By establishing the Markov model for a long-range correlated time series (LRCS) and analysing its evolutionary characteristics, this paper defines a physical effective correlation length (ECL) T, which reflects th...By establishing the Markov model for a long-range correlated time series (LRCS) and analysing its evolutionary characteristics, this paper defines a physical effective correlation length (ECL) T, which reflects the predictability of the LRCS. It also finds that the ECL has a better power law relation with the long-range correlated exponent γ of the LRCS: T = Kexp(-γ/0.3) + Y, (0 〈 γ〈 1) the predictability of the LRCS decays exponentially with the increase of γ It is then applied to a daily maximum temperature series (DMTS) recorded at 740 stations in China between the years 1960-2005 and calculates the ECL of the DMTS. The results show the remarkable regional distributive feature that the ECL is about 10-14 days in west, northwest and northern China, and about 5-10 days in east, southeast and southern China. Namely, the predictability of the DMTS is higher in central-west China than in east and southeast China. In addition, the ECL is reduced by 1-8 days in most areas of China after subtracting the seasonal oscillation signal of the DMTS from its original DMTS; however, it is only slightly altered when the decadal linear trend is removed from the original DMTS. Therefore, it is shown that seasonal oscillation is a significant component of daily maximum temperature evolution and may provide a basis for predicting daily maximum temperatures. Seasonal oscillation is also significant for guiding general weather predictions, as well as seasonal weather predictions.展开更多
This paper investigates urban traffic data by analysing the long-range correlation with detrended fluctuation analysis. Through a large number of real data collected by the travel time detection system in Beijing, the...This paper investigates urban traffic data by analysing the long-range correlation with detrended fluctuation analysis. Through a large number of real data collected by the travel time detection system in Beijing, the variation of flow in different time periods and intersections is studied. According to the long-range correlation in different time scales, it mainly discuss the effect of intersection location in road net, people activity customs and special traffic controls on urban traffic flow. As demonstrated by obtained results, the urban traffic flow represents three-phase characters similar to highway traffic. Moreover, compared by the two groups of data obtained before and after the special traffic restrictions (vehicles with special numbered plates only run in a special workday) enforcement, it indicates that the rules not only reduce the flow but also avoid irregular fluctuation.展开更多
The characterization of long-range correlations and fractal properties of DNA sequences has proved to be adifficult though rewarding task mainly due to the mosaic character of DNA consisting of many patches of various...The characterization of long-range correlations and fractal properties of DNA sequences has proved to be adifficult though rewarding task mainly due to the mosaic character of DNA consisting of many patches of various lengthswith different nucleotide constitutions.In this paper we investigate statistical correlations among different positions in DNAsequences using the two-dimensional DNA walk.The root-mean-square fluctuation F(l)is described by a power law.Theautocorrelation function C(l),which is used to measure the linear dependence and periodicity,exists a power law ofC(l)-l^(-μ).We also calculate the mean-square distance<R^2(l)>along the DNA chain,and it may be expressed as<R^2(l)>-l^(?)with 2>γ>1.Our investigations can provide some insights into long-range correlations in DNA sequences.展开更多
Using continuous wavelet transform as the analytical tool, the fractal characteristic of nucleotide sequences was studied. The fractal dimension of the exon and intron sequences for different species was calculated. ...Using continuous wavelet transform as the analytical tool, the fractal characteristic of nucleotide sequences was studied. The fractal dimension of the exon and intron sequences for different species was calculated. We use the Mexican hat wavelet function as the mother wavelet and Hurst exponent to describe the long-range correlation. It is found that the Hurst exponent of intron sequence is larger than that of exon sequence for the same gene.展开更多
Analyses of the soil moisture evolution trend and the influence of different types of radiation on soil moisture are of great significance to the simulation and prediction of soil moisture.In this paper,soil moisture(...Analyses of the soil moisture evolution trend and the influence of different types of radiation on soil moisture are of great significance to the simulation and prediction of soil moisture.In this paper,soil moisture(2–60 cm) and various radiation data from 2014–2015 at the A’rou superstation were selected.The radiation data include the net radiation(NR),shortwave and longwave radiation(SR and LR).Using adaptive fractal analysis(AFA),the long-range correlation(LRC) of soil moisture and long-range cross correlation(LRCC) between moisture and three types of radiation were analyzed at different timescales and soil depths.The results show that:(1) Persistence of soil moisture and consistency between soil moisture and radiation mutate at 18-d and 6-d timescales,respectively.The timescale variation of soil moisture persistence is mainly related to the influence process of radiation on soil moisture;(2) Both the soil moisture persistence and soil moisture-radiation consistency vary substantially with soil depth.The soil depth variation of soil moisture persistence is related to the influence intensity of radiation;(3) From 2–6 day timescales,LR displays the strongest influence on soil moisture at depths of 2–10 cm through negative feedback of radiation on the soil temperature.The influence intensity decreases with depth from 2–15 cm.Therefore,the soil moisture persistence is weak and increases with depth from 2–15 cm;and(4) At more than 6 day timescales,SR and NR display a stronger influence on the soil moisture persistence at depths of 2–40 cm through positive feedback of radiation on the soil temperature,especially at depths of 2–10 cm.This influence also weakens with depth.The soil moisture persistence at depths of 2–10 cm is the weakest and increases with depth from 2–40 cm.The research results are instructive for determining timescales and soil depths related to soil water in hydrological models.展开更多
Air temperature(AT) is a subsystem of a complex climate.Long-range correlation(LRC) is an important feature of complexity.Our research attempt to evaluate AT’s complexity differences in different land-use types in th...Air temperature(AT) is a subsystem of a complex climate.Long-range correlation(LRC) is an important feature of complexity.Our research attempt to evaluate AT’s complexity differences in different land-use types in the Heihe River Basin(HRB) based on the stability and LRC.The results show the following:(1) AT’s stability presents differences in different land-use types.In agricultural land,there is no obvious variation in the trend throughout the year.Whereas in a desert,the variation in the trend is obvious: the AT is more stable in summer than it is in winter,with Ta ranges of [8,20]°C and SD of the AT residual ranges of [0.2,0.7],respectively.Additionally,in mountainous areas,when the altitude is beyond a certain value,AT’s stability changes.(2) AT’s LRC presents differences in different land-use types.In agricultural land,the long-range correlation of AT is the most persistent throughout the year,showing the smallest difference between summer and winter,with the Hs range of [0.8,1].Vegetation could be an important factor.In a desert,the long-range correlation of AT is less persistent,showing the greatest difference between summer and winter,with the Hs range of [0.54,0.96].Solar insolation could be a dominant factor.In an alpine meadow,the long-range correlation of AT is the least persistent throughout the year,presenting a smaller difference between summer and winter,with the Hs range of [0.6,0.85].Altitude could be an important factor.(3) Usually,LRC is a combination of the Ta and SD of the AT residuals.A larger Ta and smaller SD of the AT residual would be conducive to a more persistent LRC,whereas a smaller Ta and larger SD of the AT residual would limit the persistence of LRC.A larger Ta and SD of the AT residual would create persistence to a degree between those of the first two cases,as would a smaller Ta and SD of the AT residual.In addition,the last two cases might show the same LRC.展开更多
