期刊文献+
共找到5,004篇文章
< 1 2 250 >
每页显示 20 50 100
Online multi-target intelligent tracking using a deep long-short term memory network 被引量:3
1
作者 Yongquan ZHANG Zhenyun SHI +1 位作者 Hongbing JI Zhenzhen SU 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2023年第9期313-329,共17页
Multi-target tracking is facing the difficulties of modeling uncertain motion and observation noise.Traditional tracking algorithms are limited by specific models and priors that may mismatch a real-world scenario.In ... Multi-target tracking is facing the difficulties of modeling uncertain motion and observation noise.Traditional tracking algorithms are limited by specific models and priors that may mismatch a real-world scenario.In this paper,considering the model-free purpose,we present an online Multi-Target Intelligent Tracking(MTIT)algorithm based on a Deep Long-Short Term Memory(DLSTM)network for complex tracking requirements,named the MTIT-DLSTM algorithm.Firstly,to distinguish trajectories and concatenate the tracking task in a time sequence,we define a target tuple set that is the labeled Random Finite Set(RFS).Then,prediction and update blocks based on the DLSTM network are constructed to predict and estimate the state of targets,respectively.Further,the prediction block can learn the movement trend from the historical state sequence,while the update block can capture the noise characteristic from the historical measurement sequence.Finally,a data association scheme based on Hungarian algorithm and the heuristic track management strategy are employed to assign measurements to targets and adapt births and deaths.Experimental results manifest that,compared with the existing tracking algorithms,our proposed MTIT-DLSTM algorithm can improve effectively the accuracy and robustness in estimating the state of targets appearing at random positions,and be applied to linear and nonlinear multi-target tracking scenarios. 展开更多
关键词 Data association Deep long-short term memory network Historical sequence Multi-target tracking Target tuple set Track management
原文传递
Estimation of unloading relaxation depth of Baihetan Arch Dam foundation using long-short term memory network 被引量:1
2
作者 Ming-jie He Hao Li +3 位作者 Jian-rong Xu Huan-ling Wang Wei-ya Xu Shi-zhuang Chen 《Water Science and Engineering》 EI CAS CSCD 2021年第2期149-158,共10页
The unloading relaxation caused by excavation for construction of high arch dams is an important factor influencing the foundation’s integrity and strength.To evaluate the degree of unloading relaxation,the long-shor... The unloading relaxation caused by excavation for construction of high arch dams is an important factor influencing the foundation’s integrity and strength.To evaluate the degree of unloading relaxation,the long-short term memory(LSTM)network was used to estimate the depth of unloading relaxation zones on the left bank foundation of the Baihetan Arch Dam.Principal component analysis indicates that rock charac-teristics,the structural plane,the protection layer,lithology,and time are the main factors.The LSTM network results demonstrate the unloading relaxation characteristics of the left bank,and the relationships with the factors were also analyzed.The structural plane has the most significant influence on the distribution of unloading relaxation zones.Compared with massive basalt,the columnar jointed basalt experiences a more significant unloading relaxation phenomenon with a clear time effect,with the average unloading relaxation period being 50 d.The protection layer can effectively reduce the unloading relaxation depth by approximately 20%. 展开更多
