanisms driving these trends remain uncertain.Until now,few have simultaneously investigated the connections between tree species diversity,stand structural diversity,mycorrhizal associations,and ecosystem functioning.In addition,DBRs have only been studied at limited spatial scales,with limited focus on the direct and indirect effects of environmental factors.We addressed these research gaps using a 30-ha forest dynamics plot located in Pu'er City,Southwest China.Through piecewise structural equation models,we quantified the direct effects of tree species diversity(α,β,γ),stand structural diversity,mycorrhizal associations(AM,EcM),and the environmental factors(soil fertility and topography),as well as the indirect effects of the environmental factors on aboveground tree biomass across spatial scales ranging from 400 to 230,400 m^(2).We hypothesized that complex interactions among these factors underpin the variation in DBRs in natural ecosystems across spatial scales.Our results showed that environmental conditions indirectly affected the tree biomass via changes in tree species diversity,and these effects became stronger as the spatial scale increased.At small to moderate spatial scales,environmental factors were more predictive of tree biomass than tree species diversity(or its components);the effects of stand structural diversity on biomass also gradually increased with spatial scale.Conversely,from the intermediate to the largest spatial scales,mycorrhizal associations gradually became the best predictors of DBR dynamics.Our research offers novel empirical evidence demonstrating the importance of environmental conditions,structural diversity,and mycorrhizal associations in shaping cross-scale DBRs.Future comprehensive studies should consider these factors to assess the mechanisms shaping scale-dependent DBRs in complex natural ecosystems.展开更多
基金supported by the National Natural Science Foundation of China(22369011)the Gansu Key Research and Development Program(23YFGA0053 and 24YFGA025)the Hongliu Outstanding Youth Talent Support Program of Lanzhou University of Technology and Postgraduate research exploration project of Lanzhou University of Technology(256017)。
文摘The swelling behavior and stability in solid electrolyte interphase(SEI)have been proved to determine the battery cycle life.A high swollen,unstable SEI shows a high permeability to electrolyte,which results in the rapid battery performance degradation.Here,we customize two SEIs with different spatial structures(bilayer and mosaic)by simply regulating the proportion of additive fluoroethylene carbonate.Surprisingly,due to the uniform distribution of dense inorganic nano-crystals in the inner,the bilayer SEI exhibits low-swelling and excellent mechanical properties,so the undesirable side reactions of the electrolyte are effectively suppressed.In addition,we put forward the growth rate of swelling ratio(GSR)as a key indicator to reveal the swelling change in SEI.The GSR of bilayer SEI merely increases from1.73 to 3.16 after the 300th cycle,which enables the corresponding graphite‖Li battery to achieve longer cycle stability.The capacity retention is improved by 47.5% after 300 cycles at 0.5 C.The correlation among SEI spatial structure,swelling behavior,and battery performance provides a new direction for electrolyte optimization and interphase structure design of high energy density batteries.
基金Projects supported by the Natural Science Foundation of Hunan Province(2016JJ6020)the Scientific Research Fund of Hunan Provincial Education Department(18A436)the Scientific Research Fund of Hunan First normal University(XYS13N16)。
文摘We investigate the chaotic and regular spatial structures of Bose–Einstein condensates(BECs)with a spatially modulated atom-atom interaction and without an external trapping potential.A BEC with a spatially modulated atom-atom interaction is equivalent to being constrained by a nonlinear optical lattice.Theoretical analyses show the existence of a steady atomic current in the BEC with a spatially varying phase.Under perturbative conditions,the Melnikov chaos criteria of BECs with a spatially varying phase and a constant one are theoretically obtained,respectively.When the perturbative conditions cannot be satisfied,for a repulsive BEC with a spatially varying phase,numerical simulations demonstrate that changing the initial condition can eliminate the chaotic spatial structure and then the system transitions into a biperiodic spatial structure.Increasing the chemical potential can result in a transition from the biperiodic spatial structure to a single-periodic spatial structure.For an attractive BEC with a spatially varying phase,numerical simulations show that decreasing the chemical potential can lead to a high atomic density,but when the wave number of the laser inducing the optical Feshbach resonance exceeds a critical value,the atomic density falls back to a finite range.Regardless of whether the BEC has a spatially varying phase or a constant one,modulating the laser wave number can effectively suppress the chaotic spatial structure in the BEC and then force it into a regular spatial structure.
基金financially supported by a grant from the Forest Fund of the Polish State Forests(Grant No.EZ.0290.1.16.2021).