Ten physical and environmental variables collected from an on-the-go soil sensor at two field sites (MF3E and MF11S) in Mississippi, USA, were analyzed to assess soil variability and the interrelationships among the m...Ten physical and environmental variables collected from an on-the-go soil sensor at two field sites (MF3E and MF11S) in Mississippi, USA, were analyzed to assess soil variability and the interrelationships among the measurements. At MF3E, moderate variability was observed in apparent electrical conductivity shallow (ECas), slope, and ECa ratio measurements, with coefficients of variation ranging from 20% to 27%. In contrast, MF11S exhibited higher variability, particularly in ECas and ECad (deep) measurements, which exceeded 30% in their coefficient of variation values, indicating significant differences in soil composition and moisture content. Correlation analysis revealed strong positive relationships between the near-infrared-to-red ratio and red reflectance (r = 0.897***) soil values at MF3E. MF11S demonstrated a strong negative correlation between ECas and ECad readings with the x-coordinate (r ***). Scatter plots and fitted models illustrated the complexity of relationships, with many showing nonlinear trends. These findings emphasize the need for continuous monitoring and advanced modeling to understand the dynamic nature of soil properties and their implications for agricultural practices. Future research should explore the underlying mechanisms driving variability in the soil characteristics to enhance soil management strategies at the study sites.展开更多
Since antiquity,humans have been involved in designing materials through alloying strategies to meet the ever-growing technological demands.In 2004,this endeavor witnessed a significant breakthrough with the discovery...Since antiquity,humans have been involved in designing materials through alloying strategies to meet the ever-growing technological demands.In 2004,this endeavor witnessed a significant breakthrough with the discovery of high-entropy alloys(HEAs)comprising multi-principal elements.Owing to the four“core-effects”,these alloys exhibit exceptional properties including better structural stability,high strength and ductility,improved fatigue/fracture toughness,high corrosion and oxidation resistance,superconductiv-ity,magnetic properties,and good thermal properties.Different synthesis routes have been designed and used to meet the properties of interest for particular applications with varying dimensions.How-ever,HEAs are providing new opportunities and challenges for computational modelling of the complex structure-property correlations and in predictions of phase stability necessary for optimum performance of the alloy.Several attempts have been made to understand these alloys by empirical and computa-tional models,and data-driven approaches to accelerate the materials discovery with a desired set of properties.The present review discusses advances and inferences from simulations and models spanning multiple length and time scales explaining a comprehensive set of structure-properties relations.Addi-tionally,the role of machine learning approaches is also reviewed,underscoring the transformative role of computational modelling in unravelling the multifaceted properties and applications of HEAs,and the scope for future efforts in this direction.展开更多
Geomagnetic observatory data are crucial for all branches of geophysics because they can contribute to earthquake research by detecting anomalies in the Earth’s magnetic field.Recently,data records from the Misallat(...Geomagnetic observatory data are crucial for all branches of geophysics because they can contribute to earthquake research by detecting anomalies in the Earth’s magnetic field.Recently,data records from the Misallat(MLT)and Abu Simbel(ABS)Egyptian geomagnetic observatories were processed and found to be of good quality.In this study,Egyptian observatory data were tested during both quiet and disturbed events and compared with data from INTERMAGNET observatories worldwide at different latitudes and within a narrow range of longitudes in both hemispheres.This study investigated the relationships between magnetic field components from Egyptian observatories and those from INTERMAGNET observatories using graphical representations of the X components;Pearson’s correlation for the X,Y,Z,and F components;cross-correlation for the X component;and wavelet coherence for the F component.The results of this study showed a high correlation between Egyptian observatories and all utilized INTERMAGNET stations,except those located at high latitudes,during both quiet and disturbed events.Additionally,the study confirmed the observed consistency between Egyptian observatories and selected INTERMAGNET stations.Therefore,Egyptian observatories can feasibly fill the gap in the Middle East and North Africa.展开更多
BACKGROUND Resilience is an individual’s ability and psychological rebound capacity to adapt well after experiencing adversity,trauma,etc.Patients with strong resilience can face illnesses actively.AIM To determine t...BACKGROUND Resilience is an individual’s ability and psychological rebound capacity to adapt well after experiencing adversity,trauma,etc.Patients with strong resilience can face illnesses actively.AIM To determine the association of resilience with coping styles and quality of life in patients with malignancies.METHODS This study included patients with malignant tumors who were hospitalized at Fuyang Hospital Affiliated to Anhui Medical University from March 2022 to March 2024.The Connor-Davidson Resilience Scale,Medical Coping Modes Questionnaire,Social Support Rating Scale,and the European Organisation for Research and Treatment of Cancer Quality of Life Questionnaire Core 30 were utilized to assess patients’resilience,coping styles,social support,and quality of life,respectively.Pearson correlation analysis was conducted to assess the correlations.RESULTS A total of 175 patients with malignant tumors demonstrated no marked difference in terms of age,education level,employment status,monthly household income,and disease staging(P<0.05).Further,patients with malignancies demonstrated scores of 17.49±1.20,17.27±1.46,and 11.19±1.29 points in terms of coping styles in confrontation,avoidance,and resignation dimensions,respectively.Subjective support,objective support,and support utilization scores in terms of social support were 10.67±1.80,11.26±2.08,and 9.24±1.14 points,respectively.The total resilience score and tenacity,self-improvement,and optimism dimension scores were positively correlatedwith the confrontation coping style score,whereas the total resilience score and tenacity and self-improvementscores were negatively associated with avoidance and resignation coping style scores(P<0.05).The total resiliencescore and the tenacity dimension score were positively associated with physical,role,cognitive,emotional,andsocial functions,as well as global health status(P<0.05),and were inversely related to fatigue,insomnia,andeconomic difficulties(P<0.05).CONCLUSIONThe resilience of patients with malignancies is positively associated with the confrontation dimension in the copingstyle,the total and various social support domain scores,and the overall quality of life.Clinical medical staff needto pay attention to the effect of medical coping styles and social support on the resilience level of patients withmalignancies to further improve their quality of life.展开更多