关键词 Columnar jointed basalt Unloading relaxation long-short term memory(LSTM)network Principal component analysis Stability assessment Baihetan Arch Dam
在线阅读 下载PDF
Conditional Random Field Tracking Model Based on a Visual Long Short Term Memory Network 被引量:3
3
作者 Pei-Xin Liu Zhao-Sheng Zhu +1 位作者 Xiao-Feng Ye Xiao-Feng Li 《Journal of Electronic Science and Technology》 CAS CSCD 2020年第4期308-319,共12页
In dense pedestrian tracking,frequent object occlusions and close distances between objects cause difficulty when accurately estimating object trajectories.In this study,a conditional random field tracking model is es... In dense pedestrian tracking,frequent object occlusions and close distances between objects cause difficulty when accurately estimating object trajectories.In this study,a conditional random field tracking model is established by using a visual long short term memory network in the three-dimensional(3D)space and the motion estimations jointly performed on object trajectory segments.Object visual field information is added to the long short term memory network to improve the accuracy of the motion related object pair selection and motion estimation.To address the uncertainty of the length and interval of trajectory segments,a multimode long short term memory network is proposed for the object motion estimation.The tracking performance is evaluated using the PETS2009 dataset.The experimental results show that the proposed method achieves better performance than the tracking methods based on the independent motion estimation. 展开更多
关键词 Conditional random field(CRF) long short term memory network(LSTM) motion estimation multiple object tracking(MOT)
在线阅读 下载PDF
Long Short-Term Memory Recurrent Neural Network-Based Acoustic Model Using Connectionist Temporal Classification on a Large-Scale Training Corpus 被引量:9
4
作者 Donghyun Lee Minkyu Lim +4 位作者 Hosung Park Yoseb Kang Jeong-Sik Park Gil-Jin Jang Ji-Hwan Kim 《China Communications》 SCIE CSCD 2017年第9期23-31,共9页
A Long Short-Term Memory(LSTM) Recurrent Neural Network(RNN) has driven tremendous improvements on an acoustic model based on Gaussian Mixture Model(GMM). However, these models based on a hybrid method require a force... A Long Short-Term Memory(LSTM) Recurrent Neural Network(RNN) has driven tremendous improvements on an acoustic model based on Gaussian Mixture Model(GMM). However, these models based on a hybrid method require a forced aligned Hidden Markov Model(HMM) state sequence obtained from the GMM-based acoustic model. Therefore, it requires a long computation time for training both the GMM-based acoustic model and a deep learning-based acoustic model. In order to