Accurate navigation is important for long-range rocket projectile's precise striking. To obtain stable and high-per- formance navigation result, a ultra-tight global positioning system/inertial navigation system (GP...Accurate navigation is important for long-range rocket projectile's precise striking. To obtain stable and high-per- formance navigation result, a ultra-tight global positioning system/inertial navigation system (GPS/INS) integration based nav- igation approach is proposed. The accurate short-time output of INS is used by GPS receiver to assist in acquisition of signal, and output information of INS and GPS is fused based on federated filter. Meanwhile, the improved cubature Kalman filter with strong tracking ability is chosen to serve as the local filter, and then the federated filter is enhanced based on vector sharing theory. Finally, simulation results show that the navigation accuracy with the proposed method is higher than that with traditional methods. It provides reference for long-range rocket projectile navigation.展开更多
With the improvement of the accuracy of the inertial system,the influence of the disturbing gravity field on the accuracy of long-range rocket has become increasingly prominent.However,in actual engineering,there are ...With the improvement of the accuracy of the inertial system,the influence of the disturbing gravity field on the accuracy of long-range rocket has become increasingly prominent.However,in actual engineering,there are problems of low accuracy and being time-consuming for disturbing gravity field compensation.In view of this,this paper proposes a set of online comprehensive solutions combining disturbing gravity reconstruction and stellar correction.According to the pre-launch binding parameters,the net function assignment method is used in the navigation system to calculate disturbing gravity in the boost phase online.In the guidance system,a closed-loop guidance online compensation method is proposed based on the state-space perturbation method for the disturbing gravity in the coast phase.At the same time,the vertical deflection can also be corrected by stellar guidance.The calculation results are simulated and verified under different circumstances.Simulation results show that the proposed online compensation algorithm has an accuracy improvement compared with the element compensation algorithm on ground.And the stellar guidance algorithm can further correct the impact deviation.The impact deviation after comprehensive compensation does not exceed 50 m,and the compensation percentage is greater than 65%.展开更多
Sluggish sulfur conversion kinetics pose an ongoing challenge in lithium-sulfur batteries(LSBs).Here,we present a solution through far-reaching long-range electronic regulation(LRER)on single-atom active sites.N-doped...Sluggish sulfur conversion kinetics pose an ongoing challenge in lithium-sulfur batteries(LSBs).Here,we present a solution through far-reaching long-range electronic regulation(LRER)on single-atom active sites.N-doped carbons(Co-NC)are implanted with densely-distributed Co single atoms,and supported on Ti_(3)C_(2)T_(x)MXene substrates to assemble 3D Co-NC/MXene catalyst.MXene effectively mediates interlayer charge transfer(~0.70|e|)contrasted with popular carbon materials(~0.06|e|)to produce LRER through surrounding carbon atoms.The synergy of LRER with near-range electronic regulation(NRER)tunes electronic structures,and enhances heterostructural stability,thus provoking desirous catalytic kinetics of Co single atoms in sulfur reduction.Thereby,the Co-NC/MXene/S cathodes exhibit impressive rate performance and excellent cycling stability(only 0.015%capacity decay per cycle over 600 cycles at 4 C)in LSBs,surpassing state-of-the-art sulfur cathodes.This work reveals the importance of LRER for improved catalysis,and provides new guidance to tailor heterostructures to achieve high-efficient catalysts in various process.展开更多
Catalysts with asymmetric coordination exhibit excellent electrocatalytic activity due to changes in the active sites,which affect the arrangement of reactants and catalytic activity/selectivity.Hence,the exploration ...Catalysts with asymmetric coordination exhibit excellent electrocatalytic activity due to changes in the active sites,which affect the arrangement of reactants and catalytic activity/selectivity.Hence,the exploration of the inherent characteristics of active sites within diverse coordination environments holds great significance for the experimental design of catalytic structures.Single-atom catalysts(SACs)characterized by high coordination with four carbons(26 candidates)and low coordination with dinitrogen(27candidates)are constructed using nitrogen-doped graphdiyne derivatives(NGDY)as the substrate.Additionally,5 species of dual-atom catalysts(DACs)with coexistence of both high and low coordination sites are also developed and their nitrogen reduction reaction(NRR)activities are systematically investigated by density functional theory.The results indicate that metals with low coordination exhibit superior catalytic performance,such as Mo^(L)-NGDY(U_(L)=-0.30 V)and Nb^(L)-NGDY(U_(L)=-0.32 V).Furthermore,machine learning(ML)methods have deeply analyzed and elucidated the primary intrinsic characteristics that influence catalytic performance.These results not only unveil the underlying mechanisms behind the exceptional catalytic performance exhibited by low-coordination metal atoms,but also provide relevant and significant descriptors.More importantly,based on an investigation of the catalytic activity of a series of DACs,the“buffer and low-coordination accumulate”asymmetric coordination mechanism is proposed to unveil the long-range interactions between low and high coordination atoms.Due to this remote communication,MoNb-NGDY(U_(L)=-0.09/-0.37 V)exhibits the best NRR activity.This mechanism provides valuable insights into the origin of long-range bipartite interactions and inspires the design and synthesis of NRR catalysts with different coordination environments.展开更多
Consecutive stresses,such as initial submergence during germination followed by water deficit during the seedling stage,pose significant challenges to direct-seeded rice cultivation.By Linkage disequilibrium analysis,...Consecutive stresses,such as initial submergence during germination followed by water deficit during the seedling stage,pose significant challenges to direct-seeded rice cultivation.By Linkage disequilibrium analysis,Sub1 and Dro1(Δbp:10 Mb),as well as Sub1 and TPP7(Δbp:6 Mb)were identified to exhibit long-range linkage disequilibrium(LRLD).Meta-QTL analysis further revealed that Sub1 and TPP7 co-segregated for tolerance to submergence at the germination and seedling stages.Based on this,we hypothesized that LRLD might influence plant responses to consecutive stresses.To test this hypothesis,we developed a structured recombinant inbred line population from a cross between Bhalum 2 and Nagina 22,with alleles(Sub1 and TPP7)in linkage equilibrium.Mendelian randomization analysis validated that the parental alleles,rather than the recombinant alleles of Sub1 and TPP7,significantly influenced 13 out of 41 traits under consecutive stress conditions.Additionally,16 minor additive effect QTLs were detected between the genomic regions,spanning Sub1 and TPP7 for various traits.A single allele difference between these genomic regions enhanced crown root number,root dry weight,and specific root area by 11.45%,15.69%,and 33.15%,respectively,under flooded germination conditions.Candidate gene analysis identified WAK79 and MRLK59 as regulators of stress responses during flooded germination,recovery,and subsequent water deficit conditions.These findings highlight the critical role of parental allele combinations and genomic regions between Sub1 and TPP7 in regulating the stress responses under consecutive stresses.Favourable haplotypes derived from these alleles can be utilized to improve stress resilience in direct-seeded rice.展开更多