Video snapshot compressive imaging(Video SCI) modulates scenes using various encoding masks and captures compressed measurements with a low-speed camera during a single exposure. Subsequently, reconstruction algorithm...Video snapshot compressive imaging(Video SCI) modulates scenes using various encoding masks and captures compressed measurements with a low-speed camera during a single exposure. Subsequently, reconstruction algorithms restore image sequences of dynamic scenes, offering advantages such as reduced bandwidth and storage space requirements. The temporal correlation in video data is crucial for Video SCI, as it leverages the temporal relationships among frames to enhance the efficiency and quality of reconstruction algorithms, particularly for fast-moving objects.This paper discretizes video frames to create image datasets with the same data volume but differing temporal correlations. We utilized the state-of-the-art(SOTA) reconstruction framework, EfficientSCI++, to train various compressed reconstruction models with these differing temporal correlations. Evaluating the reconstruction results from these models, our simulation experiments confirm that a reduction in temporal correlation leads to decreased reconstruction accuracy. Additionally, we simulated the reconstruction outcomes of datasets devoid of temporal correlation, illustrating that models trained on non-temporal data affect the temporal feature extraction capabilities of transformers, resulting in negligible impacts on the evaluation of reconstruction results for non-temporal correlation test datasets.展开更多
The Fushan Depression is one of the petroliferous depressions in the Beibuwan Basin,South China Sea.Previous studies have preliminarily explored the origin and source of crude oils in some areas of this depression.Nev...The Fushan Depression is one of the petroliferous depressions in the Beibuwan Basin,South China Sea.Previous studies have preliminarily explored the origin and source of crude oils in some areas of this depression.Nevertheless,no systematic investigations on the classification and origin of oils and hy-drocarbon migration processes have been made for the entire petroleum system in this depression,which has significantly hindered the hydrocarbon exploration in the region.A total of 32 mudstone and 58 oil samples from the Fushan Depression were analyzed to definite the detailed oil-source correlation within the sequence and sedimentary framework.The organic matter of third member of Paleogene Liushagang Formation(Els(3))source rocks,both deltaic and lacustrine mudstone,are algal-dominated with high abundance of C_(23)tricyclic terpane and C_(30)4-methylsteranes.The deltaic source rocks occur-ring in the first member(Els_(1))and second member(Els_(2))of the Paleogene Liushagang Formation are characterized by high abundance of C_(19+20)tricyclic terpane and oleanane,reflecting a more terrestrial plants contribution.While lacustrine source rocks of Els_(1)and Els_(2)display the reduced input of terrige-nous organic matter with relatively low abundance of C 19+20 tricyclic terpane and oleanane.Three types of oils were identified by their biomarker compositions in this study.Most of the oils discovered in the Huachang and Bailian Els_(1)reservoir belong to group A and were derived from lacustrine source rocks of Els_(1)and Els_(2).Group B oils are found within the Els_(1)and Els_(2)reservoirs,showing a close relation to the deltaic source rocks of Els_(1)and Els_(2),respectively.Group C oils,occurring in the Els3 reservoirs,have a good affinity with the Els3 source rocks.The spatial distribution and accumulation of different groups of oils are mainly controlled by the sedimentary facies and specific structural conditions.The Els_(2)reservoir in the Yong'an area belonging to Group B oil,are adjacent to the source kitchen and could be considered as the favorable exploration area in the future.展开更多
Passive acoustic monitoring(PAM)technology is increasingly becoming one of the mainstream methods for bird monitoring.However,detecting bird audio within complex natural acoustic environments using PAM devices remains...Passive acoustic monitoring(PAM)technology is increasingly becoming one of the mainstream methods for bird monitoring.However,detecting bird audio within complex natural acoustic environments using PAM devices remains a significant challenge.To enhance the accuracy(ACC)of bird audio detection(BAD)and reduce both false negatives and false positives,this study proposes a BAD method based on a Dual-Feature Enhancement Fusion Model(DFEFM).This method incorporates per-channel energy normalization(PCEN)to suppress noise in the input audio and utilizes mel-frequency cepstral coefficients(MFCC)and frequency correlation matrices(FCM)as input features.It achieves deep feature-level fusion of MFCC and FCM on the channel dimension through two independent multi-layer convolutional network branches,and further integrates Spatial and Channel Synergistic Attention(SCSA)and Multi-Head Attention(MHA)modules to enhance the fusion effect of the aforementioned two deep features.Experimental results on the DCASE2018 BAD dataset show that our proposed method achieved an ACC of 91.4%and an AUC value of 0.963,with false negative and false positive rates of 11.36%and 7.40%,respectively,surpassing existing methods.The method also demonstrated detection ACC above 92%and AUC values above 0.987 on datasets from three sites of different natural scenes in Beijing.Testing on the NVIDIA Jetson Nano indicated that the method achieved an ACC of 89.48%when processing an average of 10 s of audio,with a response time of only 0.557 s,showing excellent processing efficiency.This study provides an effective method for filtering non-bird vocalization audio in bird vocalization monitoring devices,which helps to save edge storage and information transmission costs,and has significant application value for wild bird monitoring and ecological research.展开更多
Quanto options allow the buyer to exchange the foreign currency payoff into the domestic currency at a fixed exchange rate. We investigate quanto options with multiple underlying assets valued in different foreign cur...Quanto options allow the buyer to exchange the foreign currency payoff into the domestic currency at a fixed exchange rate. We investigate quanto options with multiple underlying assets valued in different foreign currencies each with a different strike price in the payoff function. We carry out a comparative performance analysis of different stochastic volatility (SV), stochastic correlation (SC), and stochastic exchange rate (SER) models to determine the best combination of these models for Monte Carlo (MC) simulation pricing. In addition, we test the performance of all model variants with constant correlation as a benchmark. We find that a combination of GARCH-Jump SV, Weibull SC, and Ornstein Uhlenbeck (OU) SER performs best. In addition, we analyze different discretization schemes and their results. In our simulations, the Milstein scheme yields the best balance between execution times and lower standard deviations of price estimates. Furthermore, we find that incorporating mean reversion into stochastic correlation and stochastic FX rate modeling is beneficial for MC simulation pricing. We improve the accuracy of our simulations by implementing antithetic variates variance reduction. Finally, we derive the correlation risk parameters Cora and Gora in our framework so that correlation hedging of quanto options can be performed.展开更多
