Despite advances in surgery,chemotherapy,and radiotherapy,the treatment of colorectal cancer(CRC)requires more personalized approaches based on tumor biology and molecular profiling.While some relevant mutations have ...Despite advances in surgery,chemotherapy,and radiotherapy,the treatment of colorectal cancer(CRC)requires more personalized approaches based on tumor biology and molecular profiling.While some relevant mutations have been associated with differential response to immunotherapy,such as RAS and BRAF mutations limiting response to anti-epithelial growth factor receptor drugs or microsatellite instability predisposing susceptibility to immune checkpoint inhibitors,the role of inflammation in dictating tumor progression and treatment response is still under investigation.Several inflammatory biomarkers have been identified to guide patient prognosis.These include the neutrophil-lymphocyte ratio,Glasgow prognostic score(GPS)and its modified version,lymphocyte-Creactive protein ratio,and platelet-lymphocyte ratio.However,these markers are not yet included in the standard clinical management of patients with CRC,and further research is needed to evaluate their efficacy in different patient populations.A recent study by Wang et al,published in the World Journal of Gastroenterology,sheds light on the prognostic significance of pan-immune-inflammation value(PIV)in CRC,particularly concerning primary tumor location.Specifically,the authors found that a high PIV was strongly correlated with worse disease-free survival in patients with left-sided colon cancer,whereas no such association was observed in patients with right-sided colon cancer.Integrating tumor location into the prognostic assessment of CRC may improve our ability to more accurately identify high-risk patients and develop personalized treatment plans that are more likely to improve patient outcomes.展开更多
In this paper, the problem of moving target localization from Bistatic Range(BR) and Bistatic Range Rate(BRR) measurements in a Multiple-Input Multiple-Output(MIMO) radar system having widely separated antennas is inv...In this paper, the problem of moving target localization from Bistatic Range(BR) and Bistatic Range Rate(BRR) measurements in a Multiple-Input Multiple-Output(MIMO) radar system having widely separated antennas is investigated. We consider a practically motivated scenario,where the accurate knowledge of transmitter and receiver locations is not known and only the nominal values are available for processing. With the transmitter and receiver location uncertainties,which are usually neglected in MIMO radar systems by prior studies, taken into account in the measurement model, we develop a novel algebraic solution to reduce the estimation error for moving target localization. The proposed algorithm is based on the pseudolinear set of equations and two-step weighted least squares estimation. The Cramer-Rao Lower Bound(CRLB) is derived in the presence of transmitter and receiver location uncertainties. Theoretical accuracy analysis demonstrates that the proposed solution attains the CRLB, and numerical examples show that the proposed solution achieves significant performance improvement over the existing algorithms.展开更多
In order to improve the target location accuracy of unmanned aerial vehicle(UAV),a novel target location method using multiple observations is proposed.Firstly,the camera intrinsic parameters are calibrated.Then,the w...In order to improve the target location accuracy of unmanned aerial vehicle(UAV),a novel target location method using multiple observations is proposed.Firstly,the camera intrinsic parameters are calibrated.Then,the weighted least squares estimation is used to improve the localization precision because the traditional crossover method is vulnerable to noise and has low precision.By repeatedly measuring the same target point,a nonlinear observation equation is established and then covered to linear equations using Taylor expansion.The weighted matrix is obtained according to the height of the measurement point and the camera optic axis pointing angle,and then the weighted least squares estimation is used to calculate the target position iteratively.Finally,the effectiveness and robustness of this method is verified by numerical simulation and flight test.The results show that this method can effectively improve the precision of target location.展开更多
