Lithium(Li)metal is considered the most promising anode material for the next generation of secondary batteries due to its high theoretical specific capacity and low potential.However,the application of Li anode in re...Lithium(Li)metal is considered the most promising anode material for the next generation of secondary batteries due to its high theoretical specific capacity and low potential.However,the application of Li anode in rechargeable Li metal batteries(LMBs)is hindered due to the short cycle life caused by uncontrolled dendrite growth.In this work,a dendrite-free anode(Li–Sn/Cu)is reinforced synergistically by lithophilic alloy,and a 3D grid structure is designed.Li^(+)diffusion and uniform nucleation are effectively induced by the lithophilic alloy Li_(22)Sn_(5).Moreover,homogeneous deposition of Li^(+)is caused by the reversible gridded Li plating/stripping effect of Cu mesh.Furthermore,the local space electric field is redistributed throughout the 3D conductive network,whereby the tip effect is suppressed,thus inhibiting the growth of Li dendrites.Also,the volume expansion of the anode during cycling is eased by the 3D grid structure.The results show that the Li–Sn/Cu symmetric battery can stably cycle for more than 10,000 h at 2 mA.cm^(-2)and 1 mAh.cm^(-2)with a low overpotential.The capacity retention of the LiFePO_(4)full battery remains above 90.7%after 1,000 cycles at 1C.This work provides a facile,low-cost,and effective strategy for obtaining Li metal batteries with ultra-long cycle life.展开更多
The propagation characteristics of flexural waves in periodic grid structures designed with the idea of phononic crystals are investigated by combining the Bloch theorem with the finite element method. This combined a...The propagation characteristics of flexural waves in periodic grid structures designed with the idea of phononic crystals are investigated by combining the Bloch theorem with the finite element method. This combined analysis yields phase constant surfaces, which predict the location and the extension of band gaps, as well as the directions and the regions of wave propagation at assigned frequencies. The predictions are validated by computation and experimental analysis of the harmonic responses of a finite structure with 11 × 11 unit cells. The flexural wave is localized at the point of excitation in band gaps, while the directional behaviour occurs at particular frequencies in pass bands. These studies provide guidelines to designing periodic structures for vibration attenuation.展开更多
The title compound [Cu(bix)2(NO3)z·H2P]n 1 (bix = 1,4-bis(imidazole-1-ylme-thyl) benzene) has been synthesized by hydrothermal method. Its crystal structure is of monoclinic, space group P1^- with a = 8.3...The title compound [Cu(bix)2(NO3)z·H2P]n 1 (bix = 1,4-bis(imidazole-1-ylme-thyl) benzene) has been synthesized by hydrothermal method. Its crystal structure is of monoclinic, space group P1^- with a = 8.3075(13), b = 9.4725(13), c = 10.0192(13) A, α = 91.088(4), β = 104.063(6), γ = 101.88(1), V = 746.5(3) A^3, Z = 1, C28H30N10O7Cu1, Mr = 682.16, Dc = 1.518 g/cm^3, μ = 0.796 mm^-1, F(000) = 353, the final R = 0.0535 and wR = 0.0996 for 2921 observed reflections with I 〉 2σ(I). Each bix ligand binds two Cu(Ⅱ) ions to form a 2-D(4,4) square grid layer, which is connected by hydrogen bonds showing large channels occupied by solvated water molecules and nitrate anions.展开更多
In the field of civil engineering, magnetorheological fluid (MRF) damper-based semi-active control systems have received considerable attention for use in protecting structures from natural hazards such as strong ea...In the field of civil engineering, magnetorheological fluid (MRF) damper-based semi-active control systems have received considerable attention for use in protecting structures from natural hazards such as strong earthquakes and high winds. In this paper, the MRF damper-based semi-active control system is applied to a long-span spatially extended structure and its feasibility is discussed. Meanwhile, a _trust-region method based instantaneous optimal semi-active control algorithm (TIOC) is proposed to improve the performance of the semi-active control system in a multiple damper situation. The proposed TIOC describes the control process as a bounded constraint optimization problem, in which an optimal semi- active control force vector is solved by the trust-region method in every control step to minimize the structural responses. A numerical example of a railway station roof structure installed with MRF-04K dampers is presented. First, a modified Bouc- Wen model is utilized to describe the behavior of the selected MRF-04K damper. Then, two semi-active control systems, including the well-known clipped-optimal controller and the proposed TIOC controller, are considered. Based on the characteristics of the long-span spatially extended structure, the performance of the control system is evaluated under uniform earthquake excitation and travelling-wave excitation with different apparent velocities. The simulation results indicate that the MR fluid damper-based semi-active control systems have the potential to mitigate the responses of full-scale long-span spatially extended structures under earthquake hazards. The superiority of the proposed TIOC controller is demonstrated by comparing its control effectiveness with the clipped-optimal controller for several different cases.展开更多
