Purpose–The bridge expansion joint(BEJ)is a key device for accommodating spatial displacement at the beam end,and for providing vertical support for running trains passing over the gap between the main bridge and the...Purpose–The bridge expansion joint(BEJ)is a key device for accommodating spatial displacement at the beam end,and for providing vertical support for running trains passing over the gap between the main bridge and the approach bridge.For long-span railway bridges,it must also be coordinated with rail expansion joint(REJ),which is necessary to accommodate the expansion and contraction of,and reducing longitudinal stress in,the rails.The main aim of this study is to present analysis of recent developments in the research and application of BEJs in high-speed railway(HSR)long-span bridges in China,and to propose a performance-based integral design method for BEJs used with REJs,from both theoretical and engineering perspectives.Design/methodology/approach–The study first presents a summary on the application and maintenance of BEJs in HSR long-span bridges in China representing an overview of their state of development.Results of a survey of typical BEJ faults were analyzed,and field testing was conducted on a railway cable-stayed bridge in order to obtain information on the major mechanical characteristics of its BEJ under train load.Based on the above,a performance-based integral design method for BEJs with maximum expansion range 1600 mm(±800 mm),was proposed,covering all stages from overall conceptual design to consideration of detailed structural design issues.The performance of the novel BEJ design thus derived was then verified via theoretical analysis under different scenarios,full-scale model testing,and field testing and commissioning.Findings–Two major types of BEJs,deck-type and through-type,are used in HSR long-span bridges in China.Typical BEJ faults were found to mainly include skewness of steel sleepers at the bridge gap,abnormally large longitudinal frictional resistance,and flexural deformation of the scissor mechanisms.These faults influence BEJ functioning,and thus adversely affect track quality and train running performance at the beam end.Due to their simple and integral structure,deck-type BEJs with expansion range 1200 mm(±600 mm)or less have been favored as a solution offering improved operational conditions,and have emerged as a standard design.However,when the expansion range exceeds the above-mentioned value,special design work becomes necessary.Therefore,based on engineering practice,a performance-based integral design method for BEJs used with REJs was proposed,taking into account four major categories of performance requirements,i.e.,mechanical characteristics,train running quality,durability and insulation performance.Overall BEJ design must mainly consider component strength and the overall stiffness of BEJ;the latter factor in particular has a decisive influence on train running performance at the beam end.Detailed BEJ structural design must stress minimization of the frictional resistance of its sliding surface.The static and dynamic performance of the newlydesigned BEJ with expansion range 1600 mm have been confirmed to be satisfactory,via numerical simulation,full-scale model testing,and field testing and commissioning.Originality/value–This research provides a broad overview of the status of BEJs with large expansion range in HSR long-span bridges in China,along with novel insights into their design.展开更多
The state equation and observation equation of the structural dynamic systems under various analysis scales are derived based on wavelet packet analysis. The time-frequency properties of structural dynamic response un...The state equation and observation equation of the structural dynamic systems under various analysis scales are derived based on wavelet packet analysis. The time-frequency properties of structural dynamic response under various scales are further formulated. The theoretical analysis results reveal that the wavelet packet energy spectrum (WPES) obtained from wavelet packet decomposition of structural dynamic response will detect the presence of structural damage. The sensitivity analysis of the WPES to structural damage and measurement noise is also performed. The transfer properties of the structural system matrix and the observation noise under various analysis scales are formulated, which verify the damage alarming reliability using the proposed WPES with preferable damage sensitivity and noise robusticity.展开更多
The long-span bridge response to nonstationary multiple seismic random excitations is investigated using the PEM (pseudo excitation method). This method transforms the nonstationary random response analysis into ordin...The long-span bridge response to nonstationary multiple seismic random excitations is investigated using the PEM (pseudo excitation method). This method transforms the nonstationary random response analysis into ordinary direct dynamic analysis, and therefore, the analysis can be solved conveniently using the Newmark, Wilson-9 schemes or the precise integration method. Numerical results of the seismic response for an actual long-span bridge using the proposed PEM are given and compared with the results based on the conventional stationary analysis. From the numerical comparisons, it was found that both the seismic spatial effect and the nonstationary effect are quite important, and that both stationary and nonstationary seismic analysis should pay special attention to the wave passage effect.展开更多
The seismic analysis of long-span bridges subjected to multiple ground excitations is an important problem. The conventional response spectrum method neglects the spatial effects of ground motion,and therefore may res...The seismic analysis of long-span bridges subjected to multiple ground excitations is an important problem. The conventional response spectrum method neglects the spatial effects of ground motion,and therefore may result in questionable conclusions.The random vibration approach has been regarded as more reliable.Unfortunately,so far, computational difficulties have not yet been satisfactorily resolved.In this paper,an accurate and efficient random vibration approach—pseudo excitation method (PEM),by which the above difficulties are overcome,is presented.It has been successfully used in the three dimensional seismic analysis of a number of long-span bridges with thousands of degrees of freedom and dozens of supports.The numerical results of a typical bridge show that the seismic spatial effects~ particularly the wave passage effect,are sometimes quite important in evaluating the safety of long-span bridges.展开更多