solve this problem, an acoustic model using CTC algorithm is proposed. CTC algorithm does not require the GMM-based acoustic model because it does not use the forced aligned HMM state sequence. However, previous works on a LSTM RNN-based acoustic model using CTC used a small-scale training corpus. In this paper, the LSTM RNN-based acoustic model using CTC is trained on a large-scale training corpus and its performance is evaluated. The implemented acoustic model has a performance of 6.18% and 15.01% in terms of Word Error Rate(WER) for clean speech and noisy speech, respectively. This is similar to a performance of the acoustic model based on the hybrid method. 展开更多
关键词 acoustic model connectionisttemporal classification LARGE-SCALE trainingcorpus LONG SHORT-term memory recurrentneural network
在线阅读 下载PDF
ART-2 neural network based on eternal term memory vector:Architecture and algorithm
5
作者 赵学智 叶邦彦 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2009年第6期843-848,共6页
Aimed at the problem that the traditional ART-2 neural network can not recognize a gradually changing course, an eternal term memory (ETM) vector is introduced into ART-2 to simulate the function of human brain, i.e. ... Aimed at the problem that the traditional ART-2 neural network can not recognize a gradually changing course, an eternal term memory (ETM) vector is introduced into ART-2 to simulate the function of human brain, i.e. the deep remembrance for the initial impression.. The eternal term memory vector is determined only by the initial vector that establishes category neuron node and is used to keep the remembrance for this vector for ever. Two times of vigilance algorithm are put forward, and the posterior input vector must first pass the first vigilance of this eternal term memory vector, only succeeded has it the qualification to begin the second vigilance of long term memory vector. The long term memory vector can be revised only when both of the vigilances are passed. Results of recognition examples show that the improved ART-2 overcomes the defect of traditional ART-2 and can recognize a gradually changing course effectively. 展开更多
关键词 ART-2 neural network eternal term memory vector two times of vigilance gradually changing course pattern recognition
在线阅读 下载PDF
Wind Speed Short-Term Prediction Based on Empirical Wavelet Transform, Recurrent Neural Network and Error Correction 被引量:1
6
作者 朱昶胜 朱丽娜 《Journal of Shanghai Jiaotong university(Science)》 EI 2024年第2期297-308,共12页
Predicting wind speed accurately is essential to ensure the stability of the wind power system and improve the utilization rate of wind energy.However,owing to the stochastic and intermittent of wind speed,predicting ... Predicting wind speed accurately is essential to ensure the stability of the wind power system and improve the utilization rate of wind energy.However,owing to the stochastic and intermittent of wind speed,predicting wind speed accurately is difficult.A new hybrid deep learning model based on empirical wavelet transform,recurrent neural network and error correction for short-term wind speed prediction is proposed in this