Long-range magnetic order appears on a side decorated Heisenberg spin nanoribbon at nonzero temperature,although no spontaneous magnetization exists in a one-or two-dimensional isotropic Heisenberg model at any nonzer...Long-range magnetic order appears on a side decorated Heisenberg spin nanoribbon at nonzero temperature,although no spontaneous magnetization exists in a one-or two-dimensional isotropic Heisenberg model at any nonzero temperature according to the Mermin-Wagner theorem.By use of the spin Green's function method,we calculated the magnetizations of Heisenberg nanoribbons decorated by side spins with single-ion anisotropy and found that the system exhibits a nonzero transition temperature,whether the decorated edge spins of the system link together or separate from each other.When the width of the nanoribbon achieves infinite limit,the transition temperatures of the system tend to the same finite constant eventually whether one edge or both edges are decorated by side spins in the nanoribbon.The results reveal that the magnetism of a low-dimensional spin system is different from that of a threedimensional spin system.When the single-ion anisotropy of edge spins in a Heisenberg spin nanoribbon can be modulated by an electric field experimentally,various useful long-range magnetic orders of the system can be obtained.This work can provide a detailed theoretical basis for designing and fabricating next-generation low-dimensional magnetic random-access memory.展开更多
Molecular dynamics(MD)simulations and anisotropic thermal diffusion dynamics(ATD)simulations were performed on the wild TrpR and its 75 residue mutant(mTrpR)to investigate TrpR longrange effects.The ATD result shows t...Molecular dynamics(MD)simulations and anisotropic thermal diffusion dynamics(ATD)simulations were performed on the wild TrpR and its 75 residue mutant(mTrpR)to investigate TrpR longrange effects.The ATD result shows that the mTrpR has higher fluctuation than the wild TrpR,and its helix chainⅡF has particular disorder.It is obvious that the 75 residue of wild TrpR and mTrpR affects the protein dynamics flexibilities by the long-range effects.The ATD and MD both confirm that the differences in the size of side-chain and three-dimensional structures of two different 75 residues in the wild TrpR and mTrpR will spread to the entire protein by way of the long-range effects.Long-range effect affects the protein side chain interaction,conformational changes,flexibilities and secondary structures.Further,the ATD result also shows that each 75 residue of the symmetric homodimer has the same effect,and the two 75 residues have a positive correlation in long-range regulating processes.The residues 48,50,71,79 in chainⅠof wild TrpR and residues 45,72,80 in chainⅡof mTrpR play important roles in long-range interaction processes.展开更多
Floating wastes in rivers have specific characteristics such as small scale,low pixel density and complex backgrounds.These characteristics make it prone to false and missed detection during image analysis,thus result...Floating wastes in rivers have specific characteristics such as small scale,low pixel density and complex backgrounds.These characteristics make it prone to false and missed detection during image analysis,thus resulting in a degradation of detection performance.In order to tackle these challenges,a floating waste detection algorithm based on YOLOv7 is proposed,which combines the improved GFPN(Generalized Feature Pyramid Network)and a long-range attention mechanism.Firstly,we import the improved GFPN to replace the Neck of YOLOv7,thus providing more effective information transmission that can scale into deeper networks.Secondly,the convolution-based and hardware-friendly long-range attention mechanism is introduced,allowing the algorithm to rapidly generate an attention map with a global receptive field.Finally,the algorithm adopts the WiseIoU optimization loss function to achieve adaptive gradient gain allocation and alleviate the negative impact of low-quality samples on the gradient.The simulation results reveal that the proposed algorithm has achieved a favorable average accuracy of 86.3%in real-time scene detection tasks.This marks a significant enhancement of approximately 6.3%compared with the baseline,indicating the algorithm's good performance in floating waste detection.展开更多
Sea-based rocket launches encounter significant challenges stemming from dynamic marine environmental interactions.During the hot launch phase,characterized by low-velocity ascent,the departure of the rocket from the ...Sea-based rocket launches encounter significant challenges stemming from dynamic marine environmental interactions.During the hot launch phase,characterized by low-velocity ascent,the departure of the rocket from the oscillatory platform exhibits heightened sensitivity to external disturbances.In the development stage,assessing the launch dynamics and the clearance between the rocket and framed launcher are crucial for improving the reliability of sea-based rocket launches in rough sea conditions.This study presents a high-fidelity dynamic model of maritime hot launch system,demonstrating 3.21%prediction error through rigorous validation against experimental datasets from comprehensive modal analyses and the full-scale rocket flight test.To mitigate collision risks,we develop a computational method employing spatial vector analysis for dynamic measurement of rocket-launcher clearance during departure.Systematic investigations reveal that in rough sea conditions,optimal departure dynamics are achieved at θ_(thrust)=270°nozzle azimuth configuration,reducing failure probability compared to conventional orientations.The developed assessment framework not only resolves critical safety challenges in current sea launch systems but also establishes foundational principles for optimizing adapter axial configuration patterns in future designs.展开更多
The rocket sled system is not only a high-speed dynamic ground test system,but also one of the future aerospace horizontal launch schemes.The winged load,as a common type of payload,has greater vibration and noise int...The rocket sled system is not only a high-speed dynamic ground test system,but also one of the future aerospace horizontal launch schemes.The winged load,as a common type of payload,has greater vibration and noise intensity than the wingless load.Due to the severe aerodynamic instability prior to separation,the head-up or head-down phenomena are more evident and the test accuracy significantly decreases.The high-precision computer fluid dynamics and aeroacoustic analysis are employed to explore the multifield coupling mechanism of a rocket sled with the winged payload in the wide speed range(Ma=0.5–2).The results show that as the incoming velocity increases,the cone angle of the shock wave of the rocket sled decreases,the shock pressure increases quickly,and the vortex between the slippers splits and gradually shrinks in size.The velocity of the rocket sled exerts little influence on the modal resonance frequency.The wing has a significant impact on aerodynamic noise,and as the sound pressure level rises,the propagation direction gradually shifts towards the rear and upper regions of the wing.展开更多