Wind-induced vibrations commonly represent the leading criterion in the design of long-span bridges. The aerodynamic forces in bridge aerodynamics are mainly based on the quasi-steady and linear unsteady theory. This ...Wind-induced vibrations commonly represent the leading criterion in the design of long-span bridges. The aerodynamic forces in bridge aerodynamics are mainly based on the quasi-steady and linear unsteady theory. This paper aims to investigate different formulations of self-excited and buffeting forces in the time domain by comparing the dynamic response of a multi-span cable-stayed bridge during the critical erection condition. The bridge is selected to represent a typical reference object with a bluff con- crete box girder for large river crossings. The models are viewed from a perspective of model complexity, comparing the influence of the aerodynamic properties implied in the aerodynamic models, such as aerodynamic damping and stiffness, fluid memory in the buffeting and self-excited forces, aerodynamic nonlinearity, and aerodynamic coupling on the bridge response. The selected models are studied for a windspeed range that is typical for the construction stage for two levels of turbulence intensity. Furthermore, a simplified method for the computation of buffeting forces including the aerodynamic admittance is presented, in which rational approximation is avoided. The critical flutter velocities are also compared for the selected models under laminar flow.展开更多
Combining the computational fluid dynamics-based numerical simulation with the forced vibration technique for extraction of aerodynamic derivatives, an approach for calculating the aerodynamic derivatives and the crit...Combining the computational fluid dynamics-based numerical simulation with the forced vibration technique for extraction of aerodynamic derivatives, an approach for calculating the aerodynamic derivatives and the critical flutter wind speed for long-span bridges is presented in this paper. The RNG k-ε turbulent model is introduced to establish the governing equations, including the continuity equation and the Navier-Stokes equations, for solving the wind flow field around a two-dimensional bridge section. To illustrate the effectiveness and accuracy of the proposed approach, a simple application to the Hume Bridge in China is provided, and the numerical results show that the aerodynamic derivatives and the critical flutter wind speed obtained agree well with the wind tunnel test results.展开更多
Purpose-Express freight transportation is in rapid development currently.Owing to the higher speed of express freight train,the deformation of the bridge deck worsens the railway line condition under the action of win...Purpose-Express freight transportation is in rapid development currently.Owing to the higher speed of express freight train,the deformation of the bridge deck worsens the railway line condition under the action of wind and train moving load when the train runs over a long-span bridge.Besides,the blunt car body of vehicle has poor aerodynamic characteristics,bringing a greater challenge on the running stability in the crosswind.Design/methodology/approach-In this study,the aerodynamic force coefficients of express freight vehicles on the bridge are measured by scale model wind tunnel test.The dynamic model of the train-long-span steel truss bridge coupling system is established,and the dynamic response as well as the running safety of vehicle are evaluated.Findings-The results show that wind speed has a significant influence on running safety,which is mainly reflected in the over-limitation of wheel unloading rate.The wind speed limit decreases with train speed,and it reduces to 18.83 m/s when the train speed is 160 km/h.Originality/value-This study deepens the theoretical understanding of the interaction between vehicles and bridges and proposes new methods for analyzing similar engineering problems.It also provides a new theoretical basis for the safety assessment of express freight trains.展开更多
Construction progress of long-span bridge is complicated and the quality control is strict. Any disadvantage during construction may potentially affect the internal forces and deck alignments after it is open to traff...Construction progress of long-span bridge is complicated and the quality control is strict. Any disadvantage during construction may potentially affect the internal forces and deck alignments after it is open to traffic. To exactly evaluate the periodic alignments, internal forces and safety, geometrical and physical monitoring are needed during construction. This study aims at the requirement of dynamic geometric monitoring during Sutong Bridge construction, and introduces the realization and observing schemes of the self-developed GPS real-time dynamic geometrical deformation monitoring system. Affected by wind load and construction circumstance, GPS (global positioning system) monitoring signal contains a variety of noise. And the useful signal can be extracted from the signal after de-noising the noises. A de-noising method based on EMD (empirical mode decomposition) model is introduced here to process the bridge dynamic monitoring data, and with the wavelet threshold de-noising method are compared. The result shows that the EMD method has good adaptability, is free from the choice of wavelet bases and the number of decomposition layer. The method is an effective de-noising method for dynamic deformation monitoring to large-span bridges.展开更多
An offshore long-span continuous rigid-frame bridge is taken as an example to study the effect of degradation of bond-slip behavior on the seismic performance of bridges in an offshore environment during a service per...An offshore long-span continuous rigid-frame bridge is taken as an example to study the effect of degradation of bond-slip behavior on the seismic performance of bridges in an offshore environment during a service period.On the basis of a numerical simulation analysis using the OpenSeeS platform,the influence of durability degradation of concrete carbonization,steel corrosion,and degradation of bond-slip performance is considered collectively using incremental dynamic analysis method to examine the time-varying seismic fragility of the offshore bridge.Results show that when bond slip is considered,the exceedance probability of the bridge components and the system increases significantly,and the durability degradation caused by concrete carbonization and chloride ion erosion in the whole life cycle increases the seismic response of the bridge structure.The results of the proposed time-varying seismic fragility analysis indicate that,considering the degradation of bond-slip behavior of reinforced concrete after the durability degradation of materials,the exceedance probability of the pier,bearing,abutment,and system increases with the extension of service period and the increase in seismic strength under earthquake action.In addition,with the extension of service time,the effect of bond slip on the seismic fragility of components and system gradually decreases.展开更多
There are multiple types of risks involved in the service of long-span railway bridges.Classical methods are difficult to provide targeted alarm information according to different situations of load anomalies and stru...There are multiple types of risks involved in the service of long-span railway bridges.Classical methods are difficult to provide targeted alarm information according to different situations of load anomalies and structural anomalies.To accurately alarm different risks of long-span railway bridges by structural health monitoring systems,this paper proposes a cross-cooperative alarm method using principal and secondary indicators during high-wind periods.It provides the prior criterion for monitoring systems under special conditions,defining the principal and secondary indicators,alarm levels,and thresholds based on the relationship between dynamic equilibrium equations and multiple linear regression analysis.Analysis of one-year monitoring data from a longspan railway cable-stayed bridge shows that the 10-min average cross-bridge wind speed(excitation indicator)can be selected as the principal indicator,while lateral displacement(response indicator)can serve as the secondary indicator.The threshold levels of the secondary indicator prioritize the safety of bridge operation(mainly aiming at the safety of trains traversing bridges),with values significantly lower than structural safety thresholds.This approach enhances alarm timeliness and effectively distinguishes between load anomalies,structural anomalies,and equipment failures.Consequently,it improves alarm accuracy and provides timely decision support for bridge maintenance,train traversing,and emergency treatment.展开更多