paper.The empirical wavelet transformation is applied to decompose the original wind speed series.The long short term memory network and the Elman neural network are adopted to predict low-frequency and high-frequency wind speed sub-layers respectively to balance the calculation efficiency and prediction accuracy.The error correction strategy based on deep long short term memory network is developed to modify the prediction errors.Four actual wind speed series are utilized to verify the effectiveness of the proposed model.The empirical results indicate that the method proposed in this paper has satisfactory performance in wind speed prediction. 展开更多
关键词 wind speed prediction empirical wavelet transform deep long short term memory network Elman neural network error correction strategy
原文传递
Memory Analysis for Memristors and Memristive Recurrent Neural Networks 被引量:2
7
作者 Gang Bao Yide Zhang Zhigang Zeng 《IEEE/CAA Journal of Automatica Sinica》 EI CSCD 2020年第1期96-105,共10页
Traditional recurrent neural networks are composed of capacitors, inductors, resistors, and operational amplifiers.Memristive neural networks are constructed by replacing resistors with memristors. This paper focuses ... Traditional recurrent neural networks are composed of capacitors, inductors, resistors, and operational amplifiers.Memristive neural networks are constructed by replacing resistors with memristors. This paper focuses on the memory analysis,i.e. the initial value computation, of memristors. Firstly, we present the memory analysis for a single memristor based on memristors’ mathematical models with linear and nonlinear drift.Secondly, we present the memory analysis for two memristors in series and parallel. Thirdly, we point out the difference between traditional neural networks and those that are memristive. Based on the current and voltage relationship of memristors, we use mathematical analysis and SPICE simulations to demonstrate the validity of our methods. 展开更多
关键词 Dopant drift memory memristive neural networks MEMRISTOR
在线阅读 下载PDF
Deep Learning Network for Energy Storage Scheduling in Power Market Environment Short-Term Load Forecasting Model
8
作者 Yunlei Zhang RuifengCao +3 位作者 Danhuang Dong Sha Peng RuoyunDu Xiaomin Xu 《Energy Engineering》 EI 2022年第5期1829-1841,共13页
In the electricity market,fluctuations in real-time prices are unstable,and changes in short-term load are determined by many factors.By studying the timing of charging and discharging,as well as the economic benefits... In the electricity market,fluctuations in real-time prices are unstable,and changes in short-term load are determined by many factors.By studying the timing of charging and discharging,as well as the economic benefits of energy storage in the process of participating in the power market,this paper takes energy storage scheduling as merely one factor affecting short-term power load,which affects short-term load time series along with time-of-use price,holidays,and temperature.A deep learning network is used to predict the short-term load,a convolutional neural network(CNN)is used to extract the features,and a long short-term memory(LSTM)network is used to learn the temporal characteristics of the load value,which can effectively improve prediction accuracy.Taking the load data of a certain region as an example,the CNN-LSTM prediction model is compared with the single LSTM prediction model.The experimental results show that the CNN-LSTM deep learning network with the participation of energy storage in dispatching can have high prediction accuracy for short-term power load forecasting. 展开更多