In liquid rocket engines,regenerative cooling technology is essential for preserving structural integrity under extreme thermal loads.However,non-uniform coolant flow distribution within the cooling channels often lea...In liquid rocket engines,regenerative cooling technology is essential for preserving structural integrity under extreme thermal loads.However,non-uniform coolant flow distribution within the cooling channels often leads to localized overheating,posing serious risks to engine reliability and operational lifespan.This study employs a three-dimensional fluid–thermal coupled numerical model to systematically investigate the influence of geometric parameters-specifically the number of inlets,the number of channels,and inlet manifold configurations-on flow uniformity and thermal distribution in non-pyrolysis zones.Key findings reveal that increasing the number of inlets from one to three significantly enhances flow uniformity,reducing mass flow rate deviation from 1.2%to below 0.3%.However,further increasing the inlets to five yields only marginal improvements indicating diminishing(<0.1%),returns beyond three inlets.Additionally,temperature non-uniformity at the combustion chamber throat decreases by 37%-from 3050 K with 18 channels to 1915 K with 30 channels-highlighting the critical role of channel density in effective thermal regulation.Notably,while higher channel counts improve cooling efficiency,they also result in increased pressure losses of approximately 18%–22%,emphasizing the need to balance thermal performance against hydraulic resistance.An optimal configuration comprising 24 channels and three inlets was identified,providing minimal temperature gradients while maintaining acceptable pressure losses.The inlet manifold structure also plays a pivotal role in determining flow distribution.Configuration 3(Config-3),which features an enlarged manifold and reduced inlet velocity,achieves a 40%reduction in velocity fluctuations compared to Configuration 1(Config-1).This improvement leads to a more uniform mass flow distribution,with a relative standard deviation(RSD)of less than 0.15%.Furthermore,this design effectively mitigates localized hot spots near the nozzle-where temperature gradients are most severe-achieving a reduction of approximately 1135 K.展开更多
The reuse of liquid propellant rocket engines has increased the difficulty of their control and estimation.State and parameter Moving Horizon Estimation(MHE)is an optimization-based strategy that provides the necessar...The reuse of liquid propellant rocket engines has increased the difficulty of their control and estimation.State and parameter Moving Horizon Estimation(MHE)is an optimization-based strategy that provides the necessary information for model predictive control.Despite the many advantages of MHE,long computation time has limited its applications for system-level models of liquid propellant rocket engines.To address this issue,we propose an asynchronous MHE method called advanced-multi-step MHE with Noise Covariance Estimation(amsMHE-NCE).This method computes the MHE problem asynchronously to obtain the states and parameters and can be applied to multi-threaded computations.In the background,the state and covariance estimation optimization problems are computed using multiple sampling times.In real-time,sensitivity is used to quickly approximate state and parameter estimates.A covariance estimation method is developed using sensitivity to avoid redundant MHE problem calculations in case of sensor degradation during engine reuse.The amsMHE-NCE is validated through three cases based on the space shuttle main engine system-level model,and we demonstrate that it can provide more accurate real-time estimates of states and parameters compared to other commonly used estimation methods.展开更多
As a critical component of pulse solid rocket motors(SRMs),the soft pulse separation device(PSD)is vital in enabling multi-pulse propulsion and has become a breakthrough in SRM engineering applications.To investigate ...As a critical component of pulse solid rocket motors(SRMs),the soft pulse separation device(PSD)is vital in enabling multi-pulse propulsion and has become a breakthrough in SRM engineering applications.To investigate the opening performance of the PSD,an axial PSD incorporating a star-shaped prefabricated defect was designed.The opening process was simulated using peridynamics,yielding the strain field distribution and the corresponding failure mode.A single-opening verification test was conducted.The simulation results showed good agreement with the experimental data,demonstrating the reliability of the peridynamic modeling approach.Furthermore,the effects of the prefabricated defect shape and depth on the opening performance of the PSD were analyzed through simulation.The research results indicate that the established constitutive model and failure criteria based on peridynamics can reasonably predict the failure location and the opening pressure of the soft PSD.Under the impact loading,the weak zone of the soft PSD firstly ruptures,and the damaged area gradually propagates along with the prefabricated defect,eventually leading to complete separation.A smaller prefabricated defect depth or a wider prefabricated defect distribution can cause a reduction in opening pressure.These research results provide valuable guidance for the preliminary design and optimization of PSDs in pulse solid rocket motors.展开更多
A two-dimensional large eddy simulation numerical model is proposed to study the transient vortex flow and pressure oscillation of a large-aspect-ratio solid rocket motor.The numerical model is validated through exper...A two-dimensional large eddy simulation numerical model is proposed to study the transient vortex flow and pressure oscillation of a large-aspect-ratio solid rocket motor.The numerical model is validated through experimental data,finite element analysis and cumulative error analysis.The numerical simulations are executed to obtain the characteristics of the vortex-acoustic and pressure oscillation.The results show that the burning surface regression decreases the motor aspect ratio,increasing the corresponding natural frequency from 260 Hz to 293 Hz.The pressure oscillation phenomenon is formed due to the vortex-acoustic coupling.Decreasing the corner vortex shedding intensity shows negative effects on the dimensionless amplitude of the pressure oscillation.The head cavity without the injection can decrease the vortex-acoustic coupling level at the acoustic pressure antinode.The modified motor with head cavity can obtain a lower dimensionless oscillating pressure amplitude 0.00149 in comparison with 0.00895 of the original motor.The aspect ratio and volume of the head cavity without the injection have great effects on the pressure oscillation suppression,particularly at the low aspect ratio or large volume.The reason is that the mass in the region around the acoustic pressure antinode is extracted centrally,reducing the energy contribution to the acoustic system.With the volume increasing,the acoustic energy capacity increases.展开更多