By introducing noncanonical vortex pairs to partially coherent beams, spatial correlation singularity (SCS) and orbital angular momenta (OAM) of the resulting beams are studied using the Fraunhofer diffraction integra...By introducing noncanonical vortex pairs to partially coherent beams, spatial correlation singularity (SCS) and orbital angular momenta (OAM) of the resulting beams are studied using the Fraunhofer diffraction integral. The effect of noncanonical strength, off-axis distance and vortex sign on spatial correlation singularities in far field is stressed. Furthermore, far-field OAM spectra and densities are also investigated, and the OAM detection and crosstalk probabilities are discussed. The results show that the number of dislocations of SCS always equals the sum of absolute values of topological charges for canonical or noncanonical vortex pairs. Although the sum of the product of each OAM mode and its power weight equals the algebraic sum of topological charges for canonical vortex pairs, the relationship no longer holds in the noncanonical case except for opposite-charge vortex pairs. The changes of off-axis distance, noncanonical strength or coherence length can lead to a more dominant power in adjacent mode than that in center detection mode, which also indicates that crosstalk probabilities of adjacent modes exceed the center detection probability. This work may provide potential applications in OAM-based optical communication, imaging, sensing and computing.展开更多
Background: The use of assisted reproductive technique (ART) is becoming more common in infertility. During ART most patients undergo ovarian stimulation. In this study we study the correlation between ovarian reserve...Background: The use of assisted reproductive technique (ART) is becoming more common in infertility. During ART most patients undergo ovarian stimulation. In this study we study the correlation between ovarian reserve markers: Anti-Mullerian hormone (AMH) and antral follicle count (AFC), and the response to ovarian stimulation at in vitro fertilization (IVF) centres in Douala Cameroon. Methods: This was a hospital based cross-sectional sectional analytic study carried out over a period of 3 years, 4 months at Clinique de l’Aéroport, Clinique Odyssée and Clinique Urogyn. Inclusion criteria were: Female partners of infertile couples undergoing ovarian stimulation for an in vitro fertilization cycle, patients who had both ovaries and had done either AMH, AFC or both before ovarian stimulation. Patients were divided into three groups based on the number of oocytes retrieved: low ovarian response for ≤3 oocytes, normal ovarian response for 4 - 15 oocytes and high ovarian response for >15 oocytes. Data obtained was analyzed by SPSS version 25.0. Results: The ages of participants ranged from 20 - 4 7 years, with a mean age of 34.11 ± 5.11 years. Most of them had secondary infertility (57.9%). The GnRH antagonist protocol was mainly used, and ovulation was triggered using HCG predominantly. On Multivariate analysis, age and history of PCOS were significantly associated with ovarian response in the low and high ovarian response groups, respectively. Conclusion: AMH has a better predictive value than AFC, however, it is less sensitive but more specific than AFC.展开更多
The Infrared Hyperspectral Atmospheric SounderⅡ(HIRAS-Ⅱ)is the key equipment on FengYun-3E(FY-3E)satellite,which can realize vertical atmospheric detection,featuring hyper spectral,high sensitivity and high precisio...The Infrared Hyperspectral Atmospheric SounderⅡ(HIRAS-Ⅱ)is the key equipment on FengYun-3E(FY-3E)satellite,which can realize vertical atmospheric detection,featuring hyper spectral,high sensitivity and high precision.To ensure its accuracy of detection,it is necessary to correlate their thermal models to in-orbit da⁃ta.In this work,an investigation of intelligent correlation method named Intelligent Correlation Platform for Ther⁃mal Model(ICP-TM)was established,the advanced Kriging surrogate model and efficient adaptive region opti⁃mization algorithm were introduced.After the correlation with this method for FY-3E/HIRAS-Ⅱ,the results indi⁃cate that compared with the data in orbit,the error of the thermal model has decreased from 5 K to within±1 K in cold case(10℃).Then,the correlated model is validated in hot case(20℃),and the correlated model exhibits good universality.This correlation precision is also much superiors to the general ones like 3 K in other similar lit⁃erature.Furthermore,the process is finished in 8 days using ICP-TM,the efficiency is much better than 3 months based on manual.The results show that the proposed approach significantly enhances the accuracy and efficiency of thermal model,this contributes to the precise thermal control of subsequent infrared optical payloads.展开更多
Portfolio selection based on the global minimum variance(GMV)model remains a significant focus in financial research.The covariance matrix,central to the GMV model,determines portfolio weights,and its accurate estimat...Portfolio selection based on the global minimum variance(GMV)model remains a significant focus in financial research.The covariance matrix,central to the GMV model,determines portfolio weights,and its accurate estimation is key to effective strategies.Based on the decomposition form of the covariance matrix.This paper introduces semi-variance for improved financial asymmetric risk measurement;addresses asymmetry in financial asset correlations using distance,asymmetric,and Chatterjee correlations to refine covariance matrices;and proposes three new covariance matrix models to enhance risk assessment and portfolio selection strategies.Testing with data from 30 stocks across various sectors of the Chinese market confirms the strong performance of the proposed strategies.展开更多
Sluggish sulfur conversion kinetics pose an ongoing challenge in lithium-sulfur batteries(LSBs).Here,we present a solution through far-reaching long-range electronic regulation(LRER)on single-atom active sites.N-doped...Sluggish sulfur conversion kinetics pose an ongoing challenge in lithium-sulfur batteries(LSBs).Here,we present a solution through far-reaching long-range electronic regulation(LRER)on single-atom active sites.N-doped carbons(Co-NC)are implanted with densely-distributed Co single atoms,and supported on Ti_(3)C_(2)T_(x)MXene substrates to assemble 3D Co-NC/MXene catalyst.MXene effectively mediates interlayer charge transfer(~0.70|e|)contrasted with popular carbon materials(~0.06|e|)to produce LRER through surrounding carbon atoms.The synergy of LRER with near-range electronic regulation(NRER)tunes electronic structures,and enhances heterostructural stability,thus provoking desirous catalytic kinetics of Co single atoms in sulfur reduction.Thereby,the Co-NC/MXene/S cathodes exhibit impressive rate performance and excellent cycling stability(only 0.015%capacity decay per cycle over 600 cycles at 4 C)in LSBs,surpassing state-of-the-art sulfur cathodes.This work reveals the importance of LRER for improved catalysis,and provides new guidance to tailor heterostructures to achieve high-efficient catalysts in various process.展开更多