文摘We tested the effectiveness of the gradual removal of Scots pine(Pinus sylvestris L.)in former plantations of this species in Roztocze National Park(SE Poland)to support the restoration of natural herbaceous flora and forest structure.We compared 0.5-ha study plots subjected to selective removal of pine trees with control plots excluded from any kind of human intervention for half a century.The observed changes in forest floor vegetation in the converted plots showed naturalization towards habitat-specific species.However,differences in the spatial distribution of trees between the treatment and control plots showed no universal pattern and revealed subtle but positive shifts from regular to random or clustered patterns.The mean tree diameters were higher in plots subjected to Scots pine removal,which resulted from the vigorous growth of tree species,consistent with habitat types.We conclude that forest restoration through the removal of planted trees can support the naturalization of former Scots pine plantations in protected areas.However,the selection of an appropriate method and its intensity are of vital importance.Methods that resemble typical management practices,such as selection thinning,are not always the best approach,as they may preserve or even increase the regular distribution of trees.Therefore,for restoration purposes,we recommend testing other methods that increase spatial heterogeneity,including systematic cutting or emulating natural disturbances.In addition,low-intensity thinning may not be sufficient to support the restoration of natural forest floor vegetation and the variability in forest stand structure.
基金funded by the Foundation for Innovative Research Groups of the National Natural Science Foundation of China(Grant No.72221002)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA28060200)National Natural Science Foundation of Youth Project(Grant No.72303087).
文摘In the new phase of sustainable development,agriculture is seeking sustainable management of the water-land-energy-economy-environment-food nexus.At present,there are few studies on optimizing crop planting structure and analyzing its spatial layout with consideration of natural and socio-economic factors.Herein,we proposed a framework for addressing this issue.In this framework,the NSGA-II algorithm was used to construct the multi-objective optimization model of crop planting structures with consideration of water and energy consumption,greenhouse gas(GHG)emissions,economic benefits,as well as food,land,and water security constraints,while the model for planting spatial layout optimization was established with consideration of crop suitability using the MaxEnt model and the improved Hungarian algorithm.This framework was further applied in the Black Soil Region of Northeast China(BSRNC)for analyzing optimized crop planting structures and spatial layouts of three main crops(rice,maize,and soybean)under various scenarios.This study showed that the sown area of rice in the BSRNC decreased by up to 40.73%and 35.30%in the environmental priority scenario and economic-environmental balance scenario,respectively,whereas that of soybean increased by up to 112.44%and 63.31%,respectively.In the economic priority scenario,the sown area of rice increased by up to 93.98%.Expanding the sown area of soybean was effective in reducing GHG emissions.On the contrary,rice production led to greater environmental costs though it provided higher economic returns.Among the three crops,maize exhibited an advantage in balancing environmental and economic benefits.Hegang-Jixi area in the northeast of the BSRNC was identified as the key area with the most intense crop planting transfer among different scenarios.Overall,this framework provides a new methodology for optimizing crop planting structures and spatial layouts with con-sideration of the nexus of various factors.Moreover,the case study demonstrates the applicability and expansion potential of the framework in the fields of sustainable agricultural development and food security assurance.
文摘With the increment of the complexity of structural systems and the span of spatial structures, the interactions between parts of the structures, especially between some flexible substructures, become too complex to be analyzed clearly. In this paper, taking an actual gymnasium of a long-span spatial steel-cable-membrane hybrid structure as the calculation model, the static and dynamic analyses of the hybrid structures are performed by employing the global analysis of the whole hybrid structure and the substructural analysis of the truss arch substructure, the cable-membrane substructure, etc. In addition, the comparison of stresses and displacements of structural members in the global and substructural analyses is made. The numerical results show that serious errors exist in the substructural analysis of the hybrid structure, and the global analysis is necessary for the hybrid structure under the excitation of static loads and seismic loads.