Taking a C1x motor with a backward-facing step which can generate a typical corner vortex as a reference,a numerical methodology using large eddy simulation was established in this study.Based on this methodology,the ...Taking a C1x motor with a backward-facing step which can generate a typical corner vortex as a reference,a numerical methodology using large eddy simulation was established in this study.Based on this methodology,the position of the backward-facing step of the motor was computed and analyzed to determine a basic configuration.Two key geometrical parameters,the head cavity angle and submerged nozzle cavity height,were subsequently introduced.Their effects on the corner vortex motion and their interactions with the acoustic pressure downstream of the backward-facing step were analyzed.The phenomena of vortex acoustic coupling and characteristics of pressure oscillations were further explored.The results show that the maximum error between the simulations and experimental data on the dominant frequency of pressure oscillations is 5.23%,which indicates that the numerical methodology built in this study is highly accurate.When the step is located at less than 5/8 of the total length of the combustion chamber,vortex acoustic coupling occurs,which can increase the pressure oscillations in the motor.Both the vorticity and the scale of vortices in the downstream step increase when the head cavity angle is greater than 24°,which increases the amplitude of the pressure oscillation by maximum 63.0%.The submerged nozzle cavity mainly affects the vortices in the cavity itself rather than those in the downstream step.When the height of the cavity increases from 10 to 20 mm,the pressure oscillation amplitude under the main frequency increases by 39.1%.As this height continues to increase,the amplitude of pressure oscillations increases but the primary frequency decreases.展开更多
As the performance of the box-type multiple launch rocket system(BMLRS)improves,its mechanical structures,particularly the plane clearance design between the slider on the rocket and the guide inside the launch canist...As the performance of the box-type multiple launch rocket system(BMLRS)improves,its mechanical structures,particularly the plane clearance design between the slider on the rocket and the guide inside the launch canister,have grown increasingly complex.However,deficiencies still exist in the current launch modeling theory for BMLRS.In this study,a multi-rigid-flexible-body launch dynamics model coupling the launch platform and rocket was established using the multibody system transfer matrix method and the Newton-Euler formulation.Furthermore,considering the bending of the launch canister,a detection algorithm for slider-guide plane clearance contact was proposed.To quantify the contact force and friction effect between the slider and guide,the contact force model and modified Coulomb model were introduced.Both the modal and launch tests were conducted.Additionally,the modal convergence was verified.By comparing the modal experiments and simulation results,the maximum relative error of the eigenfrequency is 3.29%.thereby verifying the accuracy of the developed BMLRS dynamics model.Furthermore,the launch test validated the proposed plane clearance contact model.Moreover,the study investigated the influence of various model parameters on the dynamic characteristics of BMLRS,including launch canister bending stiffness,slider and guide material,slider-guide clearance,slider length and layout.This analysis of influencing factors provides a foundation for future optimization in BMLRS design.展开更多
This study investigates the potential of metal additives in acrylonitrile butadiene styrene(ABS)polymer fuel to enhance hybrid rocket motor(HRM)performance through computational analysis,Chemical Equilibrium with Appl...This study investigates the potential of metal additives in acrylonitrile butadiene styrene(ABS)polymer fuel to enhance hybrid rocket motor(HRM)performance through computational analysis,Chemical Equilibrium with Applications(CEA),software.ABS was selected as the base fuel due to its thermoplastic nature,which allows for the creation of complex fuel geometries through 3D printing,offering significant flexibility in fuel design.Hybrid rockets,which combine a solid fuel with a liquid oxidiser,offer advantages in terms of operational simplicity and safety.However,conventional polymer fuels often exhibit low regression rates and suboptimal combustion efficiencies.In this research,we evaluated a range of metal additives-aluminium(Al),boron(B),nickel(Ni),copper(Cu),and iron(Fe)-at chamber pressures ranging from 1 to 30 bar and oxidiser-to-fuel(O/F)ratios between 1.1 and 12,resulting in 1800 unique test conditions.The main performance parameters used to assess each formulation were characteristic velocity(C^(*))and adiabatic flame temperature.The results revealed that each test produced a different optimum O/F ratio,with most ratios falling between 4 and 6.The highest performance was achieved at a chamber pressure of 30 bar across all formulations.Among the additives,Al and B demonstrated significant potential for improved combustion performance with increasing metal loadings.In contrast,Fe,Cu,and Ni reached optimal performance at a minimum loading of 1%.Future work includes investigating B-Al metal composites as additives into the ABS base polymer fuel,and doing experimental validation tests where the metallised ABS polymer fuel is 3D printed.展开更多
The effects of random long-range connections (shortcuts) on the transitions of neural firing patterns in coupled Hindmarsh-Rose neurons are investigated, where each neuron is subjected to an external current. It is ...The effects of random long-range connections (shortcuts) on the transitions of neural firing patterns in coupled Hindmarsh-Rose neurons are investigated, where each neuron is subjected to an external current. It is found that, on one hand, the system can achieve the transition of neural firing patterns from the fewer-period state to the multi-period one, when the number of the added shortcuts in the neural network is greater than a threshold value, indicating the occurrence of in-transition of neural firing patterns. On the other hand, for a stronger coupling strength, we can also find the similar but reverse results by adding some proper random connections. In addition, the influences of system size and coupling strength on such transition behavior, as well as the internality between the transition degree of firing patterns and its critical characteristics for different external stimulation current, are also discussed.展开更多
基金Project Funded by Chongqing Changjiang Electrical Appliances Industries Group Co.,Ltd
文摘Accurate navigation is important for long-range rocket projectile's precise striking. To obtain stable and high-per- formance navigation result, a ultra-tight global positioning system/inertial navigation system (GPS/INS) integration based nav- igation approach is proposed. The accurate short-time output of INS is used by GPS receiver to assist in acquisition of signal, and output information of INS and GPS is fused based on federated filter. Meanwhile, the improved cubature Kalman filter with strong tracking ability is chosen to serve as the local filter, and then the federated filter is enhanced based on vector sharing theory. Finally, simulation results show that the navigation accuracy with the proposed method is higher than that with traditional methods. It provides reference for long-range rocket projectile navigation.