Catalysts with asymmetric coordination exhibit excellent electrocatalytic activity due to changes in the active sites,which affect the arrangement of reactants and catalytic activity/selectivity.Hence,the exploration ...Catalysts with asymmetric coordination exhibit excellent electrocatalytic activity due to changes in the active sites,which affect the arrangement of reactants and catalytic activity/selectivity.Hence,the exploration of the inherent characteristics of active sites within diverse coordination environments holds great significance for the experimental design of catalytic structures.Single-atom catalysts(SACs)characterized by high coordination with four carbons(26 candidates)and low coordination with dinitrogen(27candidates)are constructed using nitrogen-doped graphdiyne derivatives(NGDY)as the substrate.Additionally,5 species of dual-atom catalysts(DACs)with coexistence of both high and low coordination sites are also developed and their nitrogen reduction reaction(NRR)activities are systematically investigated by density functional theory.The results indicate that metals with low coordination exhibit superior catalytic performance,such as Mo^(L)-NGDY(U_(L)=-0.30 V)and Nb^(L)-NGDY(U_(L)=-0.32 V).Furthermore,machine learning(ML)methods have deeply analyzed and elucidated the primary intrinsic characteristics that influence catalytic performance.These results not only unveil the underlying mechanisms behind the exceptional catalytic performance exhibited by low-coordination metal atoms,but also provide relevant and significant descriptors.More importantly,based on an investigation of the catalytic activity of a series of DACs,the“buffer and low-coordination accumulate”asymmetric coordination mechanism is proposed to unveil the long-range interactions between low and high coordination atoms.Due to this remote communication,MoNb-NGDY(U_(L)=-0.09/-0.37 V)exhibits the best NRR activity.This mechanism provides valuable insights into the origin of long-range bipartite interactions and inspires the design and synthesis of NRR catalysts with different coordination environments.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.40930952,40875040,and 41005043)the Special Project for Public Welfare Enterprises(Grant No.GYHY200806005)the National Science/Technology Support Program of China(Grant Nos.2007BAC29B01 and 2009BAC51B04)
文摘By establishing the Markov model for a long-range correlated time series (LRCS) and analysing its evolutionary characteristics, this paper defines a physical effective correlation length (ECL) T, which reflects the predictability of the LRCS. It also finds that the ECL has a better power law relation with the long-range correlated exponent γ of the LRCS: T = Kexp(-γ/0.3) + Y, (0 〈 γ〈 1) the predictability of the LRCS decays exponentially with the increase of γ It is then applied to a daily maximum temperature series (DMTS) recorded at 740 stations in China between the years 1960-2005 and calculates the ECL of the DMTS. The results show the remarkable regional distributive feature that the ECL is about 10-14 days in west, northwest and northern China, and about 5-10 days in east, southeast and southern China. Namely, the predictability of the DMTS is higher in central-west China than in east and southeast China. In addition, the ECL is reduced by 1-8 days in most areas of China after subtracting the seasonal oscillation signal of the DMTS from its original DMTS; however, it is only slightly altered when the decadal linear trend is removed from the original DMTS. Therefore, it is shown that seasonal oscillation is a significant component of daily maximum temperature evolution and may provide a basis for predicting daily maximum temperatures. Seasonal oscillation is also significant for guiding general weather predictions, as well as seasonal weather predictions.
基金Project supported by the National High Technology Research and Development Program of China(Grant Nos.2008AA01Z208 and 2009AA01Z405)the Applied Basic Research Program of Sichuan Province of China(Grant No.2010JY0013)the Youth Foundation of Sichuan Province of China(Grant No.2009-28-419)
文摘This paper investigates urban traffic data by analysing the long-range correlation with detrended fluctuation analysis. Through a large number of real data collected by the travel time detection system in Beijing, the variation of flow in different time periods and intersections is studied. According to the long-range correlation in different time scales, it mainly discuss the effect of intersection location in road net, people activity customs and special traffic controls on urban traffic flow. As demonstrated by obtained results, the urban traffic flow represents three-phase characters similar to highway traffic. Moreover, compared by the two groups of data obtained before and after the special traffic restrictions (vehicles with special numbered plates only run in a special workday) enforcement, it indicates that the rules not only reduce the flow but also avoid irregular fluctuation.
基金This work was financially support by the National Natural Science Foundation of China(Nos.29874012,20174036,20274040)Natural Science Foundation of Zhejiang Province(No.10102).
文摘The characterization of long-range correlations and fractal properties of DNA sequences has proved to be adifficult though rewarding task mainly due to the mosaic character of DNA consisting of many patches of various lengthswith different nucleotide constitutions.In this paper we investigate statistical correlations among different positions in DNAsequences using the two-dimensional DNA walk.The root-mean-square fluctuation F(l)is described by a power law.Theautocorrelation function C(l),which is used to measure the linear dependence and periodicity,exists a power law ofC(l)-l^(-μ).We also calculate the mean-square distance<R^2(l)>along the DNA chain,and it may be expressed as<R^2(l)>-l^(?)with 2>γ>1.Our investigations can provide some insights into long-range correlations in DNA sequences.
基金This work was supported by the Provincial Natural Science Foundation of Guangdong(Contract 990944)the National Natural Science Foundation of China(Contract 20205003,29975033).
文摘Using continuous wavelet transform as the analytical tool, the fractal characteristic of nucleotide sequences was studied. The fractal dimension of the exon and intron sequences for different species was calculated. We use the Mexican hat wavelet function as the mother wavelet and Hurst exponent to describe the long-range correlation. It is found that the Hurst exponent of intron sequence is larger than that of exon sequence for the same gene.
基金National Key R&D Program of China,No.2017YFB0504102National Natural Science Foundation of China No.41771537
文摘Analyses of the soil moisture evolution trend and the influence of different types of radiation on soil moisture are of great significance to the simulation and prediction of soil moisture.In this paper,soil moisture(2–60 cm) and various radiation data from 2014–2015 at the A’rou superstation were selected.The radiation data include the net radiation(NR),shortwave and longwave radiation(SR and LR).Using adaptive fractal analysis(AFA),the long-range correlation(LRC) of soil moisture and long-range cross correlation(LRCC) between moisture and three types of radiation were analyzed at different timescales and soil depths.The results show that:(1) Persistence of soil moisture and consistency between soil moisture and radiation mutate at 18-d and 6-d timescales,respectively.The timescale variation of soil moisture persistence is mainly related to the influence process of radiation on soil moisture;(2) Both the soil moisture persistence and soil moisture-radiation consistency vary substantially with soil depth.The soil depth variation of soil moisture persistence is related to the influence intensity of radiation;(3) From 2–6 day timescales,LR displays the strongest influence on soil moisture at depths of 2–10 cm through negative feedback of radiation on the soil temperature.The influence intensity decreases with depth from 2–15 cm.Therefore,the soil moisture persistence is weak and increases with depth from 2–15 cm;and(4) At more than 6 day timescales,SR and NR display a stronger influence on the soil moisture persistence at depths of 2–40 cm through positive feedback of radiation on the soil temperature,especially at depths of 2–10 cm.This influence also weakens with depth.The soil moisture persistence at depths of 2–10 cm is the weakest and increases with depth from 2–40 cm.The research results are instructive for determining timescales and soil depths related to soil water in hydrological models.