基金financially supported by the Innovation Foundation for Doctoral Program of Forestry Engineering of Northeast Forestry University,grant number:LYGC202117the China Scholarship Council(CSC),grant number:202306600046+1 种基金the Research and Development Plan of Applied Technology in Heilongjiang Province of China,grant number:GA19C006Research and Demonstration on Functional Improvement Technology of Forest Ecological Security Barrier in Heilongjiang Province,grant number:GA21C030。
文摘Background:As is widely known,an increasing number of forest areas were managed to preserve and enhance the health of forest ecosystems.However,previous research on forest management has often overlooked the importance of structure-based.Aims:Our objectives were to define the direction of structure-based forest management.Subsequently,we investigated the relationships between forest structure and the regeneration,growth,and mortality of trees under different thinning treatments.Ultimately,the drivers of forest structural change were explored.Methods:On the basis of 92 sites selected from northeastern China,with different recovery time (from 1 to 15years) and different thinning intensities (0–59.9%) since the last thinning.Principal component analysis (PCA)identified relationships among factors determining forest spatial structure.The structural equation model (SEM)was used to analyze the driving factors behind the changes in forest spatial structure after thinning.Results:Light thinning (0–20%trees removed) promoted forest regeneration,and heavy thinning (over 35% of trees removed) facilitated forest growth.However,only moderate thinning (20%–35%trees removed) created a reasonable spatial structure.While dead trees were clustered,and they were hardly affected by thinning intensity.Additionally,thinning intensity,recovery time,and altitude indirectly improve the spatial structure of the forest by influencing diameter at breast height (DBH) and canopy area.Conclusion:Creating larger DBH and canopy area through thinning will promote the formation of complex forest structures,which cultivates healthy and stable forests.
基金funded by the National Natural Science Foundation of China(62125504,61827825,and 31901059)Zhejiang Provincial Ten Thousand Plan for Young Top Talents(2020R52001)Open Project Program of Wuhan National Laboratory for Optoelectronics(2021WNLOKF007).
文摘Structured illumination microscopy(SIM)achieves super-resolution(SR)by modulating the high-frequency information of the sample into the passband of the optical system and subsequent image reconstruction.The traditional Wiener-filtering-based reconstruction algorithm operates in the Fourier domain,it requires prior knowledge of the sinusoidal illumination patterns which makes the time-consuming procedure of parameter estimation to raw datasets necessary,besides,the parameter estimation is sensitive to noise or aberration-induced pattern distortion which leads to reconstruction artifacts.Here,we propose a spatial-domain image reconstruction method that does not require parameter estimation but calculates patterns from raw datasets,and a reconstructed image can be obtained just by calculating the spatial covariance of differential calculated patterns and differential filtered datasets(the notch filtering operation is performed to the raw datasets for attenuating and compensating the optical transfer function(OTF)).Experiments on reconstructing raw datasets including nonbiological,biological,and simulated samples demonstrate that our method has SR capability,high reconstruction speed,and high robustness to aberration and noise.
基金supported by the basic and forward-looking project(No.2023YQX302)。
文摘Traditional deconvolution methods based on single-channel inversion do not consider the spatial structural relation between channels,and hence,they yield high-resolution results with the existing transverse inconsistency or discontinuity.Therefore,in this study,the local dip angle was used to obtain the structural information and construct the spatial structurally constraint operator.This operator is then introduced into multichannel deconvolution as a regularization operator to improve the resolution and maintain the transverse continuity of seismic data.Model tests and actual seismic data processing have demonstrated the effectiveness and practicability of this method.
基金funded by The Guangdong Province General Universities Young Innovative Talent Project(Grant No.2023WQNCX122)The Zhuhai Philosophy and Social Science Planning Project(Grant No.2023YBB049)。
文摘With the deepening of the Guangdong-Hong Kong-Macao Greater Bay Area strategy and the accelerated integration and development of the east and west sides of the Pearl River Estuary,Zhuhai’s hub position is becoming more and more prominent.The city of Zhuhai has a dense water network and is divided into two urban areas,the east and the west,under the influence of the Mordor Gate waterway.Based on the theory of spatial syntax,this paper carries out an analytical study on the urban spatial structure of Zhuhai,identifies the distribution characteristics of urban POIs,and provides theoretical support for the urban development of Zhuhai.
基金supported by the National Natural Science Foundation of China-Joint Programming Initiative Urban Europe[grant number 71961137003]the National Natural Science Foundation of China[grant numbers 42171449,42101464].