基金supported by National Basic Research Program of China(No.613222)。
文摘With the improvement of the accuracy of the inertial system,the influence of the disturbing gravity field on the accuracy of long-range rocket has become increasingly prominent.However,in actual engineering,there are problems of low accuracy and being time-consuming for disturbing gravity field compensation.In view of this,this paper proposes a set of online comprehensive solutions combining disturbing gravity reconstruction and stellar correction.According to the pre-launch binding parameters,the net function assignment method is used in the navigation system to calculate disturbing gravity in the boost phase online.In the guidance system,a closed-loop guidance online compensation method is proposed based on the state-space perturbation method for the disturbing gravity in the coast phase.At the same time,the vertical deflection can also be corrected by stellar guidance.The calculation results are simulated and verified under different circumstances.Simulation results show that the proposed online compensation algorithm has an accuracy improvement compared with the element compensation algorithm on ground.And the stellar guidance algorithm can further correct the impact deviation.The impact deviation after comprehensive compensation does not exceed 50 m,and the compensation percentage is greater than 65%.
基金supported by the National Natural Science Foundation of China(Nos.21573059,12274118 and 22208088)Henan Center for Outstanding Overseas Scientists(No.GZS2023007)Special Project for Fundamental Research in University of Henan Province(No.22ZX013)。
文摘Sluggish sulfur conversion kinetics pose an ongoing challenge in lithium-sulfur batteries(LSBs).Here,we present a solution through far-reaching long-range electronic regulation(LRER)on single-atom active sites.N-doped carbons(Co-NC)are implanted with densely-distributed Co single atoms,and supported on Ti_(3)C_(2)T_(x)MXene substrates to assemble 3D Co-NC/MXene catalyst.MXene effectively mediates interlayer charge transfer(~0.70|e|)contrasted with popular carbon materials(~0.06|e|)to produce LRER through surrounding carbon atoms.The synergy of LRER with near-range electronic regulation(NRER)tunes electronic structures,and enhances heterostructural stability,thus provoking desirous catalytic kinetics of Co single atoms in sulfur reduction.Thereby,the Co-NC/MXene/S cathodes exhibit impressive rate performance and excellent cycling stability(only 0.015%capacity decay per cycle over 600 cycles at 4 C)in LSBs,surpassing state-of-the-art sulfur cathodes.This work reveals the importance of LRER for improved catalysis,and provides new guidance to tailor heterostructures to achieve high-efficient catalysts in various process.
基金supports by the National Natural Science Foundation of China(NSFC,Grant No.52271113)the Natural Science Foundation of Shaanxi Province,China(2020JM 218)the Fundamental Research Funds for the Central Universities(CHD300102311405)。
文摘Catalysts with asymmetric coordination exhibit excellent electrocatalytic activity due to changes in the active sites,which affect the arrangement of reactants and catalytic activity/selectivity.Hence,the exploration of the inherent characteristics of active sites within diverse coordination environments holds great significance for the experimental design of catalytic structures.Single-atom catalysts(SACs)characterized by high coordination with four carbons(26 candidates)and low coordination with dinitrogen(27candidates)are constructed using nitrogen-doped graphdiyne derivatives(NGDY)as the substrate.Additionally,5 species of dual-atom catalysts(DACs)with coexistence of both high and low coordination sites are also developed and their nitrogen reduction reaction(NRR)activities are systematically investigated by density functional theory.The results indicate that metals with low coordination exhibit superior catalytic performance,such as Mo^(L)-NGDY(U_(L)=-0.30 V)and Nb^(L)-NGDY(U_(L)=-0.32 V).Furthermore,machine learning(ML)methods have deeply analyzed and elucidated the primary intrinsic characteristics that influence catalytic performance.These results not only unveil the underlying mechanisms behind the exceptional catalytic performance exhibited by low-coordination metal atoms,but also provide relevant and significant descriptors.More importantly,based on an investigation of the catalytic activity of a series of DACs,the“buffer and low-coordination accumulate”asymmetric coordination mechanism is proposed to unveil the long-range interactions between low and high coordination atoms.Due to this remote communication,MoNb-NGDY(U_(L)=-0.09/-0.37 V)exhibits the best NRR activity.This mechanism provides valuable insights into the origin of long-range bipartite interactions and inspires the design and synthesis of NRR catalysts with different coordination environments.
基金supported by the Director General,Indian Council of Agricultural Research(ICAR),New Delhithe Director,ICAR-National Rice Research Institute,Cuttack.