The herringbone water-sediment separation structure(HWSSS) was developed to prevent debris flows. This paper mainly focuses on evaluating the sediment separation efficiency of HWSSS in debris flow prevention and deter...The herringbone water-sediment separation structure(HWSSS) was developed to prevent debris flows. This paper mainly focuses on evaluating the sediment separation efficiency of HWSSS in debris flow prevention and determining the grid opening width D, a crucial structure parameter for HWSSS design. Theoretical analysis on the total sediment separation rate Pt reveals that the efficiency of sediment separation is much related with sediment grain size distribution(GSD) and grid opening width. The lower limit of Pt is deduced from the perspective of safety consideration by transforming debris flow into sediment-laden flow. Hydraulic model tests were carried out. Based on the regression analysis of the experimental data, the quantitative relationships between Pt and D and GSD characteristic values were finally established. A procedure for determining optimal grid opening width is proposed based on these analyses. These results are of significance in evaluating sediment separation effect by HWSSS in debris flow prevention and contribute to a more explicit methodology for design of HWSSS.展开更多
The reflection characteristics of gird structures are calculated by the spatial network method in the case of normal incidence plane electromagnetic wave. The numerical result shows that the grid panels without electr...The reflection characteristics of gird structures are calculated by the spatial network method in the case of normal incidence plane electromagnetic wave. The numerical result shows that the grid panels without electromagnetic wave absorbing foams are not ideal. However, the absorbing ability can be achieved as low as -25 dBsm from 8 GHz to 12 GHz when the grid cells are filled with foam absorbers. Also it is noted from computation that the foam filled grid structures with larger cell size, higher and thinner ribs will improve the absorbing abilities, which illustrates that they can be used as the effective light-weight stealth structures for aeronautical application.展开更多
This paper presents an improved unstructured grid immersed boundary method.The advantages of both immersed boundary method and body fitted grids which are generated by unstructured grid technology are used to enhance ...This paper presents an improved unstructured grid immersed boundary method.The advantages of both immersed boundary method and body fitted grids which are generated by unstructured grid technology are used to enhance the computation efficiency of fluid structure interaction in complex domain.The Navier-Stokes equation was discretized spacially with collocated finite volume method and Euler implicit method in time domain.The rigid body motion was simulated by immersed boundary method in which the fluid and rigid body interface interaction was dealt with VOS(volume of solid) method.A new VOS calculation method based on graph was presented in which both immersed boundary points and cross points were collected in arbitrary order to form a graph.The method is verified with flow past oscillating cylinder.展开更多
The increasing grid data in CFD simulation has brought some new difficulties and challenges,such as high storage cost,low transmission efficiency.In order to overcome these problems,a novel method for compressing and ...The increasing grid data in CFD simulation has brought some new difficulties and challenges,such as high storage cost,low transmission efficiency.In order to overcome these problems,a novel method for compressing and saving the structured grid are proposed.In the present method,the geometric coordinates of the six logical domains of one grid block is saved instead of all grid vertex coordinates to reduce the size of the structured grid file when the grid is compressed.And all grid vertex coordinates are recovered from the compressed data with the use of the transfinite interpolation algorithm when the grid is decompressed.Firstly,single-block grid cases with different edge vertexes are tested to investigate the compression effect.The test results show that a higher compression ratio will be obtained on a larger grid.Secondly,further theoretical analysis is carried out to investigate the effects of parameters on grid compression.The analysis on single-block grid compression shows that the compression ratio is proportionate to the cubic root of the number of total vertexes.The highest compression ratio of single-block grid is obtained when the numbers of vertexes in three logical directions are equal.The analysis on multi-block grid compression shows that a higher compression ratio will be obtained when a larger difference of total vertexes number exists among the grid blocks.Finally,multi-blockgrids of two industrial aircraft configurations are compressed to validate the method.The compression results demonstrate that the present method has an excellent ability on structured grid compression.For a million-vertex structured grid,more than 80 percent disk space can be saved after compression.展开更多
With the increment of the complexity of structural systems and the span of spatial structures, the interactions between parts of the structures, especially between some flexible substructures, become too complex to be...With the increment of the complexity of structural systems and the span of spatial structures, the interactions between parts of the structures, especially between some flexible substructures, become too complex to be analyzed clearly. In this paper, taking an actual gymnasium of a long-span spatial steel-cable-membrane hybrid structure as the calculation model, the static and dynamic analyses of the hybrid structures are performed by employing the global analysis of the whole hybrid structure and the substructural analysis of the truss arch substructure, the cable-membrane substructure, etc. In addition, the comparison of stresses and displacements of structural members in the global and substructural analyses is made. The numerical results show that serious errors exist in the substructural analysis of the hybrid structure, and the global analysis is necessary for the hybrid structure under the excitation of static loads and seismic loads.展开更多
Based on a control grid network and in combination with a remote total station and digital camera,the distribution of steel nodes and deflection curve of a steel grid structure can be obtained easily.The measurement r...Based on a control grid network and in combination with a remote total station and digital camera,the distribution of steel nodes and deflection curve of a steel grid structure can be obtained easily.The measurement result shows that this method is effective and utilitarian.展开更多