This paper describes a short range target location system based on the range difference information of a T-R4 multistatic radar system with FMCW signal. A new method is proposed to determine the location and length of...This paper describes a short range target location system based on the range difference information of a T-R4 multistatic radar system with FMCW signal. A new method is proposed to determine the location and length of a thin cylindrical target making use of the high resolution of wide band FMCW signal and the spectrum characteristics of the target echo. Formulae are derived for target location and its length estimation being independent of the transmitter position. System performances are simulated with the proposed algorithm and the results are given for various situations.展开更多
In this paper we investigate spatiotemporal pattern formation in excitable media with only a long-range link. Besides the trivial solutions of spiral patterns, we find the asymptotic self-sustained target waves in the...In this paper we investigate spatiotemporal pattern formation in excitable media with only a long-range link. Besides the trivial solutions of spiral patterns, we find the asymptotic self-sustained target waves in the autonomous tissues. The wave source supporting this kind of new pattern is the oscillatory one-dimensional Winfree-loop self- organized under the presence of a long-range link, which is explored by the dominant phase-advanced driving method. Based on this understanding we can effectively regulate the oscillations of excitable media by suitably arranging the long-range link, including construction of self-sustained target waves with controllable period and wave length, or manipulation of system states between different patterns.展开更多
the close photogrammetric 3-D coordinate measurement is a newmeasuring technology in the fields of the coordinate measurementmachine (CMM) in recent years. In this method, we usually place sometargets on the measured ...the close photogrammetric 3-D coordinate measurement is a newmeasuring technology in the fields of the coordinate measurementmachine (CMM) in recent years. In this method, we usually place sometargets on the measured object and take image of targets to determinethe object coordinate. The subpixel location of target image plays animportant role in high accuracy 3-D coordinate measuring procedure.In this paper, some subpixel location methods are reviewed and somefactors which affect location precision are analyzed.展开更多
Axons in the peripheral nervous system(PNS)can regenerate after injury.However,the adult mammalian central nervous system(CNS)loses the intrinsic regrowth ability.No robust axon regeneration occurs spontaneously after...Axons in the peripheral nervous system(PNS)can regenerate after injury.However,the adult mammalian central nervous system(CNS)loses the intrinsic regrowth ability.No robust axon regeneration occurs spontaneously after nerve injury,which was clearly observed by Ramon y Cajal in the early 20^(th) century(1,2).Due to lack展开更多
In this paper,a multi-static system working in an active way is made up of ionospheric oblique backscatter sounding system(IOBSS)and two separate receiving stations,which adopts discontinuous wave mechanism.We have ad...In this paper,a multi-static system working in an active way is made up of ionospheric oblique backscatter sounding system(IOBSS)and two separate receiving stations,which adopts discontinuous wave mechanism.We have advanced a new model that contains skywave condition to locate over-the-horizon targets.We use a single quasi-parabolic(QP)ionosphere model and an analytic ray-tracing program to obtain the coordinate registration(CR)index,which changes skywave group range to ground range.Also,IOBSS and other two receiving stations use this distance information to locate the target which is far away from the system.The analytic expression for the geometric dilution of precision(GDOP)under different station deployments are obtained,which shows GDOP is influenced by the system measurement precision,the stations'coordinates,and CR index.By computer simulation,we find that GDOP of isosceles right triangle deployment is smaller than that of line deployment and location precision will be improved with increasing base line length.The results indicate that this model is practicable with an acceptable range of error(less than 500 m under certain conditions in this paper).展开更多
Vehicle recognition system (VRS) plays a very important role in the field of intelligent transportation systems.A novel and intuitive method is proposed for vehicle location.The method we provide for vehicle location ...Vehicle recognition system (VRS) plays a very important role in the field of intelligent transportation systems.A novel and intuitive method is proposed for vehicle location.The method we provide for vehicle location is based on human visual perception model technique. The perception color space HSI in this algorithm is adopted.Three color components of a color image and more potential edge patterns are integrated for solving the feature extraction problem.A fast and automatic threshold technique based on human visual perception model is also developed.The vertical edge projection and horizontal edge projection are adopted for locating left-right boundary of vehicle and top-bottom boundary of vehicle, respectively. Very promising experimental results are obtained using real-time vehicle image sequences, which have confirmed that this proposed location vehicle method is efficient and reliable, and its calculation speed meets the needs of the VRS.展开更多