文摘Consecutive stresses,such as initial submergence during germination followed by water deficit during the seedling stage,pose significant challenges to direct-seeded rice cultivation.By Linkage disequilibrium analysis,Sub1 and Dro1(Δbp:10 Mb),as well as Sub1 and TPP7(Δbp:6 Mb)were identified to exhibit long-range linkage disequilibrium(LRLD).Meta-QTL analysis further revealed that Sub1 and TPP7 co-segregated for tolerance to submergence at the germination and seedling stages.Based on this,we hypothesized that LRLD might influence plant responses to consecutive stresses.To test this hypothesis,we developed a structured recombinant inbred line population from a cross between Bhalum 2 and Nagina 22,with alleles(Sub1 and TPP7)in linkage equilibrium.Mendelian randomization analysis validated that the parental alleles,rather than the recombinant alleles of Sub1 and TPP7,significantly influenced 13 out of 41 traits under consecutive stress conditions.Additionally,16 minor additive effect QTLs were detected between the genomic regions,spanning Sub1 and TPP7 for various traits.A single allele difference between these genomic regions enhanced crown root number,root dry weight,and specific root area by 11.45%,15.69%,and 33.15%,respectively,under flooded germination conditions.Candidate gene analysis identified WAK79 and MRLK59 as regulators of stress responses during flooded germination,recovery,and subsequent water deficit conditions.These findings highlight the critical role of parental allele combinations and genomic regions between Sub1 and TPP7 in regulating the stress responses under consecutive stresses.Favourable haplotypes derived from these alleles can be utilized to improve stress resilience in direct-seeded rice.
文摘Long-range magnetic order appears on a side decorated Heisenberg spin nanoribbon at nonzero temperature,although no spontaneous magnetization exists in a one-or two-dimensional isotropic Heisenberg model at any nonzero temperature according to the Mermin-Wagner theorem.By use of the spin Green's function method,we calculated the magnetizations of Heisenberg nanoribbons decorated by side spins with single-ion anisotropy and found that the system exhibits a nonzero transition temperature,whether the decorated edge spins of the system link together or separate from each other.When the width of the nanoribbon achieves infinite limit,the transition temperatures of the system tend to the same finite constant eventually whether one edge or both edges are decorated by side spins in the nanoribbon.The results reveal that the magnetism of a low-dimensional spin system is different from that of a threedimensional spin system.When the single-ion anisotropy of edge spins in a Heisenberg spin nanoribbon can be modulated by an electric field experimentally,various useful long-range magnetic orders of the system can be obtained.This work can provide a detailed theoretical basis for designing and fabricating next-generation low-dimensional magnetic random-access memory.
基金supported by the Innovation project of Henan Agricultural University(No.30600982)PhD Start-up Foundation of Henan Agricultural University(30600780)2023 Instrument Operator Capability lmprovement Project(SYS2023T04)
文摘Molecular dynamics(MD)simulations and anisotropic thermal diffusion dynamics(ATD)simulations were performed on the wild TrpR and its 75 residue mutant(mTrpR)to investigate TrpR longrange effects.The ATD result shows that the mTrpR has higher fluctuation than the wild TrpR,and its helix chainⅡF has particular disorder.It is obvious that the 75 residue of wild TrpR and mTrpR affects the protein dynamics flexibilities by the long-range effects.The ATD and MD both confirm that the differences in the size of side-chain and three-dimensional structures of two different 75 residues in the wild TrpR and mTrpR will spread to the entire protein by way of the long-range effects.Long-range effect affects the protein side chain interaction,conformational changes,flexibilities and secondary structures.Further,the ATD result also shows that each 75 residue of the symmetric homodimer has the same effect,and the two 75 residues have a positive correlation in long-range regulating processes.The residues 48,50,71,79 in chainⅠof wild TrpR and residues 45,72,80 in chainⅡof mTrpR play important roles in long-range interaction processes.
基金Supported by the Science Foundation of the Shaanxi Provincial Department of Science and Technology,General Program-Youth Program(2022JQ-695)the Scientific Research Program Funded by Education Department of Shaanxi Provincial Government(22JK0378)+1 种基金the Talent Program of Weinan Normal University(2021RC20)the Educational Reform Research Project(JG202342)。
文摘Floating wastes in rivers have specific characteristics such as small scale,low pixel density and complex backgrounds.These characteristics make it prone to false and missed detection during image analysis,thus resulting in a degradation of detection performance.In order to tackle these challenges,a floating waste detection algorithm based on YOLOv7 is proposed,which combines the improved GFPN(Generalized Feature Pyramid Network)and a long-range attention mechanism.Firstly,we import the improved GFPN to replace the Neck of YOLOv7,thus providing more effective information transmission that can scale into deeper networks.Secondly,the convolution-based and hardware-friendly long-range attention mechanism is introduced,allowing the algorithm to rapidly generate an attention map with a global receptive field.Finally,the algorithm adopts the WiseIoU optimization loss function to achieve adaptive gradient gain allocation and alleviate the negative impact of low-quality samples on the gradient.The simulation results reveal that the proposed algorithm has achieved a favorable average accuracy of 86.3%in real-time scene detection tasks.This marks a significant enhancement of approximately 6.3%compared with the baseline,indicating the algorithm's good performance in floating waste detection.
基金the experimental technology support provided by the China Academy of Launch Vehicle Technology
文摘Sea-based rocket launches encounter significant challenges stemming from dynamic marine environmental interactions.During the hot launch phase,characterized by low-velocity ascent,the departure of the rocket from the oscillatory platform exhibits heightened sensitivity to external disturbances.In the development stage,assessing the launch dynamics and the clearance between the rocket and framed launcher are crucial for improving the reliability of sea-based rocket launches in rough sea conditions.This study presents a high-fidelity dynamic model of maritime hot launch system,demonstrating 3.21%prediction error through rigorous validation against experimental datasets from comprehensive modal analyses and the full-scale rocket flight test.To mitigate collision risks,we develop a computational method employing spatial vector analysis for dynamic measurement of rocket-launcher clearance during departure.Systematic investigations reveal that in rough sea conditions,optimal departure dynamics are achieved at θ_(thrust)=270°nozzle azimuth configuration,reducing failure probability compared to conventional orientations.The developed assessment framework not only resolves critical safety challenges in current sea launch systems but also establishes foundational principles for optimizing adapter axial configuration patterns in future designs.