关键词 Energy storage scheduling short-term load forecasting deep learning network convolutional neural network CNN long and short term memory network LTSM
在线阅读 下载PDF
Short-Term Relay Quality Prediction Algorithm Based on Long and Short-Term Memory 被引量:3
9
作者 XUE Wendong CHAI Yuan +2 位作者 LI Qigan HONG Yongqiang ZHENG Gaofeng 《Instrumentation》 2018年第4期46-54,共9页
The fraction defective of semi-finished products is predicted to optimize the process of relay production lines, by which production quality and productivity are increased, and the costs are decreased. The process par... The fraction defective of semi-finished products is predicted to optimize the process of relay production lines, by which production quality and productivity are increased, and the costs are decreased. The process parameters of relay production lines are studied based on the long-and-short-term memory network. Then, the Keras deep learning framework is utilized to build up a short-term relay quality prediction algorithm for the semi-finished product. A simulation model is used to study prediction algorithm. The simulation results show that the average prediction absolute error of the fraction is less than 5%. This work displays great application potential in the relay production lines. 展开更多
关键词 RELAY Production LINE LONG and SHORT-term memory network Keras DEEP Learning Framework Quality Prediction
原文传递
Short-TermWind Power Prediction Based on Combinatorial Neural Networks
10
作者 Tusongjiang Kari Sun Guoliang +2 位作者 Lei Kesong Ma Xiaojing Wu Xian 《Intelligent Automation & Soft Computing》 SCIE 2023年第8期1437-1452,共16页
Wind power volatility not only limits the large-scale grid connection but also poses many challenges to safe grid operation.Accurate wind power prediction can mitigate the adverse effects of wind power volatility on w... Wind power volatility not only limits the large-scale grid connection but also poses many challenges to safe grid operation.Accurate wind power prediction can mitigate the adverse effects of wind power volatility on wind power grid connections.For the characteristics of wind power antecedent data and precedent data jointly to determine the prediction accuracy of the prediction model,the short-term prediction of wind power based on a combined neural network is proposed.First,the Bi-directional Long Short Term Memory(BiLSTM)network prediction model is constructed,and the bi-directional nature of the BiLSTM network is used to deeply mine the wind power data information and find the correlation information within the data.Secondly,to avoid the limitation of a single prediction model when the wind power changes abruptly,the Wavelet