The section of electric power is the foundation of national economy. The paper analyzes the relation between industrial structure and grid load in Shanxi province, and finds out that electricity demand and grid load r...The section of electric power is the foundation of national economy. The paper analyzes the relation between industrial structure and grid load in Shanxi province, and finds out that electricity demand and grid load relate linearly to value added of industry. In the end, the paper predicts electricity demand and grid load via the model.展开更多
There are multiple types of risks involved in the service of long-span railway bridges.Classical methods are difficult to provide targeted alarm information according to different situations of load anomalies and stru...There are multiple types of risks involved in the service of long-span railway bridges.Classical methods are difficult to provide targeted alarm information according to different situations of load anomalies and structural anomalies.To accurately alarm different risks of long-span railway bridges by structural health monitoring systems,this paper proposes a cross-cooperative alarm method using principal and secondary indicators during high-wind periods.It provides the prior criterion for monitoring systems under special conditions,defining the principal and secondary indicators,alarm levels,and thresholds based on the relationship between dynamic equilibrium equations and multiple linear regression analysis.Analysis of one-year monitoring data from a longspan railway cable-stayed bridge shows that the 10-min average cross-bridge wind speed(excitation indicator)can be selected as the principal indicator,while lateral displacement(response indicator)can serve as the secondary indicator.The threshold levels of the secondary indicator prioritize the safety of bridge operation(mainly aiming at the safety of trains traversing bridges),with values significantly lower than structural safety thresholds.This approach enhances alarm timeliness and effectively distinguishes between load anomalies,structural anomalies,and equipment failures.Consequently,it improves alarm accuracy and provides timely decision support for bridge maintenance,train traversing,and emergency treatment.展开更多
Conventional optimal sensor placement(OSP)methods employ the premise that all sensors work perfectly during long-term structural monitoring.However,this premise is often difficult to fulfill in real applications due t...Conventional optimal sensor placement(OSP)methods employ the premise that all sensors work perfectly during long-term structural monitoring.However,this premise is often difficult to fulfill in real applications due to poor manufacturing and material aging of sensors,human damage,and electromagnetic interference.This paper presents a robustness-oriented OSP method that considers sensor failures.The OSP problem is designed with consideration of sensor failures to ensure that both complete vibration data collected by all sensors and incomplete vibration data caused by individual sensor failures can accurately identify structural modal parameters.A dispersion-aggregation firefly algorithm(DAFA),which is derived from the basic firefly algorithm,has been proposed to solve this complicated optimization problem.The dispersion and aggregation operators are designed to prevent falling into local optima and to rapidly converge to the global optima.The proposed methodology is confirmed by extracting the robust sensor configuration for a long-span cable-stayed bridge.The robustness of the optimal sensor configurations against sensor failure is thoroughly explored,and the performance of the proposed DAFA is extensively examined.展开更多
In this study,Computational Fluid Dynamics(CFD)together with a component transport model are exploited to investigate the influence of dimensionless parameters,involving the height of the rectifier grid and the instal...In this study,Computational Fluid Dynamics(CFD)together with a component transport model are exploited to investigate the influence of dimensionless parameters,involving the height of the rectifier grid and the installation height of the first catalyst layer,on the flow field and the overall denitration efficiency of a cement kiln’s SCR(Selective catalytic reduction)denitrification reactor.It is shown that accurate numerical results can be obtained by fitting the particle size distribution function to the actual cement kiln fly ash and implementing a non-uniform particle inlet boundary condition.The relative error between denitration efficiency derived from experimental data,numerical simulation,and real-time system pressure drop ranges from 4%to 9%.Optimization of the SCR reactor is achieved when the rectifier grid thickness ratio k/H≥0.030,the rectifier grid height ratio h/H=0.04,and the spacing between the rectifier grid and the first catalyst layer l/H=0.10.Under these conditions,airflow distribution and particle dispersion upstream of the catalyst result in increased denitration efficiencies of 3.21%,3.43%,and 3.27%,respectively,compared to the least favorable operating conditions.展开更多
An overset grid methodology is developed for the fully coupled analysis of fluid-structure interaction (FSI) problems. The overset grid approach alleviates some of the computational geometry difficulties traditionally...An overset grid methodology is developed for the fully coupled analysis of fluid-structure interaction (FSI) problems. The overset grid approach alleviates some of the computational geometry difficulties traditionally associated with Arbitrary-Lagrangian-Eulerian (ALE) based, moving mesh methods for FSI. Our partitioned solution algorithm uses separate solvers for the fluid (finite volume method) and the structure (finite element method), with mesh motion computed only on a subset of component grids of our overset grid assembly. Our results indicate a significant reduction in computational cost for the mesh motion, and element quality is improved. Numerical studies of the benchmark test demonstrate the benefits of our overset mesh method over traditional approaches.展开更多