Main cable displacement-controlled devices(DCDs)are key components for coordinating the vertical deformation of the main cable and main girder in the side span of continuous suspension bridges.To reveal the mechanical...Main cable displacement-controlled devices(DCDs)are key components for coordinating the vertical deformation of the main cable and main girder in the side span of continuous suspension bridges.To reveal the mechanical action mechanisms of DCD on bridge structures,a three-span continuous suspension bridge was taken as the engineering background in this study.The influence of different forms of DCD on the internal force and displacement of the components in the side span of the bridge and the structural dynamic characteristics were explored through numerical simulations.The results showed that the lack of DCD caused the main cable and main girder to have large vertical displacements.The stresses of other components were redistributed,and the safety factor of the suspenders at the side span was greatly reduced.The setting of DCD improved the vertical stiffness of the structure.The rigid DCD had larger internal forces,but its control effect on the internal forces at the side span was slightly better than that of the flexible DCD.Both forms of DCD effectively coordinated the deformation of the main cable and main girder and the stress distribution of components in the side span area.The choice of DCD form depends on the topographic factors of bridge sites and the design requirements of related components at the side span.展开更多
In the Kigongo area of Mwanza Region,northwest Tanzania,fishmonger Neema Aisha remembers how the morning’s fresh catch would sour while she queued for the ferry,putting her business at risk.
Streamlined box girders serve as a prevalent choice for the primary structural elements in large-span suspension bridge designs.With the increase in traffic demands,the design of such girders is evolving towards wider...Streamlined box girders serve as a prevalent choice for the primary structural elements in large-span suspension bridge designs.With the increase in traffic demands,the design of such girders is evolving towards wider bridge decks and larger aspect ratios(B/D).To obtain more effective and aerodynamic design shapes for streamlined box girders,it is essential to investigate the impact of B/D on their aerodynamic performance.Accordingly,in this study we investigate the buffeting responses of large-span suspension bridges using girders of varying aspect ratios(B/D of 7.5,9.3,and 12.7).First,the aerodynamic coefficients of these girders are estimated using computational fluid dynamics(CFD)simulations.Subsequently,spatial finite element(FE)models of three long-span suspension bridges with different girders(B/D of 7.5,9.3,and 12.7)are established in Ansys software,and the dynamic characteristics of these bridges are obtained.Then,the time-domain buffeting analysis is performed by simulating the fluctuating wind fields acting on the bridge through the spectral representation method.Ultimately,the buffeting responses are computed using Ansys software,and the impact of B/D on these responses is assessed.The results reveal that the root mean square(RMS)values of the main girder’s buffeting displacement are highest at the midspan position and are lowest at the ends of the bridge.A decrease in B/D of the main girder leads to a more severe buffeting response because both the range and the effective value of the displacement increase with the decreasing B/D.Comparing the buffeting displacements in three directions,B/D plays a significant role in the vertical buffeting displacement,moderately impacts the torsional displacement,and has the least effect on the lateral displacement.The findings of this study may help wind resistance analysis and design optimization for bridges.展开更多
A monolithic integrated full-wave bridge rectifier consisted of horizontal Schottky-barrier diodes(SBD)is prepared based on 100 nm ultra-thinβ-Ga_(2)O_(3)and demonstrated the solar-blind UV(SUV)light-modulated charac...A monolithic integrated full-wave bridge rectifier consisted of horizontal Schottky-barrier diodes(SBD)is prepared based on 100 nm ultra-thinβ-Ga_(2)O_(3)and demonstrated the solar-blind UV(SUV)light-modulated characteristics.Under SUV light illumination,the rectifier has the excellent full-wave rectification characteristics for the AC input signals of 5,12,and 24 V with different frequencies.Further,experimental results confirmed the feasibility of continuously tuning the rectified output through SUV light-encoding.This work provides valuable insights for the development of optically programmable Ga_(2)O_(3)ACDC converters.展开更多
The girder end restraint devices such as bearings and dampers on long span suspension bridge will deteriorate over time.However,it is difficult to achieve the quantitative assessment of the performance of the restrain...The girder end restraint devices such as bearings and dampers on long span suspension bridge will deteriorate over time.However,it is difficult to achieve the quantitative assessment of the performance of the restraint device through existing detection methods in actual inspections,making it difficult to obtain the impact of changes in the performance of the restraint device on the bridge structure.In this paper,a random vehicle load model is firstly established based on the WIM data of Jiangyin Bridge,and the displacement of girder end under the actual traffic flow is simulated by using finite element dynamic time history analysis.On this basis,according to the performance test data of the bearings and dampers,the performance degradation laws of the above two restraint devices are summarized,and the performance degradation process of the two restraint devices and the effects of different restraint parameters on the bridge structure are simulated.The results show that the performance degradation of the damper will significantly reduce the damping force at low speed,resulting in a significant increase in the cumulative displacement of the girder end;in the presence of longitudinal dampers,the increase in the friction coefficient caused by the deterioration of the bearing sliding plate has little effect on the cumulative displacement,but excessive wear of the bearing sliding plate adversely affects the structural dynamic performance.展开更多