Transform-Improved Adaptive Genetic Algorithm-Back Propagation(WT-IAGA-BP)neural network based on the combination of the WT-IAGA-BP neural network and BiLSTM network is constructed for the short-term prediction of wind power.Finally,comparing with LSTM,BiLSTM,WT-LSTM,WT-BiLSTM,WT-IAGA-BP,and WT-IAGA-BP&LSTM prediction models,it is verified that the wind power short-term prediction model based on the combination of WT-IAGA-BP neural network and BiLSTM network has higher prediction accuracy. 展开更多
关键词 Wind power prediction wavelet transform back propagation neural network bi-directional long short term memory
在线阅读 下载PDF
State of Health Estimation of Lithium-Ion Batteries Using Support Vector Regression and Long Short-Term Memory
11
作者 Inioluwa Obisakin Chikodinaka Vanessa Ekeanyanwu 《Open Journal of Applied Sciences》 CAS 2022年第8期1366-1382,共17页
Lithium-ion batteries are the most widely accepted type of battery in the electric vehicle industry because of some of their positive inherent characteristics. However, the safety problems associated with inaccurate e... Lithium-ion batteries are the most widely accepted type of battery in the electric vehicle industry because of some of their positive inherent characteristics. However, the safety problems associated with inaccurate estimation and prediction of the state of health of these batteries have attracted wide attention due to the adverse negative effect on vehicle safety. In this paper, both machine and deep learning models were used to estimate the state of health of lithium-ion batteries. The paper introduces the definition of battery health status and its importance in the electric vehicle industry. Based on the data preprocessing and visualization analysis, three features related to actual battery capacity degradation are extracted from the data. Two learning models, SVR and LSTM were employed for the state of health estimation and their respective results are compared in this paper. The mean square error and coefficient of determination were the two metrics for the performance evaluation of the models. The experimental results indicate that both models have high estimation results. However, the metrics indicated that the SVR was the overall best model. 展开更多
关键词 Support Vector Regression (SVR) Long Short-term memory (LSTM) network State of Health (SOH) Estimation
在线阅读 下载PDF
基于CNN-LSTM方法的液环泵非稳态流场预测分析
12
作者 张人会 唐玉 +1 位作者 郭广强 陈学炳 《农业机械学报》 北大核心 2026年第1期273-279,共7页
为实现对液环泵内非稳态气液两相流场的快速预测,提出了一种基于深度学习的非定常周期性流场预测方法,可以实现样本集之后未来一定时间段内流场的高精度快速预测。通过对液环泵非稳态CFD结果获取的各时间步上的流场快照建立流场数据集,... 为实现对液环泵内非稳态气液两相流场的快速预测,提出了一种基于深度学习的非定常周期性流场预测方法,可以实现样本集之后未来一定时间段内流场的高精度快速预测。通过对液环泵非稳态CFD结果获取的各时间步上的流场快照建立流场数据集,利用卷积神经网络(CNN)对流场快照进行特征提取,并结合长短期记忆神经网络(LSTM)构建时间序列神经网络预测模型,预测结果与CFD数值模拟结果进行对比,分析表明,CNN-LSTM模型能够实现对未来时刻非稳态流场的高精度预测;相态场、压力场、温度场的预测结果平均相对误差分别为1.37%、1.28%、1.78%;在利用LSTM预测壳体及进口压力脉动时,在样本集之后叶轮旋转360°时间上平均相对误差分别为1.61%、0.09%、0.20%。在样本空间外的预测集上,CNN-LSTM的预测性能优于本征正交分解(POD)方法,尽管在外延时间序列上的预测精度随时间增加逐渐下降,但在整个时间历程上保持了较好的预测精度,在预测内流场结果方面具有显著优势。 展开更多
关键词 液环泵 非稳态流场 卷积神经网络 长短期记忆神经网络
在线阅读 下载PDF
结合注意力机制的ConvLSTM与新安江模型相融合的混合水文模型
13
作者 张珂 刘杰 +2 位作者 王宇昊 申笑萱 齐千嘉 《水资源保护》 北大核心 2026年第1期137-143,151,共8页