There are various construction methods of long-span steel structure. In this paper, sap2000 is used to analyze the overall lifting technology of a 72*144m long-span steel structure. The grid structure is divided into ...There are various construction methods of long-span steel structure. In this paper, sap2000 is used to analyze the overall lifting technology of a 72*144m long-span steel structure. The grid structure is divided into two areas for lifting, and there are four different areas for different repair welding areas and lifting methods. By analyzing the indexes of stress, deformation and internal force of structure construction under different construction zoning schemes, the best construction scheme can be selected. The calculation results show that the construction deformation of the second scheme is the smallest, with the final deformation of 49.164mm, the maximum stress ratio of the components after construction being 0.204, and the stress ratio of the components under the load of 1.3D+1.5L being 0.8098, which is basically the same as the stress ratio of 0.80 obtained by the one-time loading design, so the second scheme is finally selected.展开更多
The state equation and observation equation of the structural dynamic systems under various analysis scales are derived based on wavelet packet analysis. The time-frequency properties of structural dynamic response un...The state equation and observation equation of the structural dynamic systems under various analysis scales are derived based on wavelet packet analysis. The time-frequency properties of structural dynamic response under various scales are further formulated. The theoretical analysis results reveal that the wavelet packet energy spectrum (WPES) obtained from wavelet packet decomposition of structural dynamic response will detect the presence of structural damage. The sensitivity analysis of the WPES to structural damage and measurement noise is also performed. The transfer properties of the structural system matrix and the observation noise under various analysis scales are formulated, which verify the damage alarming reliability using the proposed WPES with preferable damage sensitivity and noise robusticity.展开更多
During the service life of civil engineering structures such as long-span bridges, local damage at key positions may continually accumulate, and may finally result in their sudden failure. One core issue of global vib...During the service life of civil engineering structures such as long-span bridges, local damage at key positions may continually accumulate, and may finally result in their sudden failure. One core issue of global vibration-based health monitoring methods is to seek some damage indices that are sensitive to structural damage, This paper proposes an online structural health monitoring method for long-span suspension bridges using wavelet packet transform (WPT). The WPT- based method is based on the energy variations of structural ambient vibration responses decomposed using wavelet packet analysis. The main feature of this method is that the proposed wavelet packet energy spectrum (WPES) has the ability to detect structural damage from ambient vibration tests of a long-span suspension bridge. As an example application, the WPES-based health monitoring system is used on the Runyang Suspension Bridge under daily environmental conditions. The analysis reveals that changes in environmental temperature have a long-term influence on the WPES, while the effect of traffic loadings on the measured WPES of the bridge presents instantaneous changes because of the nonstationary properties of the loadings. The condition indication indices VD reflect the influences of environmental temperature on the dynamic properties of the Runyang Suspension Bridge. The field tests demonstrate that the proposed WPES-based condition indication index VD is a good candidate index for health monitoring of long-span suspension bridges under ambient excitations.展开更多
Based on the first-order upwind and second-order central type of finite volume (UFV and CFV) scheme, upwind and central type of perturbation finite volume (UPFV and CPFV) schemes of the Navier-Stokes equations were de...Based on the first-order upwind and second-order central type of finite volume (UFV and CFV) scheme, upwind and central type of perturbation finite volume (UPFV and CPFV) schemes of the Navier-Stokes equations were developed. In PFV method, the mass fluxes of across the cell faces of the control volume (CV) were expanded into power series of the grid spacing and the coefficients of the power series were determined by means of the conservation equation itself. The UPFV and CPFV scheme respectively uses the same nodes and expressions as those of the normal first-order upwind and second-order central scheme, which is apt to programming. The results of numerical experiments about the flow in a lid-driven cavity and the problem of transport of a scalar quantity in a known velocity field show that compared to the first-order UFV and second-order CFV schemes, upwind PFV scheme is higher accuracy and resolution, especially better robustness. The numerical computation to flow in a lid-driven cavity shows that the under-relaxation factor can be arbitrarily selected ranging from (0.3) to (0.8) and convergence perform excellent with Reynolds number variation from 10~2 to 10~4.展开更多