Probabilistic assessment of seismic performance(SPPA)is a crucial aspect of evaluating the seismic behavior of structures.For complex bridges with inherent uncertainties,conducting precise and efficient seismic reliab...Probabilistic assessment of seismic performance(SPPA)is a crucial aspect of evaluating the seismic behavior of structures.For complex bridges with inherent uncertainties,conducting precise and efficient seismic reliability analysis remains a significant challenge.To address this issue,the current study introduces a sample-unequal weight fractional moment assessment method,which is based on an improved correlation-reduced Latin hypercube sampling(ICLHS)technique.This method integrates the benefits of important sampling techniques with interpolator quadrature formulas to enhance the accuracy of estimating the extreme value distribution(EVD)for the seismic response of complex nonlinear structures subjected to non-stationary ground motions.Additionally,the core theoretical approaches employed in seismic reliability analysis(SRA)are elaborated,such as dimension reduction for simulating non-stationary random ground motions and a fractional-maximum entropy single-loop solution strategy.The effectiveness of this proposed method is validated through a three-story nonlinear shear frame structure.Furthermore,a comprehensive reliability analysis of a real-world long-span,single-pylon suspension bridge is conducted using the developed theoretical framework within the OpenSees platform,leading to key insights and conclusions.展开更多
With the rapid developments of the high-speed railway in China, a great number of long-span bridges have been constructed in order to cross rivers and gorges. At present, the longest main span of a constructed high-sp...With the rapid developments of the high-speed railway in China, a great number of long-span bridges have been constructed in order to cross rivers and gorges. At present, the longest main span of a constructed high-speed railway bridge is only 630 m. The main span of Hutong Yangtze River Bridge and of Wufengshan Yangtze River Bridge, which are under construction, will be much longer, at 1092 m each. In order to overcome the technical issues that originate from the extremely large dead loading and the relatively small structural stiffness of long-span high-speed railway bridges, many new technologies in bridge construction, design, materials, and so forth have been developed. This paper carefully reviews progress in the construction technologies of multi-function combined bridges in China, including com- bined highway and railway bridges and multi-track railway bridges. Innovations and practices regarding new types of bridge and composite bridge structures, such as bridges with three cable planes and three main trusses, inclined main trusses, slab-truss composite sections, and steel-concrete composite sections, are introduced. In addition, investigations into high-performance materials and integral fabrication and erection techniques for long-span railway bridges are summarized. At the end of the paper, prospects for the future development of long-span high-speed railwav bridges are provided.展开更多
Considering arch rib, lateral brace, suspender, girder, pier and track position, the model for the interaction between long-span tied arch continuous bridge and multiple tracks was established by using steel-concrete ...Considering arch rib, lateral brace, suspender, girder, pier and track position, the model for the interaction between long-span tied arch continuous bridge and multiple tracks was established by using steel-concrete composite section beam element to simulate concrete-filled steel tube(CFST) arch rib, using the beam element with rigid arm to simulate the prestressed concrete girder and using nonlinear bar element to simulate longitudinal constraint between track and bridge. Taking a(77+3×156.8+77) m tied arch continuous bridge with four tracks on the Harbin-Qiqihar Passenger Dedicated Line as an example, the arrangement of continuously welded rail(CWR) was explored. The longitudinal force in CWR on the tied arch continuous bridge, the pier top horizontal force and torque due to the unbalance load case, were analyzed under the action of temperature, vertical live load, train braking and wind load.Studies show that, it can significantly reduce track displacement to set the track expansion devices at main span arch springing on both sides; the track stress due to arch temperature variation can reach 40.8 MPa; the track stress, pier top horizontal force and torque are related to the number of loaded tracks and train running direction, and the bending force applied to unloaded track is close to the loaded track, while the braking force applied to unloaded track is 1/4 to 1/2 of the loaded track; the longitudinal force of track due to the wind load is up to 12.4 MPa, which should be considered.展开更多
Numerous long-span bridges have been built throughout the world in recent years.These bridges are progressively damaged by continuous usage throughout their long service life.The failure of local structural components...Numerous long-span bridges have been built throughout the world in recent years.These bridges are progressively damaged by continuous usage throughout their long service life.The failure of local structural components is detrimental to the performance of the entire bridge,furthermore,detecting the local abnormality at an early stage is difficult.This paper explores a novel damage detection method for long-span bridges by incorporating stress influence lines(SILs)in control charts,and validates the efficacy of the method through a case study of the Tsing Ma Suspension Bridge.Damage indices based on SILs are subsequently proposed and applied to hypothetical damage scenarios in which one or two critical bridge components are subjected to severe damage.The comparison study suggests that the first-order difference of SIL change is an accurate indicator for location of the damage.To some extent,different levels of damage can be quantified by using SILs incorporating with X-bar control chart.Results of this study indicate that the proposed SIL-based method offers a promising technique for damage detection in long-span bridges.展开更多
A method of cable safety analysis is proposed for safety evaluation of long-span cable-stayed bridges. The Daniels' effect and the probability of broken wires in the cable are introduced to develop the cable strength...A method of cable safety analysis is proposed for safety evaluation of long-span cable-stayed bridges. The Daniels' effect and the probability of broken wires in the cable are introduced to develop the cable strength model and the reliability assessment technique for long-span cable-stayed bridges based on the safety factors analysis of stay cables in service. As an application of the proposed model, the cable safety reliability of the cable No. 25 of Zhaobaoshan cable-stayed bridge in China is calculated. The effects of various parameters on the estimated cable safety reliability are investigated. The results indicate that the proposed method can be used to assess the safety level of stay cables in cable-stayed bridges effectively. The Daniels' effect should be taken into account for assessment, and the probability of broken wires can be used to simulate the deterioration of stay cables in service.展开更多
基金National Key R&D Program of China(2022YFB2602900)R&D Fund Project of China Academy of Railway Sciences Corporation Limited(2021YJ084)+2 种基金Project of Science and Technology R&D Program of China Railway(2016G002-K)R&D Fund Project of China Railway Major Bridge Reconnaissance&Design Institute Co.,Ltd.(2021)R&D Fund Project of China Railway Shanghai Group(2021141).