The detection of hypersonic targets usually confronts range migration(RM)issue before coherent integration(CI).The traditional methods aiming at correcting RM to obtain CI mainly considers the narrow-band radar condit...The detection of hypersonic targets usually confronts range migration(RM)issue before coherent integration(CI).The traditional methods aiming at correcting RM to obtain CI mainly considers the narrow-band radar condition.However,with the increasing requirement of far-range detection,the time bandwidth product,which is corresponding to radar’s mean power,should be promoted in actual application.Thus,the echo signal generates the scale effect(SE)at large time bandwidth product situation,influencing the intra and inter pulse integration performance.To eliminate SE and correct RM,this paper proposes an effective algorithm,i.e.,scaled location rotation transform(ScLRT).The ScLRT can remove SE to obtain the matching pulse compression(PC)as well as correct RM to complete CI via the location rotation transform,being implemented by seeking the actual rotation angle.Compared to the traditional coherent detection algorithms,Sc LRT can address the SE problem to achieve better detection/estimation capabilities.At last,this paper gives several simulations to assess the viability of ScLRT.展开更多
The existing research results show that a fixed single station must conduct three consecutive frequency shift measurements and obtain the target’s moving speed by constructing two frequency difference equations. This...The existing research results show that a fixed single station must conduct three consecutive frequency shift measurements and obtain the target’s moving speed by constructing two frequency difference equations. This article proposes a new method that requires only two consecutive measurements. While using the azimuth measurement to obtain the angular difference between two radial distances, it also conducts two consecutive Doppler frequency shift measurements at the same target azimuth. On the basis of this measurement, a frequency difference equation is first constructed and solved jointly with the Doppler frequency shift equation. By eliminating the velocity variable and using the measured angular difference to obtain the target’s lead angle, the target’s velocity can be solved by using the Doppler frequency shift equation again. The new method avoids the condition that the target must move equidistantly, which not only provides an achievable method for engineering applications but also lays a good foundation for further exploring the use of steady-state signals to achieve passive positioning.展开更多
文摘Despite advances in surgery,chemotherapy,and radiotherapy,the treatment of colorectal cancer(CRC)requires more personalized approaches based on tumor biology and molecular profiling.While some relevant mutations have been associated with differential response to immunotherapy,such as RAS and BRAF mutations limiting response to anti-epithelial growth factor receptor drugs or microsatellite instability predisposing susceptibility to immune checkpoint inhibitors,the role of inflammation in dictating tumor progression and treatment response is still under investigation.Several inflammatory biomarkers have been identified to guide patient prognosis.These include the neutrophil-lymphocyte ratio,Glasgow prognostic score(GPS)and its modified version,lymphocyte-Creactive protein ratio,and platelet-lymphocyte ratio.However,these markers are not yet included in the standard clinical management of patients with CRC,and further research is needed to evaluate their efficacy in different patient populations.A recent study by Wang et al,published in the World Journal of Gastroenterology,sheds light on the prognostic significance of pan-immune-inflammation value(PIV)in CRC,particularly concerning primary tumor location.Specifically,the authors found that a high PIV was strongly correlated with worse disease-free survival in patients with left-sided colon cancer,whereas no such association was observed in patients with right-sided colon cancer.Integrating tumor location into the prognostic assessment of CRC may improve our ability to more accurately identify high-risk patients and develop personalized treatment plans that are more likely to improve patient outcomes.
