Focusing on the networked control system with long time-delays and data packet dropout,the problem of observerbased fault detection of the system is studied.According to conditions of data arrival of the controller,th...Focusing on the networked control system with long time-delays and data packet dropout,the problem of observerbased fault detection of the system is studied.According to conditions of data arrival of the controller,the state observers of the system are designed to detect faults when they occur in the system.When the system is normal,the observers system is modeled as an uncertain switched system.Based on the model,stability condition of the whole system is given.When conditions are satisfied,the system is asymptotically stable.When a fault occurs,the observers residual can change rapidly to detect the fault.A numerical example shows the effectiveness of the proposed method.展开更多
A composite anti-disturbance predictive control strategy employing a Multi-dimensional Taylor Network(MTN)is presented for unmanned systems subject to time-delay and multi-source disturbances.First,the multi-source di...A composite anti-disturbance predictive control strategy employing a Multi-dimensional Taylor Network(MTN)is presented for unmanned systems subject to time-delay and multi-source disturbances.First,the multi-source disturbances are addressed according to their specific characteristics as follows:(A)an MTN data-driven model,which is used for uncertainty description,is designed accompanied with the mechanism model to represent the unmanned systems;(B)an adaptive MTN filter is used to remove the influence of the internal disturbance;(C)an MTN disturbance observer is constructed to estimate and compensate for the influence of the external disturbance;(D)the Extended Kalman Filter(EKF)algorithm is utilized as the learning mechanism for MTNs.Second,to address the time-delay effect,a recursiveτstep-ahead MTN predictive model is designed utilizing recursive technology,aiming to mitigate the impact of time-delay,and the EKF algorithm is employed as its learning mechanism.Then,the MTN predictive control law is designed based on the quadratic performance index.By implementing the proposed composite controller to unmanned systems,simultaneous feedforward compensation and feedback suppression to the multi-source disturbances are conducted.Finally,the convergence of the MTN and the stability of the closed-loop system are established utilizing the Lyapunov theorem.Two exemplary applications of unmanned systems involving unmanned vehicle and rigid spacecraft are presented to validate the effectiveness of the proposed approach.展开更多
This investigation focuses on the utilization of cucurbit[6]uril(Q[6])as the host compound for the development of long-lasting afterglow materials.By strategically manipulating the outer surface interactions of Q[6],c...This investigation focuses on the utilization of cucurbit[6]uril(Q[6])as the host compound for the development of long-lasting afterglow materials.By strategically manipulating the outer surface interactions of Q[6],classical aggregation-caused quenching(ACQ)compounds such as fluorescein sodium(FluNa)and calcein sodium(CalNa)were transformed into afterglow materials with varying colors and durations upon exposure to ultraviolet light.This transformation was facilitated through a host-vip doping method combined with coordination with metal ions.Even at a reduced doping concentration of 5×10^(-5)wt%,the materials exhibit remarkable afterglow properties,lasting up to 2 s,with a phosphorescence lifetime of up to 150 ms.Moreover,by adjusting the concentration of the vip compound,the persistent luminescence color of the materials could be easily transitioned from orange to yellow and subsequently to green.These findings suggest that the developed afterglow materials hold significant potential for multilevel anti-counterfeiting and information encryption applications when exposed to ultraviolet light.The supramolecular assembly strategy,which relies on the outer surface interactions of cucurbit[n]uril,offers a simpler and more efficient approach to crafting multi-color luminescent materials.Additionally,this method opens avenues for enhancing the application potential of aggregation-caused quenching(ACQ)compounds in various technological domains.展开更多