基金Strategic Priority Research Program of the Chinese Academy of Sciences,No.XDA23100303
文摘Air temperature(AT) is a subsystem of a complex climate.Long-range correlation(LRC) is an important feature of complexity.Our research attempt to evaluate AT’s complexity differences in different land-use types in the Heihe River Basin(HRB) based on the stability and LRC.The results show the following:(1) AT’s stability presents differences in different land-use types.In agricultural land,there is no obvious variation in the trend throughout the year.Whereas in a desert,the variation in the trend is obvious: the AT is more stable in summer than it is in winter,with Ta ranges of [8,20]°C and SD of the AT residual ranges of [0.2,0.7],respectively.Additionally,in mountainous areas,when the altitude is beyond a certain value,AT’s stability changes.(2) AT’s LRC presents differences in different land-use types.In agricultural land,the long-range correlation of AT is the most persistent throughout the year,showing the smallest difference between summer and winter,with the Hs range of [0.8,1].Vegetation could be an important factor.In a desert,the long-range correlation of AT is less persistent,showing the greatest difference between summer and winter,with the Hs range of [0.54,0.96].Solar insolation could be a dominant factor.In an alpine meadow,the long-range correlation of AT is the least persistent throughout the year,presenting a smaller difference between summer and winter,with the Hs range of [0.6,0.85].Altitude could be an important factor.(3) Usually,LRC is a combination of the Ta and SD of the AT residuals.A larger Ta and smaller SD of the AT residual would be conducive to a more persistent LRC,whereas a smaller Ta and larger SD of the AT residual would limit the persistence of LRC.A larger Ta and SD of the AT residual would create persistence to a degree between those of the first two cases,as would a smaller Ta and SD of the AT residual.In addition,the last two cases might show the same LRC.
文摘Ten physical and environmental variables collected from an on-the-go soil sensor at two field sites (MF3E and MF11S) in Mississippi, USA, were analyzed to assess soil variability and the interrelationships among the measurements. At MF3E, moderate variability was observed in apparent electrical conductivity shallow (ECas), slope, and ECa ratio measurements, with coefficients of variation ranging from 20% to 27%. In contrast, MF11S exhibited higher variability, particularly in ECas and ECad (deep) measurements, which exceeded 30% in their coefficient of variation values, indicating significant differences in soil composition and moisture content. Correlation analysis revealed strong positive relationships between the near-infrared-to-red ratio and red reflectance (r = 0.897***) soil values at MF3E. MF11S demonstrated a strong negative correlation between ECas and ECad readings with the x-coordinate (r ***). Scatter plots and fitted models illustrated the complexity of relationships, with many showing nonlinear trends. These findings emphasize the need for continuous monitoring and advanced modeling to understand the dynamic nature of soil properties and their implications for agricultural practices. Future research should explore the underlying mechanisms driving variability in the soil characteristics to enhance soil management strategies at the study sites.
基金the Science and Engineering Re-search Board(SERB),India for providing the financial assistance to support this work(Project No.SRG/2020/002449).
文摘Since antiquity,humans have been involved in designing materials through alloying strategies to meet the ever-growing technological demands.In 2004,this endeavor witnessed a significant breakthrough with the discovery of high-entropy alloys(HEAs)comprising multi-principal elements.Owing to the four“core-effects”,these alloys exhibit exceptional properties including better structural stability,high strength and ductility,improved fatigue/fracture toughness,high corrosion and oxidation resistance,superconductiv-ity,magnetic properties,and good thermal properties.Different synthesis routes have been designed and used to meet the properties of interest for particular applications with varying dimensions.How-ever,HEAs are providing new opportunities and challenges for computational modelling of the complex structure-property correlations and in predictions of phase stability necessary for optimum performance of the alloy.Several attempts have been made to understand these alloys by empirical and computa-tional models,and data-driven approaches to accelerate the materials discovery with a desired set of properties.The present review discusses advances and inferences from simulations and models spanning multiple length and time scales explaining a comprehensive set of structure-properties relations.Addi-tionally,the role of machine learning approaches is also reviewed,underscoring the transformative role of computational modelling in unravelling the multifaceted properties and applications of HEAs,and the scope for future efforts in this direction.
文摘Geomagnetic observatory data are crucial for all branches of geophysics because they can contribute to earthquake research by detecting anomalies in the Earth’s magnetic field.Recently,data records from the Misallat(MLT)and Abu Simbel(ABS)Egyptian geomagnetic observatories were processed and found to be of good quality.In this study,Egyptian observatory data were tested during both quiet and disturbed events and compared with data from INTERMAGNET observatories worldwide at different latitudes and within a narrow range of longitudes in both hemispheres.This study investigated the relationships between magnetic field components from Egyptian observatories and those from INTERMAGNET observatories using graphical representations of the X components;Pearson’s correlation for the X,Y,Z,and F components;cross-correlation for the X component;and wavelet coherence for the F component.The results of this study showed a high correlation between Egyptian observatories and all utilized INTERMAGNET stations,except those located at high latitudes,during both quiet and disturbed events.Additionally,the study confirmed the observed consistency between Egyptian observatories and selected INTERMAGNET stations.Therefore,Egyptian observatories can feasibly fill the gap in the Middle East and North Africa.
文摘BACKGROUND Resilience is an individual’s ability and psychological rebound capacity to adapt well after experiencing adversity,trauma,etc.Patients with strong resilience can face illnesses actively.AIM To determine the association of resilience with coping styles and quality of life in patients with malignancies.METHODS This study included patients with malignant tumors who were hospitalized at Fuyang Hospital Affiliated to Anhui Medical University from March 2022 to March 2024.The Connor-Davidson Resilience Scale,Medical Coping Modes Questionnaire,Social Support Rating Scale,and the European Organisation for Research and Treatment of Cancer Quality of Life Questionnaire Core 30 were utilized to assess patients’resilience,coping styles,social support,and quality of life,respectively.Pearson correlation analysis was conducted to assess the correlations.RESULTS A total of 175 patients with malignant tumors demonstrated no marked difference in terms of age,education level,employment status,monthly household income,and disease staging(P<0.05).Further,patients with malignancies demonstrated scores of 17.49±1.20,17.27±1.46,and 11.19±1.29 points in terms of coping styles in confrontation,avoidance,and resignation dimensions,respectively.Subjective support,objective support,and support utilization scores in terms of social support were 10.67±1.80,11.26±2.08,and 9.24±1.14 points,respectively.The total resilience score and tenacity,self-improvement,and optimism dimension scores were positively correlatedwith the confrontation coping style score,whereas the total resilience score and tenacity and self-improvementscores were negatively associated with avoidance and resignation coping style scores(P<0.05).The total resiliencescore and the tenacity dimension score were positively associated with physical,role,cognitive,emotional,andsocial functions,as well as global health status(P<0.05),and were inversely related to fatigue,insomnia,andeconomic difficulties(P<0.05).CONCLUSIONThe resilience of patients with malignancies is positively associated with the confrontation dimension in the copingstyle,the total and various social support domain scores,and the overall quality of life.Clinical medical staff needto pay attention to the effect of medical coping styles and social support on the resilience level of patients withmalignancies to further improve their quality of life.