文摘Purpose–The bridge expansion joint(BEJ)is a key device for accommodating spatial displacement at the beam end,and for providing vertical support for running trains passing over the gap between the main bridge and the approach bridge.For long-span railway bridges,it must also be coordinated with rail expansion joint(REJ),which is necessary to accommodate the expansion and contraction of,and reducing longitudinal stress in,the rails.The main aim of this study is to present analysis of recent developments in the research and application of BEJs in high-speed railway(HSR)long-span bridges in China,and to propose a performance-based integral design method for BEJs used with REJs,from both theoretical and engineering perspectives.Design/methodology/approach–The study first presents a summary on the application and maintenance of BEJs in HSR long-span bridges in China representing an overview of their state of development.Results of a survey of typical BEJ faults were analyzed,and field testing was conducted on a railway cable-stayed bridge in order to obtain information on the major mechanical characteristics of its BEJ under train load.Based on the above,a performance-based integral design method for BEJs with maximum expansion range 1600 mm(±800 mm),was proposed,covering all stages from overall conceptual design to consideration of detailed structural design issues.The performance of the novel BEJ design thus derived was then verified via theoretical analysis under different scenarios,full-scale model testing,and field testing and commissioning.Findings–Two major types of BEJs,deck-type and through-type,are used in HSR long-span bridges in China.Typical BEJ faults were found to mainly include skewness of steel sleepers at the bridge gap,abnormally large longitudinal frictional resistance,and flexural deformation of the scissor mechanisms.These faults influence BEJ functioning,and thus adversely affect track quality and train running performance at the beam end.Due to their simple and integral structure,deck-type BEJs with expansion range 1200 mm(±600 mm)or less have been favored as a solution offering improved operational conditions,and have emerged as a standard design.However,when the expansion range exceeds the above-mentioned value,special design work becomes necessary.Therefore,based on engineering practice,a performance-based integral design method for BEJs used with REJs was proposed,taking into account four major categories of performance requirements,i.e.,mechanical characteristics,train running quality,durability and insulation performance.Overall BEJ design must mainly consider component strength and the overall stiffness of BEJ;the latter factor in particular has a decisive influence on train running performance at the beam end.Detailed BEJ structural design must stress minimization of the frictional resistance of its sliding surface.The static and dynamic performance of the newlydesigned BEJ with expansion range 1600 mm have been confirmed to be satisfactory,via numerical simulation,full-scale model testing,and field testing and commissioning.Originality/value–This research provides a broad overview of the status of BEJs with large expansion range in HSR long-span bridges in China,along with novel insights into their design.
文摘The state equation and observation equation of the structural dynamic systems under various analysis scales are derived based on wavelet packet analysis. The time-frequency properties of structural dynamic response under various scales are further formulated. The theoretical analysis results reveal that the wavelet packet energy spectrum (WPES) obtained from wavelet packet decomposition of structural dynamic response will detect the presence of structural damage. The sensitivity analysis of the WPES to structural damage and measurement noise is also performed. The transfer properties of the structural system matrix and the observation noise under various analysis scales are formulated, which verify the damage alarming reliability using the proposed WPES with preferable damage sensitivity and noise robusticity.
基金NSFC (No. 10472023)Doctoral Research Fund of the Chinese Ministry of Education (No. 20040141020)
文摘The long-span bridge response to nonstationary multiple seismic random excitations is investigated using the PEM (pseudo excitation method). This method transforms the nonstationary random response analysis into ordinary direct dynamic analysis, and therefore, the analysis can be solved conveniently using the Newmark, Wilson-9 schemes or the precise integration method. Numerical results of the seismic response for an actual long-span bridge using the proposed PEM are given and compared with the results based on the conventional stationary analysis. From the numerical comparisons, it was found that both the seismic spatial effect and the nonstationary effect are quite important, and that both stationary and nonstationary seismic analysis should pay special attention to the wave passage effect.
基金NSFC (No.10472023) and Doctoral Research Fund of the Chinese Ministry of Education
文摘The seismic analysis of long-span bridges subjected to multiple ground excitations is an important problem. The conventional response spectrum method neglects the spatial effects of ground motion,and therefore may result in questionable conclusions.The random vibration approach has been regarded as more reliable.Unfortunately,so far, computational difficulties have not yet been satisfactorily resolved.In this paper,an accurate and efficient random vibration approach—pseudo excitation method (PEM),by which the above difficulties are overcome,is presented.It has been successfully used in the three dimensional seismic analysis of a number of long-span bridges with thousands of degrees of freedom and dozens of supports.The numerical results of a typical bridge show that the seismic spatial effects~ particularly the wave passage effect,are sometimes quite important in evaluating the safety of long-span bridges.