This paper mainly studies the well-posedness of steady incompressible impinging jet flow problem through a 3D axisymmetric finitely long nozzle.This problem originates from the physical phenomena encountered in practi...This paper mainly studies the well-posedness of steady incompressible impinging jet flow problem through a 3D axisymmetric finitely long nozzle.This problem originates from the physical phenomena encountered in practical engineering fields,such as in short take-off and vertical landing(STOVL)aircraft.Nowadays many intricate phenomena associated with impinging jet flows remain inadequately elucidated,which limits the ability to optimize aircraft design.Given a boundary condition in the inlet,the impinging jet problem is transformed into a Bernoulli-type free boundary problem according to the stream function.Then the variational method is used to study the corresponding variational problem with one parameter,thereby the wellposedness is established.The main conclusion is as follows.For a 3D axisymmetric finitely long nozzle and an infinitely long vertical wall,given an axial velocity in the inlet of nozzle,there exists a unique smooth incom‑pressible impinging jet flow such that the free boundary initiates smoothly at the endpoint of the nozzle and extends to infinity along the vertical wall at far fields.The key point is to investigate the regularity of the corner where the nozzle and the vertical axis intersect.展开更多
Deep learning plays a vital role in real-life applications, for example object identification, human face recognition, speech recognition, biometrics identification, and short and long-term forecasting of data. The ma...Deep learning plays a vital role in real-life applications, for example object identification, human face recognition, speech recognition, biometrics identification, and short and long-term forecasting of data. The main objective of our work is to predict the market performance of the Dhaka Stock Exchange (DSE) on day closing price using different Deep Learning techniques. In this study, we have used the LSTM (Long Short-Term Memory) network to forecast the data of DSE for the convenience of shareholders. We have enforced LSTM networks to train data as well as forecast the future time series that has differentiated with test data. We have computed the Root Mean Square Error (RMSE) value to scrutinize the error between the forecasted value and test data that diminished the error by updating the LSTM networks. As a consequence of the renovation of the network, the LSTM network provides tremendous performance which outperformed the existing works to predict stock market prices.展开更多
This study investigates the nonlinear resonance responses of suspended cables subjected to multi-frequency excitations and time-delayed feedback.Two specific combinations and simultaneous resonances are selected for d...This study investigates the nonlinear resonance responses of suspended cables subjected to multi-frequency excitations and time-delayed feedback.Two specific combinations and simultaneous resonances are selected for detailed examination.Initially,utilizing Hamilton’s variational principle,a nonlinear vibration control model of suspended cables under multi-frequency excitations and longitudinal time-delayed velocity feedback is developed,and the Galerkin method is employed to obtain the discrete model.Subsequently,focusing solely on single-mode discretization,analytical solutions for the two simultaneous resonances are derived using the method of multiple scales.The frequency response equations are derived,and the stability analysis is presented for two simultaneous resonance cases.The results demonstrate that suspended cables exhibit complex nonlinearity under multi-frequency excitations.Multiple solutions under multi-frequency excitation can be distinguished through the frequency–response and the detuning-phase curves.By adjusting the control gain and time delay,the resonance range,response amplitude,and phase of suspended cables can be modified.展开更多
To ensure the safety of power energy transmission channel and mitigate the harm caused by galloping of iced transmission lines,the axial time-delay velocity feedback strategy is adopted to suppress the galloping.The p...To ensure the safety of power energy transmission channel and mitigate the harm caused by galloping of iced transmission lines,the axial time-delay velocity feedback strategy is adopted to suppress the galloping.The par-tial differential equation of galloping with axial time-delay velocity feedback strategy is established based on the variational principle for Hamiltonian.Then,the partial differential equation of galloping is transformed into or-dinary differential equation based on normalization and the Galerkin method.The primary amplitude-frequency response equation,the first-order steady-state approximate solution,and the harmonic amplitude-frequency re-sponse equation are derived by the multiscale method.The impact of different parameters such as time-delay value,control coefficient,and amplitude of external excitation on the galloping response are analyzed.The am-plitude under the primary resonance exhibits periodicity as time-delay value varies.The amplitude diminishes with increased control coefficient and increases with external excitation.Comprehensive consideration of vari-ous influences of parameters on vibration characteristics is crucial when employing the axial time-delay velocity feedback strategy to suppress galloping.Therefore,to achieve the best vibration suppression effect,it is crucial to adjust the time-delay parameter for modifying the range and amplitude of the resonance zone.The conclusions obtained by this study are expected to advance the refinement of active control techniques for iced transmission lines,and may provide valuable insights for practical engineering applications.展开更多