基金supported in part by the National Natural Science Foundation of China (No. U23B2011)。
文摘Video snapshot compressive imaging(Video SCI) modulates scenes using various encoding masks and captures compressed measurements with a low-speed camera during a single exposure. Subsequently, reconstruction algorithms restore image sequences of dynamic scenes, offering advantages such as reduced bandwidth and storage space requirements. The temporal correlation in video data is crucial for Video SCI, as it leverages the temporal relationships among frames to enhance the efficiency and quality of reconstruction algorithms, particularly for fast-moving objects.This paper discretizes video frames to create image datasets with the same data volume but differing temporal correlations. We utilized the state-of-the-art(SOTA) reconstruction framework, EfficientSCI++, to train various compressed reconstruction models with these differing temporal correlations. Evaluating the reconstruction results from these models, our simulation experiments confirm that a reduction in temporal correlation leads to decreased reconstruction accuracy. Additionally, we simulated the reconstruction outcomes of datasets devoid of temporal correlation, illustrating that models trained on non-temporal data affect the temporal feature extraction capabilities of transformers, resulting in negligible impacts on the evaluation of reconstruction results for non-temporal correlation test datasets.
基金funded by the South Oil Exploration and Development Company of PetroChina(2021-HNYJ-010).
文摘The Fushan Depression is one of the petroliferous depressions in the Beibuwan Basin,South China Sea.Previous studies have preliminarily explored the origin and source of crude oils in some areas of this depression.Nevertheless,no systematic investigations on the classification and origin of oils and hy-drocarbon migration processes have been made for the entire petroleum system in this depression,which has significantly hindered the hydrocarbon exploration in the region.A total of 32 mudstone and 58 oil samples from the Fushan Depression were analyzed to definite the detailed oil-source correlation within the sequence and sedimentary framework.The organic matter of third member of Paleogene Liushagang Formation(Els(3))source rocks,both deltaic and lacustrine mudstone,are algal-dominated with high abundance of C_(23)tricyclic terpane and C_(30)4-methylsteranes.The deltaic source rocks occur-ring in the first member(Els_(1))and second member(Els_(2))of the Paleogene Liushagang Formation are characterized by high abundance of C_(19+20)tricyclic terpane and oleanane,reflecting a more terrestrial plants contribution.While lacustrine source rocks of Els_(1)and Els_(2)display the reduced input of terrige-nous organic matter with relatively low abundance of C 19+20 tricyclic terpane and oleanane.Three types of oils were identified by their biomarker compositions in this study.Most of the oils discovered in the Huachang and Bailian Els_(1)reservoir belong to group A and were derived from lacustrine source rocks of Els_(1)and Els_(2).Group B oils are found within the Els_(1)and Els_(2)reservoirs,showing a close relation to the deltaic source rocks of Els_(1)and Els_(2),respectively.Group C oils,occurring in the Els3 reservoirs,have a good affinity with the Els3 source rocks.The spatial distribution and accumulation of different groups of oils are mainly controlled by the sedimentary facies and specific structural conditions.The Els_(2)reservoir in the Yong'an area belonging to Group B oil,are adjacent to the source kitchen and could be considered as the favorable exploration area in the future.
基金supported by the Beijing Natural Science Foundation(5252014)the National Natural Science Foundation of China(62303063)。
文摘Passive acoustic monitoring(PAM)technology is increasingly becoming one of the mainstream methods for bird monitoring.However,detecting bird audio within complex natural acoustic environments using PAM devices remains a significant challenge.To enhance the accuracy(ACC)of bird audio detection(BAD)and reduce both false negatives and false positives,this study proposes a BAD method based on a Dual-Feature Enhancement Fusion Model(DFEFM).This method incorporates per-channel energy normalization(PCEN)to suppress noise in the input audio and utilizes mel-frequency cepstral coefficients(MFCC)and frequency correlation matrices(FCM)as input features.It achieves deep feature-level fusion of MFCC and FCM on the channel dimension through two independent multi-layer convolutional network branches,and further integrates Spatial and Channel Synergistic Attention(SCSA)and Multi-Head Attention(MHA)modules to enhance the fusion effect of the aforementioned two deep features.Experimental results on the DCASE2018 BAD dataset show that our proposed method achieved an ACC of 91.4%and an AUC value of 0.963,with false negative and false positive rates of 11.36%and 7.40%,respectively,surpassing existing methods.The method also demonstrated detection ACC above 92%and AUC values above 0.987 on datasets from three sites of different natural scenes in Beijing.Testing on the NVIDIA Jetson Nano indicated that the method achieved an ACC of 89.48%when processing an average of 10 s of audio,with a response time of only 0.557 s,showing excellent processing efficiency.This study provides an effective method for filtering non-bird vocalization audio in bird vocalization monitoring devices,which helps to save edge storage and information transmission costs,and has significant application value for wild bird monitoring and ecological research.
文摘Quanto options allow the buyer to exchange the foreign currency payoff into the domestic currency at a fixed exchange rate. We investigate quanto options with multiple underlying assets valued in different foreign currencies each with a different strike price in the payoff function. We carry out a comparative performance analysis of different stochastic volatility (SV), stochastic correlation (SC), and stochastic exchange rate (SER) models to determine the best combination of these models for Monte Carlo (MC) simulation pricing. In addition, we test the performance of all model variants with constant correlation as a benchmark. We find that a combination of GARCH-Jump SV, Weibull SC, and Ornstein Uhlenbeck (OU) SER performs best. In addition, we analyze different discretization schemes and their results. In our simulations, the Milstein scheme yields the best balance between execution times and lower standard deviations of price estimates. Furthermore, we find that incorporating mean reversion into stochastic correlation and stochastic FX rate modeling is beneficial for MC simulation pricing. We improve the accuracy of our simulations by implementing antithetic variates variance reduction. Finally, we derive the correlation risk parameters Cora and Gora in our framework so that correlation hedging of quanto options can be performed.
文摘By introducing noncanonical vortex pairs to partially coherent beams, spatial correlation singularity (SCS) and orbital angular momenta (OAM) of the resulting beams are studied using the Fraunhofer diffraction integral. The effect of noncanonical strength, off-axis distance and vortex sign on spatial correlation singularities in far field is stressed. Furthermore, far-field OAM spectra and densities are also investigated, and the OAM detection and crosstalk probabilities are discussed. The results show that the number of dislocations of SCS always equals the sum of absolute values of topological charges for canonical or noncanonical vortex pairs. Although the sum of the product of each OAM mode and its power weight equals the algebraic sum of topological charges for canonical vortex pairs, the relationship no longer holds in the noncanonical case except for opposite-charge vortex pairs. The changes of off-axis distance, noncanonical strength or coherence length can lead to a more dominant power in adjacent mode than that in center detection mode, which also indicates that crosstalk probabilities of adjacent modes exceed the center detection probability. This work may provide potential applications in OAM-based optical communication, imaging, sensing and computing.