The deformation monitoring of long-span railway bridges is significant to ensure the safety of human life and property.The interferometric synthetic aperture radar(In SAR)technology has the advantage of high accuracy ...The deformation monitoring of long-span railway bridges is significant to ensure the safety of human life and property.The interferometric synthetic aperture radar(In SAR)technology has the advantage of high accuracy in bridge deformation monitoring.This study monitored the deformation of the Ganjiang Super Bridge based on the small baseline subsets(SBAS)In SAR technology and Sentinel-1A data.We analyzed the deformation results combined with bridge structure,temperature,and riverbed sediment scouring.The results are as follows:(1)The Ganjiang Super Bridge area is stable overall,with deformation rates ranging from-15.6 mm/yr to 10.7 mm/yr(2)The settlement of the Ganjiang Super Bridge deck gradually increases from the bridge tower toward the main span,which conforms to the typical deformation pattern of a cable-stayed bridge.(3)The sediment scouring from the riverbed cause the serious settlement on the bridge’s east side compared with that on the west side.(4)The bridge deformation negatively correlates with temperature,with a faster settlement at a higher temperature and a slow rebound trend at a lower temperature.The study findings can provide scientific data support for the health monitoring of long-span railway bridges.展开更多
基金supported by the National Natural Science Foundation of China(No.52401221)Shandong Provincial Natural Science Foundation,China(No.ZR2022QE014)+1 种基金the Basic Scientific Research Fund for Central Universities(No.202112018)the Key Laboratory of Advanced Energy Materials Chemistry(Ministry of Education)。
文摘Lithium(Li)metal is considered the most promising anode material for the next generation of secondary batteries due to its high theoretical specific capacity and low potential.However,the application of Li anode in rechargeable Li metal batteries(LMBs)is hindered due to the short cycle life caused by uncontrolled dendrite growth.In this work,a dendrite-free anode(Li–Sn/Cu)is reinforced synergistically by lithophilic alloy,and a 3D grid structure is designed.Li^(+)diffusion and uniform nucleation are effectively induced by the lithophilic alloy Li_(22)Sn_(5).Moreover,homogeneous deposition of Li^(+)is caused by the reversible gridded Li plating/stripping effect of Cu mesh.Furthermore,the local space electric field is redistributed throughout the 3D conductive network,whereby the tip effect is suppressed,thus inhibiting the growth of Li dendrites.Also,the volume expansion of the anode during cycling is eased by the 3D grid structure.The results show that the Li–Sn/Cu symmetric battery can stably cycle for more than 10,000 h at 2 mA.cm^(-2)and 1 mAh.cm^(-2)with a low overpotential.The capacity retention of the LiFePO_(4)full battery remains above 90.7%after 1,000 cycles at 1C.This work provides a facile,low-cost,and effective strategy for obtaining Li metal batteries with ultra-long cycle life.
基金Project supported by the National Natural Science Foundation of China (Grant No 50875255)
文摘The propagation characteristics of flexural waves in periodic grid structures designed with the idea of phononic crystals are investigated by combining the Bloch theorem with the finite element method. This combined analysis yields phase constant surfaces, which predict the location and the extension of band gaps, as well as the directions and the regions of wave propagation at assigned frequencies. The predictions are validated by computation and experimental analysis of the harmonic responses of a finite structure with 11 × 11 unit cells. The flexural wave is localized at the point of excitation in band gaps, while the directional behaviour occurs at particular frequencies in pass bands. These studies provide guidelines to designing periodic structures for vibration attenuation.
文摘The title compound [Cu(bix)2(NO3)z·H2P]n 1 (bix = 1,4-bis(imidazole-1-ylme-thyl) benzene) has been synthesized by hydrothermal method. Its crystal structure is of monoclinic, space group P1^- with a = 8.3075(13), b = 9.4725(13), c = 10.0192(13) A, α = 91.088(4), β = 104.063(6), γ = 101.88(1), V = 746.5(3) A^3, Z = 1, C28H30N10O7Cu1, Mr = 682.16, Dc = 1.518 g/cm^3, μ = 0.796 mm^-1, F(000) = 353, the final R = 0.0535 and wR = 0.0996 for 2921 observed reflections with I 〉 2σ(I). Each bix ligand binds two Cu(Ⅱ) ions to form a 2-D(4,4) square grid layer, which is connected by hydrogen bonds showing large channels occupied by solvated water molecules and nitrate anions.
基金Supported by:National Science Fund for Distinguished Young Scholars of China Under Grant No. 50425824the National Natural Science Foundation of China Under Grant No.50578109,90715034 and 90715032
文摘In the field of civil engineering, magnetorheological fluid (MRF) damper-based semi-active control systems have received considerable attention for use in protecting structures from natural hazards such as strong earthquakes and high winds. In this paper, the MRF damper-based semi-active control system is applied to a long-span spatially extended structure and its feasibility is discussed. Meanwhile, a _trust-region method based instantaneous optimal semi-active control algorithm (TIOC) is proposed to improve the performance of the semi-active control system in a multiple damper situation. The proposed TIOC describes the control process as a bounded constraint optimization problem, in which an optimal semi- active control force vector is solved by the trust-region method in every control step to minimize the structural responses. A numerical example of a railway station roof structure installed with MRF-04K dampers is presented. First, a modified Bouc- Wen model is utilized to describe the behavior of the selected MRF-04K damper. Then, two semi-active control systems, including the well-known clipped-optimal controller and the proposed TIOC controller, are considered. Based on the characteristics of the long-span spatially extended structure, the performance of the control system is evaluated under uniform earthquake excitation and travelling-wave excitation with different apparent velocities. The simulation results indicate that the MR fluid damper-based semi-active control systems have the potential to mitigate the responses of full-scale long-span spatially extended structures under earthquake hazards. The superiority of the proposed TIOC controller is demonstrated by comparing its control effectiveness with the clipped-optimal controller for several different cases.