文摘Megaregion has emerged as a global urban form,typically based on the polycentric strategy to enhance regional development.How to measure megaregional spatial structure and discriminate different roles of cities has become increasingly important to enrich the knowledge of the formation of a megaregion.Meanwhile,various indices have been used to identify vital nodes in the field of complex network.Which indices,however,are suitable for megaregion analysis remain unsolved.To address this requirement,this study first reviewed the typical indices for identifying vital nodes in the complex network theory,and pointed out that in a weighted city network scenario,weighted degree centrality,hub&authority score,and S-core decomposition(which represent network centrality,connectivity,and structures,respectively)are suitable for analyzing megaregional spatial structures.Then,we explored the city hierarchies and spatial structure in Guangdong Province,China,using the three indices.The hierarchical structure of the weighted city network in Guangdong Province had been identified using S-core decomposition.From the perspective of polycentric structure,Guangzhou and Shenzhen have the strongest node degrees and strength of mobility flows,while the Guangzhou-Dongguan-Shenzhen corridor has been identified via the hub&authority score which is designed to evaluate the connectivity in a weighted network.Moreover,we conducted a comparison analysis of three indices.The findings of this study not only enrich the understanding of city hierarchies and the structure of a megaregion,but also highlight that although various indices are available,they should be applied selectively in accordance with the study context.
基金Supported by:National Science Fund for Distinguished Young Scholars of China Under Grant No. 50425824the National Natural Science Foundation of China Under Grant No.50578109,90715034 and 90715032
文摘In the field of civil engineering, magnetorheological fluid (MRF) damper-based semi-active control systems have received considerable attention for use in protecting structures from natural hazards such as strong earthquakes and high winds. In this paper, the MRF damper-based semi-active control system is applied to a long-span spatially extended structure and its feasibility is discussed. Meanwhile, a _trust-region method based instantaneous optimal semi-active control algorithm (TIOC) is proposed to improve the performance of the semi-active control system in a multiple damper situation. The proposed TIOC describes the control process as a bounded constraint optimization problem, in which an optimal semi- active control force vector is solved by the trust-region method in every control step to minimize the structural responses. A numerical example of a railway station roof structure installed with MRF-04K dampers is presented. First, a modified Bouc- Wen model is utilized to describe the behavior of the selected MRF-04K damper. Then, two semi-active control systems, including the well-known clipped-optimal controller and the proposed TIOC controller, are considered. Based on the characteristics of the long-span spatially extended structure, the performance of the control system is evaluated under uniform earthquake excitation and travelling-wave excitation with different apparent velocities. The simulation results indicate that the MR fluid damper-based semi-active control systems have the potential to mitigate the responses of full-scale long-span spatially extended structures under earthquake hazards. The superiority of the proposed TIOC controller is demonstrated by comparing its control effectiveness with the clipped-optimal controller for several different cases.
文摘We report a comprehensive numerical study of super resolution (SR) structured illumination microscopy (SIM) utilizing the classic Heintzmann-Cremer SIM process and algorithm. In particular, we investigated the impact of the diffraction limit of the underlying imaging system on the optimal SIM grating frequency that can be used to obtain the highest SR enhancement with non-continuous spatial frequency support. Besides confirming the previous theoretical and experimental work that SR-SIM can achieve an enhancement close to 3 times the diffraction limit with grating pattern illuminations, we also observe and report a series of more subtle effects of SR-SIM with non-continuous spatial frequency support. Our simulations show that when the SIM grating frequency exceeds twice that of the diffraction limit, the higher SIM grating frequency can help achieve a higher SR enhancement for the underlying imaging systems whose diffraction limit is low, though this enhancement is obtained at the cost of losing resolution at some lower resolution targets. Our simulations also show that, for underlying imaging systems with high diffraction limits, however, SR-SIM grating frequencies above twice the diffraction limits tend to bring no significant extra enhancement. Furthermore, we observed that there exists a limit grating frequency above which the SR enhancement effect is lost, and the reconstructed images essentially have the same resolution as the one obtained directly from the underlying imaging system without using the SIM process.
文摘The Long Museum,with its distinctive T-shaped“umbrella-vault”structure,offers a rich array of spatial experiences.This article delves into space from both structural and compositional perspectives.As the construction mediator,the umbrella vault embodies the consistency of construction and implies the causality of the surface.Presented as an element,the space flows freely,showing diverse fields and order.In terms of the liberation of its meaning,the space offers static perception and dynamic experience,creating a rich exhibition atmosphere.As a distinct entity,the umbrella-vault presents the physical nature,and the dialogue between the Long Museum and the city makes it a museum of art for the people.