基金supported by the German Research Foundation (DFG) via Research Training Group ‘‘Evaluation of Coupled Numerical and Experimental Partial Models in Structural Engineering (GRK 1462)"
文摘Wind-induced vibrations commonly represent the leading criterion in the design of long-span bridges. The aerodynamic forces in bridge aerodynamics are mainly based on the quasi-steady and linear unsteady theory. This paper aims to investigate different formulations of self-excited and buffeting forces in the time domain by comparing the dynamic response of a multi-span cable-stayed bridge during the critical erection condition. The bridge is selected to represent a typical reference object with a bluff con- crete box girder for large river crossings. The models are viewed from a perspective of model complexity, comparing the influence of the aerodynamic properties implied in the aerodynamic models, such as aerodynamic damping and stiffness, fluid memory in the buffeting and self-excited forces, aerodynamic nonlinearity, and aerodynamic coupling on the bridge response. The selected models are studied for a windspeed range that is typical for the construction stage for two levels of turbulence intensity. Furthermore, a simplified method for the computation of buffeting forces including the aerodynamic admittance is presented, in which rational approximation is avoided. The critical flutter velocities are also compared for the selected models under laminar flow.
基金National Natural Science Foundation of China Under Grant No. 50278029
文摘Combining the computational fluid dynamics-based numerical simulation with the forced vibration technique for extraction of aerodynamic derivatives, an approach for calculating the aerodynamic derivatives and the critical flutter wind speed for long-span bridges is presented in this paper. The RNG k-ε turbulent model is introduced to establish the governing equations, including the continuity equation and the Navier-Stokes equations, for solving the wind flow field around a two-dimensional bridge section. To illustrate the effectiveness and accuracy of the proposed approach, a simple application to the Hume Bridge in China is provided, and the numerical results show that the aerodynamic derivatives and the critical flutter wind speed obtained agree well with the wind tunnel test results.
基金supported by the Research Major Project of China Academy of Railway Sciences Group Co.,Ltd(Grant No.2021YJ270)the China National Railway Group Science and Technology Program(Grant No.N2022T001).
文摘Purpose-Express freight transportation is in rapid development currently.Owing to the higher speed of express freight train,the deformation of the bridge deck worsens the railway line condition under the action of wind and train moving load when the train runs over a long-span bridge.Besides,the blunt car body of vehicle has poor aerodynamic characteristics,bringing a greater challenge on the running stability in the crosswind.Design/methodology/approach-In this study,the aerodynamic force coefficients of express freight vehicles on the bridge are measured by scale model wind tunnel test.The dynamic model of the train-long-span steel truss bridge coupling system is established,and the dynamic response as well as the running safety of vehicle are evaluated.Findings-The results show that wind speed has a significant influence on running safety,which is mainly reflected in the over-limitation of wheel unloading rate.The wind speed limit decreases with train speed,and it reduces to 18.83 m/s when the train speed is 160 km/h.Originality/value-This study deepens the theoretical understanding of the interaction between vehicles and bridges and proposes new methods for analyzing similar engineering problems.It also provides a new theoretical basis for the safety assessment of express freight trains.
文摘Construction progress of long-span bridge is complicated and the quality control is strict. Any disadvantage during construction may potentially affect the internal forces and deck alignments after it is open to traffic. To exactly evaluate the periodic alignments, internal forces and safety, geometrical and physical monitoring are needed during construction. This study aims at the requirement of dynamic geometric monitoring during Sutong Bridge construction, and introduces the realization and observing schemes of the self-developed GPS real-time dynamic geometrical deformation monitoring system. Affected by wind load and construction circumstance, GPS (global positioning system) monitoring signal contains a variety of noise. And the useful signal can be extracted from the signal after de-noising the noises. A de-noising method based on EMD (empirical mode decomposition) model is introduced here to process the bridge dynamic monitoring data, and with the wavelet threshold de-noising method are compared. The result shows that the EMD method has good adaptability, is free from the choice of wavelet bases and the number of decomposition layer. The method is an effective de-noising method for dynamic deformation monitoring to large-span bridges.
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.51608488,11872339,11472248).
文摘An offshore long-span continuous rigid-frame bridge is taken as an example to study the effect of degradation of bond-slip behavior on the seismic performance of bridges in an offshore environment during a service period.On the basis of a numerical simulation analysis using the OpenSeeS platform,the influence of durability degradation of concrete carbonization,steel corrosion,and degradation of bond-slip performance is considered collectively using incremental dynamic analysis method to examine the time-varying seismic fragility of the offshore bridge.Results show that when bond slip is considered,the exceedance probability of the bridge components and the system increases significantly,and the durability degradation caused by concrete carbonization and chloride ion erosion in the whole life cycle increases the seismic response of the bridge structure.The results of the proposed time-varying seismic fragility analysis indicate that,considering the degradation of bond-slip behavior of reinforced concrete after the durability degradation of materials,the exceedance probability of the pier,bearing,abutment,and system increases with the extension of service period and the increase in seismic strength under earthquake action.In addition,with the extension of service time,the effect of bond slip on the seismic fragility of components and system gradually decreases.
基金supported by the National Natural Science Foundation of China(Grants U23A20660,52008099,and 52378288)the Major Science and Technology Project of Yunnan Province,China(Grant 202502AD080007)the China Railway Engineering Corporation Science and Technology Research and Development Project(Grant 2022-Key-44).
文摘There are multiple types of risks involved in the service of long-span railway bridges.Classical methods are difficult to provide targeted alarm information according to different situations of load anomalies and structural anomalies.To accurately alarm different risks of long-span railway bridges by structural health monitoring systems,this paper proposes a cross-cooperative alarm method using principal and secondary indicators during high-wind periods.It provides the prior criterion for monitoring systems under special conditions,defining the principal and secondary indicators,alarm levels,and thresholds based on the relationship between dynamic equilibrium equations and multiple linear regression analysis.Analysis of one-year monitoring data from a longspan railway cable-stayed bridge shows that the 10-min average cross-bridge wind speed(excitation indicator)can be selected as the principal indicator,while lateral displacement(response indicator)can serve as the secondary indicator.The threshold levels of the secondary indicator prioritize the safety of bridge operation(mainly aiming at the safety of trains traversing bridges),with values significantly lower than structural safety thresholds.This approach enhances alarm timeliness and effectively distinguishes between load anomalies,structural anomalies,and equipment failures.Consequently,it improves alarm accuracy and provides timely decision support for bridge maintenance,train traversing,and emergency treatment.