基金supported by the National Natural Science Foundation of China(No.61703433)
文摘In this paper, the problem of moving target localization from Bistatic Range(BR) and Bistatic Range Rate(BRR) measurements in a Multiple-Input Multiple-Output(MIMO) radar system having widely separated antennas is investigated. We consider a practically motivated scenario,where the accurate knowledge of transmitter and receiver locations is not known and only the nominal values are available for processing. With the transmitter and receiver location uncertainties,which are usually neglected in MIMO radar systems by prior studies, taken into account in the measurement model, we develop a novel algebraic solution to reduce the estimation error for moving target localization. The proposed algorithm is based on the pseudolinear set of equations and two-step weighted least squares estimation. The Cramer-Rao Lower Bound(CRLB) is derived in the presence of transmitter and receiver location uncertainties. Theoretical accuracy analysis demonstrates that the proposed solution attains the CRLB, and numerical examples show that the proposed solution achieves significant performance improvement over the existing algorithms.
基金supported by the National Natural Science Foundation of China(No.61601222)State Key Laboratory of Satellite Navigation System and Equipment Technology(No.EX166840046)+1 种基金the Natural Science Foundation of Jiangsu Province(No.BK20160789)China Postdoctoral Science Foundation Funded Project(No.2018M632303)
文摘In order to improve the target location accuracy of unmanned aerial vehicle(UAV),a novel target location method using multiple observations is proposed.Firstly,the camera intrinsic parameters are calibrated.Then,the weighted least squares estimation is used to improve the localization precision because the traditional crossover method is vulnerable to noise and has low precision.By repeatedly measuring the same target point,a nonlinear observation equation is established and then covered to linear equations using Taylor expansion.The weighted matrix is obtained according to the height of the measurement point and the camera optic axis pointing angle,and then the weighted least squares estimation is used to calculate the target position iteratively.Finally,the effectiveness and robustness of this method is verified by numerical simulation and flight test.The results show that this method can effectively improve the precision of target location.
文摘This paper describes a short range target location system based on the range difference information of a T-R4 multistatic radar system with FMCW signal. A new method is proposed to determine the location and length of a thin cylindrical target making use of the high resolution of wide band FMCW signal and the spectrum characteristics of the target echo. Formulae are derived for target location and its length estimation being independent of the transmitter position. System performances are simulated with the proposed algorithm and the results are given for various situations.
基金supported by the National Natural Science Foundation of China (Grant No. 11047146)the Science Foundation of the Education Bureau of Shaanxi Province of China (Grant No. 11JK0544)+1 种基金the Natural Science Foundation of Shaanxi Province of China (Grant No. 2010JQ1014)the Science Foundation of Baoji University of Arts and Sciences (Grant Nos. ZK1048 andZK1049)
文摘In this paper we investigate spatiotemporal pattern formation in excitable media with only a long-range link. Besides the trivial solutions of spiral patterns, we find the asymptotic self-sustained target waves in the autonomous tissues. The wave source supporting this kind of new pattern is the oscillatory one-dimensional Winfree-loop self- organized under the presence of a long-range link, which is explored by the dominant phase-advanced driving method. Based on this understanding we can effectively regulate the oscillations of excitable media by suitably arranging the long-range link, including construction of self-sustained target waves with controllable period and wave length, or manipulation of system states between different patterns.
文摘the close photogrammetric 3-D coordinate measurement is a newmeasuring technology in the fields of the coordinate measurementmachine (CMM) in recent years. In this method, we usually place sometargets on the measured object and take image of targets to determinethe object coordinate. The subpixel location of target image plays animportant role in high accuracy 3-D coordinate measuring procedure.In this paper, some subpixel location methods are reviewed and somefactors which affect location precision are analyzed.