基金supported by the National Natural Science Foundation of China(No.12104047)。
文摘The rocket sled system is not only a high-speed dynamic ground test system,but also one of the future aerospace horizontal launch schemes.The winged load,as a common type of payload,has greater vibration and noise intensity than the wingless load.Due to the severe aerodynamic instability prior to separation,the head-up or head-down phenomena are more evident and the test accuracy significantly decreases.The high-precision computer fluid dynamics and aeroacoustic analysis are employed to explore the multifield coupling mechanism of a rocket sled with the winged payload in the wide speed range(Ma=0.5–2).The results show that as the incoming velocity increases,the cone angle of the shock wave of the rocket sled decreases,the shock pressure increases quickly,and the vortex between the slippers splits and gradually shrinks in size.The velocity of the rocket sled exerts little influence on the modal resonance frequency.The wing has a significant impact on aerodynamic noise,and as the sound pressure level rises,the propagation direction gradually shifts towards the rear and upper regions of the wing.
基金supported by the Key project of Hunan Provincial Education Department(Grant Number:22A0485)The Natural Science Foundation of Hunan(Grant Number:2024JJ5293)The Key project of Hunan University of Arts and Science(Grant Number:23ZZ08).
文摘In liquid rocket engines,regenerative cooling technology is essential for preserving structural integrity under extreme thermal loads.However,non-uniform coolant flow distribution within the cooling channels often leads to localized overheating,posing serious risks to engine reliability and operational lifespan.This study employs a three-dimensional fluid–thermal coupled numerical model to systematically investigate the influence of geometric parameters-specifically the number of inlets,the number of channels,and inlet manifold configurations-on flow uniformity and thermal distribution in non-pyrolysis zones.Key findings reveal that increasing the number of inlets from one to three significantly enhances flow uniformity,reducing mass flow rate deviation from 1.2%to below 0.3%.However,further increasing the inlets to five yields only marginal improvements indicating diminishing(<0.1%),returns beyond three inlets.Additionally,temperature non-uniformity at the combustion chamber throat decreases by 37%-from 3050 K with 18 channels to 1915 K with 30 channels-highlighting the critical role of channel density in effective thermal regulation.Notably,while higher channel counts improve cooling efficiency,they also result in increased pressure losses of approximately 18%–22%,emphasizing the need to balance thermal performance against hydraulic resistance.An optimal configuration comprising 24 channels and three inlets was identified,providing minimal temperature gradients while maintaining acceptable pressure losses.The inlet manifold structure also plays a pivotal role in determining flow distribution.Configuration 3(Config-3),which features an enlarged manifold and reduced inlet velocity,achieves a 40%reduction in velocity fluctuations compared to Configuration 1(Config-1).This improvement leads to a more uniform mass flow distribution,with a relative standard deviation(RSD)of less than 0.15%.Furthermore,this design effectively mitigates localized hot spots near the nozzle-where temperature gradients are most severe-achieving a reduction of approximately 1135 K.
基金supported by the National Natural Science Foundation of China(Nos.62120106003 and 62173301)。
文摘The reuse of liquid propellant rocket engines has increased the difficulty of their control and estimation.State and parameter Moving Horizon Estimation(MHE)is an optimization-based strategy that provides the necessary information for model predictive control.Despite the many advantages of MHE,long computation time has limited its applications for system-level models of liquid propellant rocket engines.To address this issue,we propose an asynchronous MHE method called advanced-multi-step MHE with Noise Covariance Estimation(amsMHE-NCE).This method computes the MHE problem asynchronously to obtain the states and parameters and can be applied to multi-threaded computations.In the background,the state and covariance estimation optimization problems are computed using multiple sampling times.In real-time,sensitivity is used to quickly approximate state and parameter estimates.A covariance estimation method is developed using sensitivity to avoid redundant MHE problem calculations in case of sensor degradation during engine reuse.The amsMHE-NCE is validated through three cases based on the space shuttle main engine system-level model,and we demonstrate that it can provide more accurate real-time estimates of states and parameters compared to other commonly used estimation methods.
基金supported by the National Natural Science Foundation of China(No.12202011)the Youth Research fund of Shanghai Academy of Spaceflight Technology(KJW-KT-QNKYJJ-2022-25)China Postdoctoral Science Foundation(Nos.2024T170009,2022M710190).
文摘As a critical component of pulse solid rocket motors(SRMs),the soft pulse separation device(PSD)is vital in enabling multi-pulse propulsion and has become a breakthrough in SRM engineering applications.To investigate the opening performance of the PSD,an axial PSD incorporating a star-shaped prefabricated defect was designed.The opening process was simulated using peridynamics,yielding the strain field distribution and the corresponding failure mode.A single-opening verification test was conducted.The simulation results showed good agreement with the experimental data,demonstrating the reliability of the peridynamic modeling approach.Furthermore,the effects of the prefabricated defect shape and depth on the opening performance of the PSD were analyzed through simulation.The research results indicate that the established constitutive model and failure criteria based on peridynamics can reasonably predict the failure location and the opening pressure of the soft PSD.Under the impact loading,the weak zone of the soft PSD firstly ruptures,and the damaged area gradually propagates along with the prefabricated defect,eventually leading to complete separation.A smaller prefabricated defect depth or a wider prefabricated defect distribution can cause a reduction in opening pressure.These research results provide valuable guidance for the preliminary design and optimization of PSDs in pulse solid rocket motors.