基金supported by the National Science and Technology Support Program (2011BAK12B00)
文摘The herringbone water-sediment separation structure(HWSSS) was developed to prevent debris flows. This paper mainly focuses on evaluating the sediment separation efficiency of HWSSS in debris flow prevention and determining the grid opening width D, a crucial structure parameter for HWSSS design. Theoretical analysis on the total sediment separation rate Pt reveals that the efficiency of sediment separation is much related with sediment grain size distribution(GSD) and grid opening width. The lower limit of Pt is deduced from the perspective of safety consideration by transforming debris flow into sediment-laden flow. Hydraulic model tests were carried out. Based on the regression analysis of the experimental data, the quantitative relationships between Pt and D and GSD characteristic values were finally established. A procedure for determining optimal grid opening width is proposed based on these analyses. These results are of significance in evaluating sediment separation effect by HWSSS in debris flow prevention and contribute to a more explicit methodology for design of HWSSS.
基金Funded by the National Natural Science Foundation of China(No.10572012)
文摘The reflection characteristics of gird structures are calculated by the spatial network method in the case of normal incidence plane electromagnetic wave. The numerical result shows that the grid panels without electromagnetic wave absorbing foams are not ideal. However, the absorbing ability can be achieved as low as -25 dBsm from 8 GHz to 12 GHz when the grid cells are filled with foam absorbers. Also it is noted from computation that the foam filled grid structures with larger cell size, higher and thinner ribs will improve the absorbing abilities, which illustrates that they can be used as the effective light-weight stealth structures for aeronautical application.
文摘This paper presents an improved unstructured grid immersed boundary method.The advantages of both immersed boundary method and body fitted grids which are generated by unstructured grid technology are used to enhance the computation efficiency of fluid structure interaction in complex domain.The Navier-Stokes equation was discretized spacially with collocated finite volume method and Euler implicit method in time domain.The rigid body motion was simulated by immersed boundary method in which the fluid and rigid body interface interaction was dealt with VOS(volume of solid) method.A new VOS calculation method based on graph was presented in which both immersed boundary points and cross points were collected in arbitrary order to form a graph.The method is verified with flow past oscillating cylinder.
基金supported by the National Numerical Windtunnel Project, China
文摘The increasing grid data in CFD simulation has brought some new difficulties and challenges,such as high storage cost,low transmission efficiency.In order to overcome these problems,a novel method for compressing and saving the structured grid are proposed.In the present method,the geometric coordinates of the six logical domains of one grid block is saved instead of all grid vertex coordinates to reduce the size of the structured grid file when the grid is compressed.And all grid vertex coordinates are recovered from the compressed data with the use of the transfinite interpolation algorithm when the grid is decompressed.Firstly,single-block grid cases with different edge vertexes are tested to investigate the compression effect.The test results show that a higher compression ratio will be obtained on a larger grid.Secondly,further theoretical analysis is carried out to investigate the effects of parameters on grid compression.The analysis on single-block grid compression shows that the compression ratio is proportionate to the cubic root of the number of total vertexes.The highest compression ratio of single-block grid is obtained when the numbers of vertexes in three logical directions are equal.The analysis on multi-block grid compression shows that a higher compression ratio will be obtained when a larger difference of total vertexes number exists among the grid blocks.Finally,multi-blockgrids of two industrial aircraft configurations are compressed to validate the method.The compression results demonstrate that the present method has an excellent ability on structured grid compression.For a million-vertex structured grid,more than 80 percent disk space can be saved after compression.
文摘With the increment of the complexity of structural systems and the span of spatial structures, the interactions between parts of the structures, especially between some flexible substructures, become too complex to be analyzed clearly. In this paper, taking an actual gymnasium of a long-span spatial steel-cable-membrane hybrid structure as the calculation model, the static and dynamic analyses of the hybrid structures are performed by employing the global analysis of the whole hybrid structure and the substructural analysis of the truss arch substructure, the cable-membrane substructure, etc. In addition, the comparison of stresses and displacements of structural members in the global and substructural analyses is made. The numerical results show that serious errors exist in the substructural analysis of the hybrid structure, and the global analysis is necessary for the hybrid structure under the excitation of static loads and seismic loads.
文摘Based on a control grid network and in combination with a remote total station and digital camera,the distribution of steel nodes and deflection curve of a steel grid structure can be obtained easily.The measurement result shows that this method is effective and utilitarian.