基金The National Natural Science Foundation of China(No.52338011)the Postgraduate Research&Practice Innovation Program of Jiangsu Province(No.SJCX23_0067).
文摘Main cable displacement-controlled devices(DCDs)are key components for coordinating the vertical deformation of the main cable and main girder in the side span of continuous suspension bridges.To reveal the mechanical action mechanisms of DCD on bridge structures,a three-span continuous suspension bridge was taken as the engineering background in this study.The influence of different forms of DCD on the internal force and displacement of the components in the side span of the bridge and the structural dynamic characteristics were explored through numerical simulations.The results showed that the lack of DCD caused the main cable and main girder to have large vertical displacements.The stresses of other components were redistributed,and the safety factor of the suspenders at the side span was greatly reduced.The setting of DCD improved the vertical stiffness of the structure.The rigid DCD had larger internal forces,but its control effect on the internal forces at the side span was slightly better than that of the flexible DCD.Both forms of DCD effectively coordinated the deformation of the main cable and main girder and the stress distribution of components in the side span area.The choice of DCD form depends on the topographic factors of bridge sites and the design requirements of related components at the side span.
文摘In the Kigongo area of Mwanza Region,northwest Tanzania,fishmonger Neema Aisha remembers how the morning’s fresh catch would sour while she queued for the ferry,putting her business at risk.
基金funded by the National Natural Science Foundation of China(Grant No.52108435)the Science and Technology Research Program of Chongqing Municipal Education Commission(Grant No.KJQN202404320)+1 种基金Chongqing Jiaotong University Postgraduate Research and Innovation Project(2024S0013)Chongqing Jiaotong University Undergraduate Innovation and Entrepreneurship Project(S202410618019).
文摘Streamlined box girders serve as a prevalent choice for the primary structural elements in large-span suspension bridge designs.With the increase in traffic demands,the design of such girders is evolving towards wider bridge decks and larger aspect ratios(B/D).To obtain more effective and aerodynamic design shapes for streamlined box girders,it is essential to investigate the impact of B/D on their aerodynamic performance.Accordingly,in this study we investigate the buffeting responses of large-span suspension bridges using girders of varying aspect ratios(B/D of 7.5,9.3,and 12.7).First,the aerodynamic coefficients of these girders are estimated using computational fluid dynamics(CFD)simulations.Subsequently,spatial finite element(FE)models of three long-span suspension bridges with different girders(B/D of 7.5,9.3,and 12.7)are established in Ansys software,and the dynamic characteristics of these bridges are obtained.Then,the time-domain buffeting analysis is performed by simulating the fluctuating wind fields acting on the bridge through the spectral representation method.Ultimately,the buffeting responses are computed using Ansys software,and the impact of B/D on these responses is assessed.The results reveal that the root mean square(RMS)values of the main girder’s buffeting displacement are highest at the midspan position and are lowest at the ends of the bridge.A decrease in B/D of the main girder leads to a more severe buffeting response because both the range and the effective value of the displacement increase with the decreasing B/D.Comparing the buffeting displacements in three directions,B/D plays a significant role in the vertical buffeting displacement,moderately impacts the torsional displacement,and has the least effect on the lateral displacement.The findings of this study may help wind resistance analysis and design optimization for bridges.
基金supported by Natural Science Basic Research Program of Shaanxi Province of China(Grant No.2023JCYB574)National Natural Science Foundation of China(Grant No.62204203)。
文摘A monolithic integrated full-wave bridge rectifier consisted of horizontal Schottky-barrier diodes(SBD)is prepared based on 100 nm ultra-thinβ-Ga_(2)O_(3)and demonstrated the solar-blind UV(SUV)light-modulated characteristics.Under SUV light illumination,the rectifier has the excellent full-wave rectification characteristics for the AC input signals of 5,12,and 24 V with different frequencies.Further,experimental results confirmed the feasibility of continuously tuning the rectified output through SUV light-encoding.This work provides valuable insights for the development of optically programmable Ga_(2)O_(3)ACDC converters.
基金supported by the National Key Research and Development Program of China(No.2022YFB3706704)the Academician Special Science Research Project of CCCC(No.YSZX-03-2022-01-B).
文摘The girder end restraint devices such as bearings and dampers on long span suspension bridge will deteriorate over time.However,it is difficult to achieve the quantitative assessment of the performance of the restraint device through existing detection methods in actual inspections,making it difficult to obtain the impact of changes in the performance of the restraint device on the bridge structure.In this paper,a random vehicle load model is firstly established based on the WIM data of Jiangyin Bridge,and the displacement of girder end under the actual traffic flow is simulated by using finite element dynamic time history analysis.On this basis,according to the performance test data of the bearings and dampers,the performance degradation laws of the above two restraint devices are summarized,and the performance degradation process of the two restraint devices and the effects of different restraint parameters on the bridge structure are simulated.The results show that the performance degradation of the damper will significantly reduce the damping force at low speed,resulting in a significant increase in the cumulative displacement of the girder end;in the presence of longitudinal dampers,the increase in the friction coefficient caused by the deterioration of the bearing sliding plate has little effect on the cumulative displacement,but excessive wear of the bearing sliding plate adversely affects the structural dynamic performance.