为提高新安江模型(XAJ)在中小流域汇流计算中的精度,构建了结合注意力机制的卷积长短期记忆神经网络(ConvLSTM),用于替代XAJ中的汇流模块,从而建立了结合物理机制与机器学习技术的混合水文模型XAJ-ACL,基于呈村流域实测数据,探究了XAJ-... 为提高新安江模型(XAJ)在中小流域汇流计算中的精度,构建了结合注意力机制的卷积长短期记忆神经网络(ConvLSTM),用于替代XAJ中的汇流模块,从而建立了结合物理机制与机器学习技术的混合水文模型XAJ-ACL,基于呈村流域实测数据,探究了XAJ-ACL在中小流域有限样本容量条件下的性能,并分别采用ConvLSTM和传统LSTM替代XAJ汇流模块,构建了混合水文模型XAJ-CL和XAJ-LSTM进行对比分析。结果表明:在呈村流域径流模拟中,XAJ-ACL的模拟精度优于XAJ,测试期XAJ-ACL的纳什效率系数为0.85,相关系数为0.93,均高于XAJ;在3组小容量样本训练中,测试期XAJ-ACL的平均纳什效率系数分别为0.847、0.832和0.808,均高于XAJ-CL和XAJ-LSTM,且模拟结果表现出更好的稳定性;与XAJ相比,XAJ-ACL显著提升了有限资料条件下对中小流域汇流过程非线性规律的模拟能力。 展开更多
关键词 新安江模型 注意力机制 卷积长短期记忆神经网络 混合水文模型 汇流过程 径流模拟 呈村流域
在线阅读 下载PDF
基于自适应融合CNN—OF特征和LSTM网络的猪攻击行为识别
14
作者 陈晨 孙博 +3 位作者 Juan Steibel Janice Siegford 韩俊杰 Tomas Norton 《中国农机化学报》 北大核心 2026年第2期275-282,共8页
为识别群养猪攻击行为,提出一种基于自适应融合CNN—OF特征和LSTM网络的算法。在两个猪栏中每栏混养8头猪3天,每天收集8 h的视频作为数据集。从猪栏1的3天视频中标记出1200个攻击1 s片段和1200个非攻击1 s片段,选择80%的片段作为训练集... 为识别群养猪攻击行为,提出一种基于自适应融合CNN—OF特征和LSTM网络的算法。在两个猪栏中每栏混养8头猪3天,每天收集8 h的视频作为数据集。从猪栏1的3天视频中标记出1200个攻击1 s片段和1200个非攻击1 s片段,选择80%的片段作为训练集,其余20%作为验证集。从猪栏2的3天视频中标记出1254个攻击1 s片段和85146个非攻击1 s片段作为测试集。首先,采用Horn—Schunck(HS)方法计算光流(OF)的大小和方向角,并根据CNN特征图的维度划分光流方向角的范围。然后,在每个方向角范围内统计光流大小的直方图,通过空间维度变换将直方图转化为特征图。最后,通过权重叠加将此特征图与CNN特征图进行自适应融合并输入LSTM网络以识别攻击。采用VGG16—OF—LSTM、ResNet50—OF—LSTM、InceptionV3—OF—LSTM和Xception—OF—LSTM算法识别猪攻击行为的准确率分别为97.5%、97.8%、98.7%、99.3%。结果表明,CNN—OF—SLTM算法能够识别猪攻击行为。提出的自适应特征融合方法CNN—OF具有一定通用性。 展开更多
关键词 群养猪 攻击识别 卷积神经网络 光流 自适应融合 长短期记忆
在线阅读 下载PDF
ST-Trader:A Spatial-Temporal Deep Neural Network for Modeling Stock Market Movement 被引量:6
15
作者 Xiurui Hou Kai Wang +1 位作者 Cheng Zhong Zhi Wei 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2021年第5期1015-1024,共10页
Stocks that are fundamentally connected with each other tend to move together.Considering such common trends is believed to benefit stock movement forecasting tasks.However,such signals are not trivial to model becaus... Stocks that are fundamentally connected with each other tend to move together.Considering such common trends is believed to benefit stock movement forecasting tasks.However,such signals are not trivial to model because the connections among stocks are not physically presented and need to be estimated from volatile data.Motivated by this observation,we propose a framework that incorporates the inter-connection of firms to forecast stock prices.To effectively utilize a large set of fundamental features,we further design a novel pipeline.First,we use variational autoencoder(VAE)to reduce the dimension of stock fundamental information and then cluster stocks into a graph structure(fundamentally clustering).Second,a hybrid model of graph convolutional network and long-short term memory network(GCN-LSTM)with an adjacency graph matrix(learnt from VAE)is proposed for graph-structured stock market forecasting.Experiments on minute-level U.S.stock market data demonstrate that our model effectively captures both spatial and temporal signals and achieves superior improvement over baseline methods.The proposed model is promising for other applications in which there is a possible but hidden spatial dependency to improve time-series prediction. 展开更多