文摘The section of electric power is the foundation of national economy. The paper analyzes the relation between industrial structure and grid load in Shanxi province, and finds out that electricity demand and grid load relate linearly to value added of industry. In the end, the paper predicts electricity demand and grid load via the model.
基金supported by the National Natural Science Foundation of China(Grants U23A20660,52008099,and 52378288)the Major Science and Technology Project of Yunnan Province,China(Grant 202502AD080007)the China Railway Engineering Corporation Science and Technology Research and Development Project(Grant 2022-Key-44).
文摘There are multiple types of risks involved in the service of long-span railway bridges.Classical methods are difficult to provide targeted alarm information according to different situations of load anomalies and structural anomalies.To accurately alarm different risks of long-span railway bridges by structural health monitoring systems,this paper proposes a cross-cooperative alarm method using principal and secondary indicators during high-wind periods.It provides the prior criterion for monitoring systems under special conditions,defining the principal and secondary indicators,alarm levels,and thresholds based on the relationship between dynamic equilibrium equations and multiple linear regression analysis.Analysis of one-year monitoring data from a longspan railway cable-stayed bridge shows that the 10-min average cross-bridge wind speed(excitation indicator)can be selected as the principal indicator,while lateral displacement(response indicator)can serve as the secondary indicator.The threshold levels of the secondary indicator prioritize the safety of bridge operation(mainly aiming at the safety of trains traversing bridges),with values significantly lower than structural safety thresholds.This approach enhances alarm timeliness and effectively distinguishes between load anomalies,structural anomalies,and equipment failures.Consequently,it improves alarm accuracy and provides timely decision support for bridge maintenance,train traversing,and emergency treatment.
基金The National Natural Science Foundation of China(No.51978243,52578360).
文摘Conventional optimal sensor placement(OSP)methods employ the premise that all sensors work perfectly during long-term structural monitoring.However,this premise is often difficult to fulfill in real applications due to poor manufacturing and material aging of sensors,human damage,and electromagnetic interference.This paper presents a robustness-oriented OSP method that considers sensor failures.The OSP problem is designed with consideration of sensor failures to ensure that both complete vibration data collected by all sensors and incomplete vibration data caused by individual sensor failures can accurately identify structural modal parameters.A dispersion-aggregation firefly algorithm(DAFA),which is derived from the basic firefly algorithm,has been proposed to solve this complicated optimization problem.The dispersion and aggregation operators are designed to prevent falling into local optima and to rapidly converge to the global optima.The proposed methodology is confirmed by extracting the robust sensor configuration for a long-span cable-stayed bridge.The robustness of the optimal sensor configurations against sensor failure is thoroughly explored,and the performance of the proposed DAFA is extensively examined.
基金Anhui Province Key Research and Development Plan of the Ecological Environment Project(No.202104i07020016).
文摘In this study,Computational Fluid Dynamics(CFD)together with a component transport model are exploited to investigate the influence of dimensionless parameters,involving the height of the rectifier grid and the installation height of the first catalyst layer,on the flow field and the overall denitration efficiency of a cement kiln’s SCR(Selective catalytic reduction)denitrification reactor.It is shown that accurate numerical results can be obtained by fitting the particle size distribution function to the actual cement kiln fly ash and implementing a non-uniform particle inlet boundary condition.The relative error between denitration efficiency derived from experimental data,numerical simulation,and real-time system pressure drop ranges from 4%to 9%.Optimization of the SCR reactor is achieved when the rectifier grid thickness ratio k/H≥0.030,the rectifier grid height ratio h/H=0.04,and the spacing between the rectifier grid and the first catalyst layer l/H=0.10.Under these conditions,airflow distribution and particle dispersion upstream of the catalyst result in increased denitration efficiencies of 3.21%,3.43%,and 3.27%,respectively,compared to the least favorable operating conditions.
文摘An overset grid methodology is developed for the fully coupled analysis of fluid-structure interaction (FSI) problems. The overset grid approach alleviates some of the computational geometry difficulties traditionally associated with Arbitrary-Lagrangian-Eulerian (ALE) based, moving mesh methods for FSI. Our partitioned solution algorithm uses separate solvers for the fluid (finite volume method) and the structure (finite element method), with mesh motion computed only on a subset of component grids of our overset grid assembly. Our results indicate a significant reduction in computational cost for the mesh motion, and element quality is improved. Numerical studies of the benchmark test demonstrate the benefits of our overset mesh method over traditional approaches.