基金Project (2013QNB30) supported by the Fundamental Research Funds for Central Universities,ChinaProject (2010CB226805) supported by the National Basic Research Program of China+3 种基金Project (51174285) supported by the National Natural Science Foundation of ChinaProject (2012BAK09B01) supported by the Twelfth Five-Year National Key Technology R&D Program,ChinaProject (SZBF2011-6-B35) supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions,ChinaProject (SKLCRSM10X05) supported by the Independent Foundation of State Key Laboratory of Coal Resources and Safe Mining,China
文摘Spatial structure of overlying strata existed and evolved dynamically with the exploitation scope (boundary conditions) changes in coal mines and to induce rockburst. Based on the“key strata”theory, the integrated spatial structure of overlying strata was put forward, which was composed of “O-X” structure in the plane section and “F” structure in the vertical section. The formation and ongoing instability of the“O-X”and“F”structures were called as dynamic evolution cycle of the overlying strata. Three basic categories of “O-X”, “F” and “T” structures were defined, and the strata behaviors of each spatial structure were analyzed. According to energy theory, mechanism of rockburst induced by spatial structure instability was discussed. The research expanded the scope of traditional ground pressure theory and provided a guide for the prevention of rockburst and mining tremors induced by structure instability of overlying
基金Supported by Fishery Germplasm Conservation Project of the Ministry of Agriculture(MOA)(No.6115048)State Specific Project on Fundamental Scientific Research Financed to Public Institutes(No.2009JBFB10)~~
文摘[Objective] Surveys of phytoplankton were taken during the autumn of 2009 along Anhui-Jiangsu reaches of the Yangtze River to understand the species com- position and their spatial distributions. [Method] Phytoplankton species, their quanti- ties, biomass and the Mcnaughton's dominance indices were all measured and their spatial distribution characteristics were determined using cluster analysis. [Result] There were 27 species, belonging to 5 phyla, namely Chlorophyta, Bacillariophyta, Cyanophyta, Euglenophyta and Cryptophyta, of phytoplankton collected and identified from the surveys. Results showed that Bacillariophyta was the predominant phyto- plankton with 16 species collected which accounted for 59.3% of the total species identified. The number of species collected belonging to Chlorophyta, Cyanophyta, Cryptophyta and Euglenophyta were 6, 2, 2, and 1, accounting for 22.2%, 7.4%, 7.4% and 3.7% of the total number identified, respectively. At the species level, the predominant species were Fragilaria crotonensis, Melosira italica, Navicula crypto- cephala, Cyclotella striata and Chroomonas acuta. Phytoplankton abundance was ranging from 5.68×10^4 to 7.08×10^4 cells/L with its average of 6.01×10^4 cells/L. Phyto- plankton biomass was ranging from 30.43 to 34.73 μg/L with its average of 32.46 μg/L. Compared with the previous reports, the number of phytoplankton species was decreased but its abundance and biomass was increased along the Jiangsu reach of the Yangtze River. However, Bacillariophyta species were still the predominant species and the phytoplankton community structure had not significantly changed from the previous studies. [Conclusion] These results might be explained as that the water quality in the Yangtze River was deteriorated but had not come to the worst. The results of similarity analysis gave two clusters of phytoplankton community as Nanjing, Wuhu and Jiangyin sampling sites were clustered into one group and Tongling and Anqing were clustered into another group.
文摘Along with the coming of the low-carbon era, people have paid more and more attention to the natural environment and eco-tourism will embrace a huge development. From the perspectives of the market relationship of supply-demand in economics and of field competition in physics, this paper has discussed upon the present status of the spatial structure of eco-tourism, and analyzed the relationship between supply-demand and field, in order to clarify the direction for the balance between supply and demand in the field and to guide eco-tourism to the way of sustainable development.
基金Supported by Scientific Resarch Program of Humanities and Social Sciences launched by Hubei Provincial Department of Education(2009b530)~~
文摘Spatial structure of rural tourism in the urban agglomerations of Wuhan was analyzed by comprehensively studying relevant documents about rural tourism,and reviewing previous researches on the concept and spatial structure of rural tourism.Through investigating rural tourist resources in the study area,resource advantages and characteristics of 9 cities were introduced,and the Gini Coefficient was taken to quantitatively analyze spatial patterns of its rural tourist villages,the obviously imbalanced concentration of these villages was pointed out.By measuring connectivity and accessibility of regional spaces in the study area,its traffic connectivity was proved moderate,and accessibility of each tourist village and town was fine.Then an optimized spatial structure was proposed for the rural tourism development in Wuhan Urban Agglomerations,that is,"one core,one belt and three districts".