基金supported by National Natural Science Foundation of China [31600839]Guangdong Innovative and Entrepreneurial Research Team Program [2013S046]+1 种基金Shenzhen Peacock Plansupported by Funds of Leading Talents of Guangdong [2013] and Program of Introducing Talents of Discipline to Universities (B14036)
文摘Axons in the peripheral nervous system(PNS)can regenerate after injury.However,the adult mammalian central nervous system(CNS)loses the intrinsic regrowth ability.No robust axon regeneration occurs spontaneously after nerve injury,which was clearly observed by Ramon y Cajal in the early 20^(th) century(1,2).Due to lack
基金Supported by the National High Technology Research and Development Program of China (863 Program) (2009AAXXX1302)
文摘In this paper,a multi-static system working in an active way is made up of ionospheric oblique backscatter sounding system(IOBSS)and two separate receiving stations,which adopts discontinuous wave mechanism.We have advanced a new model that contains skywave condition to locate over-the-horizon targets.We use a single quasi-parabolic(QP)ionosphere model and an analytic ray-tracing program to obtain the coordinate registration(CR)index,which changes skywave group range to ground range.Also,IOBSS and other two receiving stations use this distance information to locate the target which is far away from the system.The analytic expression for the geometric dilution of precision(GDOP)under different station deployments are obtained,which shows GDOP is influenced by the system measurement precision,the stations'coordinates,and CR index.By computer simulation,we find that GDOP of isosceles right triangle deployment is smaller than that of line deployment and location precision will be improved with increasing base line length.The results indicate that this model is practicable with an acceptable range of error(less than 500 m under certain conditions in this paper).
文摘Vehicle recognition system (VRS) plays a very important role in the field of intelligent transportation systems.A novel and intuitive method is proposed for vehicle location.The method we provide for vehicle location is based on human visual perception model technique. The perception color space HSI in this algorithm is adopted.Three color components of a color image and more potential edge patterns are integrated for solving the feature extraction problem.A fast and automatic threshold technique based on human visual perception model is also developed.The vertical edge projection and horizontal edge projection are adopted for locating left-right boundary of vehicle and top-bottom boundary of vehicle, respectively. Very promising experimental results are obtained using real-time vehicle image sequences, which have confirmed that this proposed location vehicle method is efficient and reliable, and its calculation speed meets the needs of the VRS.
基金supported by the National Natural Science Foundation of China(62101099)the Chinese Postdoctoral Science Foundation(2021M690558,2022T150100,2018M633352,2019T120825)+3 种基金the Young Elite Scientist Sponsorship Program(YESS20200082)the Aeronautical Science Foundation of China(2022Z017080001)the Open Foundation of Science and Technology on Electronic Information Control Laboratorythe Natural Science Foundation of Sichuan Province(2023NSFSC1386)。
文摘The detection of hypersonic targets usually confronts range migration(RM)issue before coherent integration(CI).The traditional methods aiming at correcting RM to obtain CI mainly considers the narrow-band radar condition.However,with the increasing requirement of far-range detection,the time bandwidth product,which is corresponding to radar’s mean power,should be promoted in actual application.Thus,the echo signal generates the scale effect(SE)at large time bandwidth product situation,influencing the intra and inter pulse integration performance.To eliminate SE and correct RM,this paper proposes an effective algorithm,i.e.,scaled location rotation transform(ScLRT).The ScLRT can remove SE to obtain the matching pulse compression(PC)as well as correct RM to complete CI via the location rotation transform,being implemented by seeking the actual rotation angle.Compared to the traditional coherent detection algorithms,Sc LRT can address the SE problem to achieve better detection/estimation capabilities.At last,this paper gives several simulations to assess the viability of ScLRT.
文摘The existing research results show that a fixed single station must conduct three consecutive frequency shift measurements and obtain the target’s moving speed by constructing two frequency difference equations. This article proposes a new method that requires only two consecutive measurements. While using the azimuth measurement to obtain the angular difference between two radial distances, it also conducts two consecutive Doppler frequency shift measurements at the same target azimuth. On the basis of this measurement, a frequency difference equation is first constructed and solved jointly with the Doppler frequency shift equation. By eliminating the velocity variable and using the measured angular difference to obtain the target’s lead angle, the target’s velocity can be solved by using the Doppler frequency shift equation again. The new method avoids the condition that the target must move equidistantly, which not only provides an achievable method for engineering applications but also lays a good foundation for further exploring the use of steady-state signals to achieve passive positioning.