文摘There are various construction methods of long-span steel structure. In this paper, sap2000 is used to analyze the overall lifting technology of a 72*144m long-span steel structure. The grid structure is divided into two areas for lifting, and there are four different areas for different repair welding areas and lifting methods. By analyzing the indexes of stress, deformation and internal force of structure construction under different construction zoning schemes, the best construction scheme can be selected. The calculation results show that the construction deformation of the second scheme is the smallest, with the final deformation of 49.164mm, the maximum stress ratio of the components after construction being 0.204, and the stress ratio of the components under the load of 1.3D+1.5L being 0.8098, which is basically the same as the stress ratio of 0.80 obtained by the one-time loading design, so the second scheme is finally selected.
文摘The state equation and observation equation of the structural dynamic systems under various analysis scales are derived based on wavelet packet analysis. The time-frequency properties of structural dynamic response under various scales are further formulated. The theoretical analysis results reveal that the wavelet packet energy spectrum (WPES) obtained from wavelet packet decomposition of structural dynamic response will detect the presence of structural damage. The sensitivity analysis of the WPES to structural damage and measurement noise is also performed. The transfer properties of the structural system matrix and the observation noise under various analysis scales are formulated, which verify the damage alarming reliability using the proposed WPES with preferable damage sensitivity and noise robusticity.
基金National Hi-Tech Research and Development Program of China (863 Program) (No. 2006AA04Z416)the National Natural Science Foundation of China Under Grant No. 50538020
文摘During the service life of civil engineering structures such as long-span bridges, local damage at key positions may continually accumulate, and may finally result in their sudden failure. One core issue of global vibration-based health monitoring methods is to seek some damage indices that are sensitive to structural damage, This paper proposes an online structural health monitoring method for long-span suspension bridges using wavelet packet transform (WPT). The WPT- based method is based on the energy variations of structural ambient vibration responses decomposed using wavelet packet analysis. The main feature of this method is that the proposed wavelet packet energy spectrum (WPES) has the ability to detect structural damage from ambient vibration tests of a long-span suspension bridge. As an example application, the WPES-based health monitoring system is used on the Runyang Suspension Bridge under daily environmental conditions. The analysis reveals that changes in environmental temperature have a long-term influence on the WPES, while the effect of traffic loadings on the measured WPES of the bridge presents instantaneous changes because of the nonstationary properties of the loadings. The condition indication indices VD reflect the influences of environmental temperature on the dynamic properties of the Runyang Suspension Bridge. The field tests demonstrate that the proposed WPES-based condition indication index VD is a good candidate index for health monitoring of long-span suspension bridges under ambient excitations.
文摘Based on the first-order upwind and second-order central type of finite volume (UFV and CFV) scheme, upwind and central type of perturbation finite volume (UPFV and CPFV) schemes of the Navier-Stokes equations were developed. In PFV method, the mass fluxes of across the cell faces of the control volume (CV) were expanded into power series of the grid spacing and the coefficients of the power series were determined by means of the conservation equation itself. The UPFV and CPFV scheme respectively uses the same nodes and expressions as those of the normal first-order upwind and second-order central scheme, which is apt to programming. The results of numerical experiments about the flow in a lid-driven cavity and the problem of transport of a scalar quantity in a known velocity field show that compared to the first-order UFV and second-order CFV schemes, upwind PFV scheme is higher accuracy and resolution, especially better robustness. The numerical computation to flow in a lid-driven cavity shows that the under-relaxation factor can be arbitrarily selected ranging from (0.3) to (0.8) and convergence perform excellent with Reynolds number variation from 10~2 to 10~4.
基金supported by the National Natural Science Foundation of China(Grant Nos.42264004,42274033,and 41904012)the Open Fund of Hubei Luojia Laboratory(Grant Nos.2201000049 and 230100018)+2 种基金the Guangxi Universities’1,000 Young and Middle-aged Backbone Teachers Training Program,the Fundamental Research Funds for Central Universities(Grant No.2042022kf1197)the Natural Science Foundation of Hubei(Grant No.2020CFB282)the China Postdoctoral Science Foundation(Grant Nos.2020T130482,2018M630879)。
文摘The deformation monitoring of long-span railway bridges is significant to ensure the safety of human life and property.The interferometric synthetic aperture radar(In SAR)technology has the advantage of high accuracy in bridge deformation monitoring.This study monitored the deformation of the Ganjiang Super Bridge based on the small baseline subsets(SBAS)In SAR technology and Sentinel-1A data.We analyzed the deformation results combined with bridge structure,temperature,and riverbed sediment scouring.The results are as follows:(1)The Ganjiang Super Bridge area is stable overall,with deformation rates ranging from-15.6 mm/yr to 10.7 mm/yr(2)The settlement of the Ganjiang Super Bridge deck gradually increases from the bridge tower toward the main span,which conforms to the typical deformation pattern of a cable-stayed bridge.(3)The sediment scouring from the riverbed cause the serious settlement on the bridge’s east side compared with that on the west side.(4)The bridge deformation negatively correlates with temperature,with a faster settlement at a higher temperature and a slow rebound trend at a lower temperature.The study findings can provide scientific data support for the health monitoring of long-span railway bridges.