基金supported by the Natural Science Foundation of Hunan Province of China(No.2023JJ40672)the Innovation Science Fund Project of National University of Defense Technology,China(No.ZK2023-039)。
文摘A two-dimensional large eddy simulation numerical model is proposed to study the transient vortex flow and pressure oscillation of a large-aspect-ratio solid rocket motor.The numerical model is validated through experimental data,finite element analysis and cumulative error analysis.The numerical simulations are executed to obtain the characteristics of the vortex-acoustic and pressure oscillation.The results show that the burning surface regression decreases the motor aspect ratio,increasing the corresponding natural frequency from 260 Hz to 293 Hz.The pressure oscillation phenomenon is formed due to the vortex-acoustic coupling.Decreasing the corner vortex shedding intensity shows negative effects on the dimensionless amplitude of the pressure oscillation.The head cavity without the injection can decrease the vortex-acoustic coupling level at the acoustic pressure antinode.The modified motor with head cavity can obtain a lower dimensionless oscillating pressure amplitude 0.00149 in comparison with 0.00895 of the original motor.The aspect ratio and volume of the head cavity without the injection have great effects on the pressure oscillation suppression,particularly at the low aspect ratio or large volume.The reason is that the mass in the region around the acoustic pressure antinode is extracted centrally,reducing the energy contribution to the acoustic system.With the volume increasing,the acoustic energy capacity increases.
基金Sponsored by the Natural Science Foundation of Shaanxi Province (Grant No. S2025-JC-YB-0532)the Practice and Innovation Funds for Graduate Students of Northwestern Polytechnical University (PF2024044)
文摘Taking a C1x motor with a backward-facing step which can generate a typical corner vortex as a reference,a numerical methodology using large eddy simulation was established in this study.Based on this methodology,the position of the backward-facing step of the motor was computed and analyzed to determine a basic configuration.Two key geometrical parameters,the head cavity angle and submerged nozzle cavity height,were subsequently introduced.Their effects on the corner vortex motion and their interactions with the acoustic pressure downstream of the backward-facing step were analyzed.The phenomena of vortex acoustic coupling and characteristics of pressure oscillations were further explored.The results show that the maximum error between the simulations and experimental data on the dominant frequency of pressure oscillations is 5.23%,which indicates that the numerical methodology built in this study is highly accurate.When the step is located at less than 5/8 of the total length of the combustion chamber,vortex acoustic coupling occurs,which can increase the pressure oscillations in the motor.Both the vorticity and the scale of vortices in the downstream step increase when the head cavity angle is greater than 24°,which increases the amplitude of the pressure oscillation by maximum 63.0%.The submerged nozzle cavity mainly affects the vortices in the cavity itself rather than those in the downstream step.When the height of the cavity increases from 10 to 20 mm,the pressure oscillation amplitude under the main frequency increases by 39.1%.As this height continues to increase,the amplitude of pressure oscillations increases but the primary frequency decreases.
基金supported by National Natural Science Foundation of China(Grant No.92266201).
文摘As the performance of the box-type multiple launch rocket system(BMLRS)improves,its mechanical structures,particularly the plane clearance design between the slider on the rocket and the guide inside the launch canister,have grown increasingly complex.However,deficiencies still exist in the current launch modeling theory for BMLRS.In this study,a multi-rigid-flexible-body launch dynamics model coupling the launch platform and rocket was established using the multibody system transfer matrix method and the Newton-Euler formulation.Furthermore,considering the bending of the launch canister,a detection algorithm for slider-guide plane clearance contact was proposed.To quantify the contact force and friction effect between the slider and guide,the contact force model and modified Coulomb model were introduced.Both the modal and launch tests were conducted.Additionally,the modal convergence was verified.By comparing the modal experiments and simulation results,the maximum relative error of the eigenfrequency is 3.29%.thereby verifying the accuracy of the developed BMLRS dynamics model.Furthermore,the launch test validated the proposed plane clearance contact model.Moreover,the study investigated the influence of various model parameters on the dynamic characteristics of BMLRS,including launch canister bending stiffness,slider and guide material,slider-guide clearance,slider length and layout.This analysis of influencing factors provides a foundation for future optimization in BMLRS design.
文摘This study investigates the potential of metal additives in acrylonitrile butadiene styrene(ABS)polymer fuel to enhance hybrid rocket motor(HRM)performance through computational analysis,Chemical Equilibrium with Applications(CEA),software.ABS was selected as the base fuel due to its thermoplastic nature,which allows for the creation of complex fuel geometries through 3D printing,offering significant flexibility in fuel design.Hybrid rockets,which combine a solid fuel with a liquid oxidiser,offer advantages in terms of operational simplicity and safety.However,conventional polymer fuels often exhibit low regression rates and suboptimal combustion efficiencies.In this research,we evaluated a range of metal additives-aluminium(Al),boron(B),nickel(Ni),copper(Cu),and iron(Fe)-at chamber pressures ranging from 1 to 30 bar and oxidiser-to-fuel(O/F)ratios between 1.1 and 12,resulting in 1800 unique test conditions.The main performance parameters used to assess each formulation were characteristic velocity(C^(*))and adiabatic flame temperature.The results revealed that each test produced a different optimum O/F ratio,with most ratios falling between 4 and 6.The highest performance was achieved at a chamber pressure of 30 bar across all formulations.Among the additives,Al and B demonstrated significant potential for improved combustion performance with increasing metal loadings.In contrast,Fe,Cu,and Ni reached optimal performance at a minimum loading of 1%.Future work includes investigating B-Al metal composites as additives into the ABS base polymer fuel,and doing experimental validation tests where the metallised ABS polymer fuel is 3D printed.
文摘The effects of random long-range connections (shortcuts) on the transitions of neural firing patterns in coupled Hindmarsh-Rose neurons are investigated, where each neuron is subjected to an external current. It is found that, on one hand, the system can achieve the transition of neural firing patterns from the fewer-period state to the multi-period one, when the number of the added shortcuts in the neural network is greater than a threshold value, indicating the occurrence of in-transition of neural firing patterns. On the other hand, for a stronger coupling strength, we can also find the similar but reverse results by adding some proper random connections. In addition, the influences of system size and coupling strength on such transition behavior, as well as the internality between the transition degree of firing patterns and its critical characteristics for different external stimulation current, are also discussed.