关键词 Graph convolution network long-short term memory network stock market forecasting variational autoencoder(VAE)
在线阅读 下载PDF
基于改进CNN-LSTM模型利用水下噪声估计海面风速
16
作者 刘雪枫 李琪 +2 位作者 唐锐 尚大晶 夏峙 《声学学报》 北大核心 2026年第1期287-297,共11页
提出一种将风成噪声特征与改进卷积神经网络-长短期记忆网络(CNN-LSTM)模型相结合估计海面风速的方法。首先,通过数据预处理计算噪声的能量谱级,以反映真实噪声强度变化;其次,利用能量谱级计算能量相关矩阵,找到风成噪声特征进行判断并... 提出一种将风成噪声特征与改进卷积神经网络-长短期记忆网络(CNN-LSTM)模型相结合估计海面风速的方法。首先,通过数据预处理计算噪声的能量谱级,以反映真实噪声强度变化;其次,利用能量谱级计算能量相关矩阵,找到风成噪声特征进行判断并作为特征向量输入;在此基础上,结合卷积神经网络获取特征以及长短期记忆网络学习时序信息的特点,建立了基于多特征的反演模型对风速进行估计。南海海上实验结果表明,所提模型风速估计的均方根误差小于0.3,与实际风速序列的相关系数高于0.97,吻合效果较好,各项评价指标均明显优于长短期记忆网络模型。 展开更多
关键词 海洋环境噪声 卷积神经网络 长短期记忆网格 风速估计
原文传递
水泥粉磨过程建模与控制研究进展
17
作者 李玉珠 刘钊 +2 位作者 张强 王孝红 李凡军 《济南大学学报(自然科学版)》 北大核心 2026年第1期92-102,共11页
针对水泥辊压机终粉磨工艺中成品颗粒粒度分布较窄、细颗粒偏多的问题,通过分析水泥粉磨工艺流程,研究粉磨过程颗粒粉碎与分选机制,总结国内外在水泥粉磨过程建模、参数优化及过程控制方面的研究成果与应用动态,对各种研究方法进行可行... 针对水泥辊压机终粉磨工艺中成品颗粒粒度分布较窄、细颗粒偏多的问题,通过分析水泥粉磨工艺流程,研究粉磨过程颗粒粉碎与分选机制,总结国内外在水泥粉磨过程建模、参数优化及过程控制方面的研究成果与应用动态,对各种研究方法进行可行性分析;根据水泥粉磨现场工况,提出一种融合卷积神经网络、长短时记忆网络及注意力机制的智能建模方法,并结合模型预测控制策略精准描述粉磨系统的动态特性,实现粉磨过程粒度分布的优化控制,进而提升水泥产品质量,确保粉磨过程的稳定与高效运行。 展开更多
关键词 水泥粉磨 过程控制 长短时记忆网络 注意力机制 预测控制
在线阅读 下载PDF
基于CNN-BiLSTM-SSA的锅炉再热器壁温预测模型
18
作者 徐世明 何至谦 +6 位作者 彭献永 商忠宝 范景玮 王俊略 曲舒杨 刘洋 周怀春 《动力工程学报》 北大核心 2026年第1期121-130,共10页
针对锅炉高温再热器壁温动态特点,提出了一种基于稀疏自注意力(SSA)、卷积神经网络(CNN)及双向长短期记忆神经网络(BiLSTM)相融合的再热器壁温软测量模型。首先,采用核主成分分析(KPCA)算法对原始候选变量进行筛选降维,选择前26个主成... 针对锅炉高温再热器壁温动态特点,提出了一种基于稀疏自注意力(SSA)、卷积神经网络(CNN)及双向长短期记忆神经网络(BiLSTM)相融合的再热器壁温软测量模型。首先,采用核主成分分析(KPCA)算法对原始候选变量进行筛选降维,选择前26个主成分变量作为模型的最终输入。其次,考虑利用CNN捕捉局部相关性,BiLSTM学习数据的长期序列依赖性的优势,使用卷积神经网络-双向长短期记忆神经网络(CNN-BiLSTM)捕捉时序数据中的短期和长期依赖关系,引入稀疏自注意力SSA机制,通过为不同特征部分分配自适应权重,从而增强CNN-BiLSTM模型的特征提取与建模能力,最后利用在役1000 MW超超临界锅炉的历史数据进行仿真实验。结果表明:CNN-BiLSTM-SSA模型在高温再热器壁温预测中的均方根误差(RMSE)、平均绝对误差(MAE)及平均绝对百分比误差(MAPE)分别为4.92℃、3.81℃和0.6241%,相应的指标均优于CNN、LSTM、BiLSTM、CNN-LSTM和CNN-BiLSTM模型。 展开更多
关键词 再热器壁温软测量 深度学习 卷积神经网络 长短期记忆网络 注意力机制 核主成分分析 CNN-BiLSTM
在线阅读 下载PDF
基于协同模型的船舶运动状态预测
19
作者 刁峰 周利 +2 位作者 刘天宇 李费旭 韩森 《船舶工程》 北大核心 2026年第1期111-128,167,共19页
[目的]为解决以物理模型或者神经网络模型的单模式船舶运动状态预测方法适用性和精准度不足的问题,[方法]利用物理模型和长短期记忆网络相结合的方法对船舶运动状态进行预测分析,通过改变物理参数获得不同类型船舶的特性,融合Transforme... [目的]为解决以物理模型或者神经网络模型的单模式船舶运动状态预测方法适用性和精准度不足的问题,[方法]利用物理模型和长短期记忆网络相结合的方法对船舶运动状态进行预测分析,通过改变物理参数获得不同类型船舶的特性,融合Transformer对混合模型的稳定性和可行性进行验证。[结果]结果表明:相对于单模式模型,该协同模型在预测精度方面表现出明显优势,在模拟数据集下获得了良好的效果,且在实船数据下表现也较好,其中预测误差均控制在5%以内,决定系数稳定在0.85以上。[结论]研究成果可为船舶运动状态预测提供一定参考。 展开更多
关键词 船舶状态预测 物理模型 长短期记忆网络 TRANSFORMER
原文传递
盐渍化灌区秋浇冻土入渗过程及深度学习模拟
20
作者 谭霄 张钰婷 +2 位作者 蔡孟哲 梅雨婷 李龙国 《农业工程学报》 北大核心 2026年第1期101-110,共10页
为探究河套灌区晚秋浇过程中不同初始条件对冻土入渗及盐分淋洗的综合影响,对比传统物理模型与深度学习模型在模拟冻土入渗过程中的性能。该研究通过室内土柱冻结入渗试验,系统分析了晚秋浇主要影响因素(初始含水率、翻耕情况及冻融循环... 为探究河套灌区晚秋浇过程中不同初始条件对冻土入渗及盐分淋洗的综合影响,对比传统物理模型与深度学习模型在模拟冻土入渗过程中的性能。该研究通过室内土柱冻结入渗试验,系统分析了晚秋浇主要影响因素(初始含水率、翻耕情况及冻融循环)对土柱入渗及脱盐率的影响。针对不同影响因素下冻土入渗的高度非线性特性,对比传统物理模型(Horton模型,Philip方程,Green-Ampt模型)与长短期记忆神经网络(long short-term memory neural network,LSTM)及其耦合注意力机制(LSTM-Attention)模型的预测性能。结果表明:冻融循环条件是冻土入渗主要影响因素,并调控翻耕措施与初始含水率对灌溉入渗过程及土柱整体脱盐效果的作用,翻耕措施对脱盐效果的提升与初始含水率存在耦合关系;传统模型在冻融循环条件下对入渗过程的预测精度显著下降,泛化能力弱,LSTM-Attention模型预测精度最高(冻融条件R^(2)=0.999),能有效捕捉冻土入渗动态变化。该模型为冻土入渗过程的模拟研究提供更准确、更有效的模型选择依据,也为灌区秋浇管理提供了一定的理论依据。 展开更多
关键词 灌溉 冻土 入渗 秋浇 冻融循环 深度学习 长短期记忆神经网络
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部