文摘Background: The use of assisted reproductive technique (ART) is becoming more common in infertility. During ART most patients undergo ovarian stimulation. In this study we study the correlation between ovarian reserve markers: Anti-Mullerian hormone (AMH) and antral follicle count (AFC), and the response to ovarian stimulation at in vitro fertilization (IVF) centres in Douala Cameroon. Methods: This was a hospital based cross-sectional sectional analytic study carried out over a period of 3 years, 4 months at Clinique de l’Aéroport, Clinique Odyssée and Clinique Urogyn. Inclusion criteria were: Female partners of infertile couples undergoing ovarian stimulation for an in vitro fertilization cycle, patients who had both ovaries and had done either AMH, AFC or both before ovarian stimulation. Patients were divided into three groups based on the number of oocytes retrieved: low ovarian response for ≤3 oocytes, normal ovarian response for 4 - 15 oocytes and high ovarian response for >15 oocytes. Data obtained was analyzed by SPSS version 25.0. Results: The ages of participants ranged from 20 - 4 7 years, with a mean age of 34.11 ± 5.11 years. Most of them had secondary infertility (57.9%). The GnRH antagonist protocol was mainly used, and ovulation was triggered using HCG predominantly. On Multivariate analysis, age and history of PCOS were significantly associated with ovarian response in the low and high ovarian response groups, respectively. Conclusion: AMH has a better predictive value than AFC, however, it is less sensitive but more specific than AFC.
基金Supported by the National Key Research and Development Program of China(2022YFB3904803)。
文摘The Infrared Hyperspectral Atmospheric SounderⅡ(HIRAS-Ⅱ)is the key equipment on FengYun-3E(FY-3E)satellite,which can realize vertical atmospheric detection,featuring hyper spectral,high sensitivity and high precision.To ensure its accuracy of detection,it is necessary to correlate their thermal models to in-orbit da⁃ta.In this work,an investigation of intelligent correlation method named Intelligent Correlation Platform for Ther⁃mal Model(ICP-TM)was established,the advanced Kriging surrogate model and efficient adaptive region opti⁃mization algorithm were introduced.After the correlation with this method for FY-3E/HIRAS-Ⅱ,the results indi⁃cate that compared with the data in orbit,the error of the thermal model has decreased from 5 K to within±1 K in cold case(10℃).Then,the correlated model is validated in hot case(20℃),and the correlated model exhibits good universality.This correlation precision is also much superiors to the general ones like 3 K in other similar lit⁃erature.Furthermore,the process is finished in 8 days using ICP-TM,the efficiency is much better than 3 months based on manual.The results show that the proposed approach significantly enhances the accuracy and efficiency of thermal model,this contributes to the precise thermal control of subsequent infrared optical payloads.
基金National Natural Science Foundation of China(Project No.:12201579)。
文摘Portfolio selection based on the global minimum variance(GMV)model remains a significant focus in financial research.The covariance matrix,central to the GMV model,determines portfolio weights,and its accurate estimation is key to effective strategies.Based on the decomposition form of the covariance matrix.This paper introduces semi-variance for improved financial asymmetric risk measurement;addresses asymmetry in financial asset correlations using distance,asymmetric,and Chatterjee correlations to refine covariance matrices;and proposes three new covariance matrix models to enhance risk assessment and portfolio selection strategies.Testing with data from 30 stocks across various sectors of the Chinese market confirms the strong performance of the proposed strategies.
基金supported by the National Natural Science Foundation of China(Nos.21573059,12274118 and 22208088)Henan Center for Outstanding Overseas Scientists(No.GZS2023007)Special Project for Fundamental Research in University of Henan Province(No.22ZX013)。
文摘Sluggish sulfur conversion kinetics pose an ongoing challenge in lithium-sulfur batteries(LSBs).Here,we present a solution through far-reaching long-range electronic regulation(LRER)on single-atom active sites.N-doped carbons(Co-NC)are implanted with densely-distributed Co single atoms,and supported on Ti_(3)C_(2)T_(x)MXene substrates to assemble 3D Co-NC/MXene catalyst.MXene effectively mediates interlayer charge transfer(~0.70|e|)contrasted with popular carbon materials(~0.06|e|)to produce LRER through surrounding carbon atoms.The synergy of LRER with near-range electronic regulation(NRER)tunes electronic structures,and enhances heterostructural stability,thus provoking desirous catalytic kinetics of Co single atoms in sulfur reduction.Thereby,the Co-NC/MXene/S cathodes exhibit impressive rate performance and excellent cycling stability(only 0.015%capacity decay per cycle over 600 cycles at 4 C)in LSBs,surpassing state-of-the-art sulfur cathodes.This work reveals the importance of LRER for improved catalysis,and provides new guidance to tailor heterostructures to achieve high-efficient catalysts in various process.
基金supports by the National Natural Science Foundation of China(NSFC,Grant No.52271113)the Natural Science Foundation of Shaanxi Province,China(2020JM 218)the Fundamental Research Funds for the Central Universities(CHD300102311405)。
文摘Catalysts with asymmetric coordination exhibit excellent electrocatalytic activity due to changes in the active sites,which affect the arrangement of reactants and catalytic activity/selectivity.Hence,the exploration of the inherent characteristics of active sites within diverse coordination environments holds great significance for the experimental design of catalytic structures.Single-atom catalysts(SACs)characterized by high coordination with four carbons(26 candidates)and low coordination with dinitrogen(27candidates)are constructed using nitrogen-doped graphdiyne derivatives(NGDY)as the substrate.Additionally,5 species of dual-atom catalysts(DACs)with coexistence of both high and low coordination sites are also developed and their nitrogen reduction reaction(NRR)activities are systematically investigated by density functional theory.The results indicate that metals with low coordination exhibit superior catalytic performance,such as Mo^(L)-NGDY(U_(L)=-0.30 V)and Nb^(L)-NGDY(U_(L)=-0.32 V).Furthermore,machine learning(ML)methods have deeply analyzed and elucidated the primary intrinsic characteristics that influence catalytic performance.These results not only unveil the underlying mechanisms behind the exceptional catalytic performance exhibited by low-coordination metal atoms,but also provide relevant and significant descriptors.More importantly,based on an investigation of the catalytic activity of a series of DACs,the“buffer and low-coordination accumulate”asymmetric coordination mechanism is proposed to unveil the long-range interactions between low and high coordination atoms.Due to this remote communication,MoNb-NGDY(U_(L)=-0.09/-0.37 V)exhibits the best NRR activity.This mechanism provides valuable insights into the origin of long-range bipartite interactions and inspires the design and synthesis of NRR catalysts with different coordination environments.