基金Sichuan Science and Technology Program under Grant No.2024NSFSC0932the National Natural Science Foundation of China under Grant No.52008047。
文摘Probabilistic assessment of seismic performance(SPPA)is a crucial aspect of evaluating the seismic behavior of structures.For complex bridges with inherent uncertainties,conducting precise and efficient seismic reliability analysis remains a significant challenge.To address this issue,the current study introduces a sample-unequal weight fractional moment assessment method,which is based on an improved correlation-reduced Latin hypercube sampling(ICLHS)technique.This method integrates the benefits of important sampling techniques with interpolator quadrature formulas to enhance the accuracy of estimating the extreme value distribution(EVD)for the seismic response of complex nonlinear structures subjected to non-stationary ground motions.Additionally,the core theoretical approaches employed in seismic reliability analysis(SRA)are elaborated,such as dimension reduction for simulating non-stationary random ground motions and a fractional-maximum entropy single-loop solution strategy.The effectiveness of this proposed method is validated through a three-story nonlinear shear frame structure.Furthermore,a comprehensive reliability analysis of a real-world long-span,single-pylon suspension bridge is conducted using the developed theoretical framework within the OpenSees platform,leading to key insights and conclusions.
文摘With the rapid developments of the high-speed railway in China, a great number of long-span bridges have been constructed in order to cross rivers and gorges. At present, the longest main span of a constructed high-speed railway bridge is only 630 m. The main span of Hutong Yangtze River Bridge and of Wufengshan Yangtze River Bridge, which are under construction, will be much longer, at 1092 m each. In order to overcome the technical issues that originate from the extremely large dead loading and the relatively small structural stiffness of long-span high-speed railway bridges, many new technologies in bridge construction, design, materials, and so forth have been developed. This paper carefully reviews progress in the construction technologies of multi-function combined bridges in China, including com- bined highway and railway bridges and multi-track railway bridges. Innovations and practices regarding new types of bridge and composite bridge structures, such as bridges with three cable planes and three main trusses, inclined main trusses, slab-truss composite sections, and steel-concrete composite sections, are introduced. In addition, investigations into high-performance materials and integral fabrication and erection techniques for long-span railway bridges are summarized. At the end of the paper, prospects for the future development of long-span high-speed railwav bridges are provided.
基金Project(51378503)supported by the National Natural Science Foundation of ChinaProject(2014M552158)supported by China Postdoctoral Science Foundation
文摘Considering arch rib, lateral brace, suspender, girder, pier and track position, the model for the interaction between long-span tied arch continuous bridge and multiple tracks was established by using steel-concrete composite section beam element to simulate concrete-filled steel tube(CFST) arch rib, using the beam element with rigid arm to simulate the prestressed concrete girder and using nonlinear bar element to simulate longitudinal constraint between track and bridge. Taking a(77+3×156.8+77) m tied arch continuous bridge with four tracks on the Harbin-Qiqihar Passenger Dedicated Line as an example, the arrangement of continuously welded rail(CWR) was explored. The longitudinal force in CWR on the tied arch continuous bridge, the pier top horizontal force and torque due to the unbalance load case, were analyzed under the action of temperature, vertical live load, train braking and wind load.Studies show that, it can significantly reduce track displacement to set the track expansion devices at main span arch springing on both sides; the track stress due to arch temperature variation can reach 40.8 MPa; the track stress, pier top horizontal force and torque are related to the number of loaded tracks and train running direction, and the bending force applied to unloaded track is close to the loaded track, while the braking force applied to unloaded track is 1/4 to 1/2 of the loaded track; the longitudinal force of track due to the wind load is up to 12.4 MPa, which should be considered.
基金supported by the National Natural Science Foundation of China(Grant Nos.51108395,51378445 and 51178366)the Fundamental Research Funds for the Central Universities(Grant No.2012121032)Hubei Key Laboratory of Roadway Bridge and Structure Engineering(Wuhan University of Technology)(Grant No.DQJJ201315)
文摘Numerous long-span bridges have been built throughout the world in recent years.These bridges are progressively damaged by continuous usage throughout their long service life.The failure of local structural components is detrimental to the performance of the entire bridge,furthermore,detecting the local abnormality at an early stage is difficult.This paper explores a novel damage detection method for long-span bridges by incorporating stress influence lines(SILs)in control charts,and validates the efficacy of the method through a case study of the Tsing Ma Suspension Bridge.Damage indices based on SILs are subsequently proposed and applied to hypothetical damage scenarios in which one or two critical bridge components are subjected to severe damage.The comparison study suggests that the first-order difference of SIL change is an accurate indicator for location of the damage.To some extent,different levels of damage can be quantified by using SILs incorporating with X-bar control chart.Results of this study indicate that the proposed SIL-based method offers a promising technique for damage detection in long-span bridges.
基金The Opening Fund of the Key Laboratory of UrbanSecurity and Disaster Engineering of Ministry of Education (NoEESR200701)the Opening Fund of Beijing Laboratory of EarthquakeEngineering and Structural Retrofit
文摘A method of cable safety analysis is proposed for safety evaluation of long-span cable-stayed bridges. The Daniels' effect and the probability of broken wires in the cable are introduced to develop the cable strength model and the reliability assessment technique for long-span cable-stayed bridges based on the safety factors analysis of stay cables in service. As an application of the proposed model, the cable safety reliability of the cable No. 25 of Zhaobaoshan cable-stayed bridge in China is calculated. The effects of various parameters on the estimated cable safety reliability are investigated. The results indicate that the proposed method can be used to assess the safety level of stay cables in cable-stayed bridges effectively. The Daniels' effect should be taken into account for assessment, and the probability of broken wires can be used to simulate the deterioration of stay cables in service.