基金Supported by Soft Science Research Project of Shanxi Province(2008041034-02 )Institutions and Enterprises Entrusted Project(0908045+1 种基金 0908046 0908043)~~
文摘Taking Dongzhai Town in Ningwu County of Shanxi Province as example, this essay explores the spatial structure of towns and villages system from the following perspectives: scale structure, function structure, structural characteristics of village land-use, and spatial distribution characteristics of Dongzhai villages. There are 5 grades of villages according to their scales, that is, villages have a population over 1 000, between 500 and 1 000, between 100 and 500, less than 100, less than 50. The function structure of Dongzhai Town is divided into 3 grades, Grade 1 (core village), is village with such functions as tourist service, transportation and distribution function. Grade 2 (characteristic village), is agricultural settlement with functions such as industrial function, transportation service, tourist service, and forestry function. Grade 3 (general village), is agricultural settlements with prominent agricultural functions (dry farming). This essay also predicts the change and responses of this town based on the population forecast models. It is predicted that the population of Jiancheng District will reach 4 750 in 2010, 6 400 in 2015, 8 700 in 2020. Returning farmland to forests in Fenhe River valley can ensure the conservation of water resources and the development of tourist service. The proportion of forest land, especially bushes land, and proportion of grassland, especially artificial grass will increase dramatically. The number of slope land will be down a bit. The Lands for settlement and transportation will increase with the development of ecological migration and tourist service. Specialized land such as water area and places of interest will skyrocket. Village patterns and spatial distribution under the system of towns and villages will be improved as well.
基金Supported by the College Discipline Innovation Wisdom Plan in China(Grant No.B07018)National Natural Science Foundation of China(Grant Nos.50935002,11002039)
文摘Many attentions for structural synthesis are paid to planar linkages and parallel mechanisms, while design novel pyramid deployable truss structure(PDTS) of satellite SAR mainly depends on experience of designer. To design novel configuration of PDTS, a two-step topology structure synthesis and analysis approach is proposed. Firstly, a conceptual configuration of PDTS is synthesized. Weighted graph and weighted adjacency matrix are established to realize topological description for PDTS. Graph properties are then summarized to distinguish differentia between PDTS and other type structures. According to graph properties, a procedure for synthesis conceptual configuration of PDTS is presented. Secondly, join relationship of components in a PDTS is analyzed. Kinematic chain and corresponding incidence/adjacency matrix are employed to analyze join relationship of PDTS. Properties and simplified rules of kinematic chain are extracted to construct kinematic chain. A procedure for construction kinematic chain of PDTS is then established. Finally, with this two-step approach all 11 rectangular pyramid deployable structures whose folded state is planar are discovered and their kinematic chains are constructed. Based on synthesis results, a novel deployable support structure for satellite SAR is designed. The proposed research can be applied to obtain some novel PDTSs, which is of great importance to design some novel deployable support structures for satellite SAR antenna.
基金funded by Fundamental Research Funds of Chinese Academy of Forestry(No.CAFYBB2021ZA002).
文摘Diversity-biomass relationships(DBRs)in terrestrial ecosystems tend to vary across spatial scales,but,particularly in hyperdiverse forests,the mechanisms driving these trends remain uncertain.Until now,few have simultaneously investigated the connections between tree species diversity,stand structural diversity,mycorrhizal associations,and ecosystem functioning.In addition,DBRs have only been studied at limited spatial scales,with limited focus on the direct and indirect effects of environmental factors.We addressed these research gaps using a 30-ha forest dynamics plot located in Pu'er City,Southwest China.Through piecewise structural equation models,we quantified the direct effects of tree species diversity(α,β,γ),stand structural diversity,mycorrhizal associations(AM,EcM),and the environmental factors(soil fertility and topography),as well as the indirect effects of the environmental factors on aboveground tree biomass across spatial scales ranging from 400 to 230,400 m^(2).We hypothesized that complex interactions among these factors underpin the variation in DBRs in natural ecosystems across spatial scales.Our results showed that environmental conditions indirectly affected the tree biomass via changes in tree species diversity,and these effects became stronger as the spatial scale increased.At small to moderate spatial scales,environmental factors were more predictive of tree biomass than tree species diversity(or its components);the effects of stand structural diversity on biomass also gradually increased with spatial scale.Conversely,from the intermediate to the largest spatial scales,mycorrhizal associations gradually became the best predictors of DBR dynamics.Our research offers novel empirical evidence demonstrating the importance of environmental conditions,structural diversity,and mycorrhizal associations in shaping cross-scale DBRs.Future comprehensive studies should consider these factors to assess the mechanisms shaping scale-dependent DBRs in complex natural ecosystems.