Background:Over 65 million people have long COVID.Evidence for using Chinese herbal medicine(CHM)to treat long COVID is growing.A systematic review of evidence for guiding clinical decision is warranted.Objective:To e...Background:Over 65 million people have long COVID.Evidence for using Chinese herbal medicine(CHM)to treat long COVID is growing.A systematic review of evidence for guiding clinical decision is warranted.Objective:To examine the effects and safety of CHM in alleviating the severity of dyspnea,fatigue,exercise intolerance,depression,anxiety and insomnia in long COVID adults based on registered randomized clinical trials(RCT).Search strategy:World Health Organization International Clinical Trials Registry Platform and Chinese Clinical Trial Registry were searched for registered trial protocols from database inception to February 10,2023.English(PubM ed,Embase,AMED and CINAHL)and Chinese databases(CNKI,Wanfang Data and CQVIP)were then searched to identify relevant publications from December 2019 through April 6,2023.Inclusion criteria:Registered RCTs that compared the effects of Chinese herbal medicines or Chinese herbal formulas against a control treatment(i.e.,the placebo or usual care)in adults with persistent symptoms of long COVID.The primary outcome of dyspnea,and secondary outcomes of fatigue,exercise intolerance,depression,anxiety and insomnia were measured using validated tools at the end of the treatment.Data extraction and analysis:Data were extracted,and eligible RCTs were evaluated using version 2 of the Cochrane risk-of-bias tool for randomized trials and Grading of Recommendations,Assessment,Development and Evaluations independently by two researchers.Effect sizes were estimated by randomeffects modelling and mean difference(MD).Heterogeneity between trials was quantified by I^(2).Results:Among the 38 registered clinical trials we identified,seven RCTs(1,519 patients)were included in the systematic review.One RCT had a low overall risk of bias.Compared to the control,CHM reduces dyspnea on the Borg Dyspnea Scale score(MD=–0.2,95%confidence interval[CI]=–0.65 to 0.25)with moderate certainty,and reduces fatigue on the Borg Scale(MD=–0.48,95%CI=–0.74 to–0.22)with low certainty.CHM clinically reduces depression on Hamilton Depression Rating Scale score(MD=–6.00,95%CI=–7.56 to–4.44)and anxiety on Hamilton Anxiety Rating Scale score(MD=–6.10,95%CI=–7.67 to–4.53),and reduces insomnia on the Insomnia Severity Index(MD=–4.86,95%CI=–12.50 to 2.79)with moderate certainty.Meta-analysis of two RCTs(517 patients)showed that CHM clinically improves exercise intolerance by increasing 6-minute walking distance(MD=–15.92,95%CI=–10.20 to 42.05)with substantial heterogeneity(I^(2)=68%)and low certainty.Conclusion:CHM is associated with a post-treatment clinical reduction in depression and anxiety in long COVID adults,compared to the control,but it does not have a strong treatment effect on dyspnea and insomnia.Effects of CHM on exercise intolerance and fatigue are uncertain,and the safety of using CHM remains questionable.展开更多
This paper discusses the design of event-triggered output-feedback controller for a class of nonlinear time-delay systems with multiple uncertainties. In sharp contrast to previous works, the considered systems posses...This paper discusses the design of event-triggered output-feedback controller for a class of nonlinear time-delay systems with multiple uncertainties. In sharp contrast to previous works, the considered systems possess two important characteristics: (i) The uncertain nonlinear terms meet the linearly unmeasurable-states dependent growth with the growth rate being an unknown function of the input and output. (ii) There exist input matching uncertainty and unknown measurement sensitivity. By introducing a single dynamic gain and employing a cleverly devised event-triggering mechanism (ETM), we design a new gain-based event-triggered output-feedback controller, which globally regulates all states of the considered systems and maintains global boundedness of the closed-loop system. Furthermore, the estimation of input matching uncertainty achieves convergence towards its actual value, and Zeno behavior does not happen. Two simulation examples including a practical one show that the proposed approach is effective.展开更多
The published article titled“Overexpression of long noncoding RNA PTENP1 inhibits cell proliferation and migration via suppression of miR-19b in breast cancer cells”has been retracted from Oncology Research,Vol.26,N...The published article titled“Overexpression of long noncoding RNA PTENP1 inhibits cell proliferation and migration via suppression of miR-19b in breast cancer cells”has been retracted from Oncology Research,Vol.26,No.6,2018,pp.869–878.展开更多
The published article titled“Long Noncoding RNA SChLAP1 Accelerates the Proliferation and Metastasis of Prostate Cancer via Targeting miR-198 and Promoting the MAPK1 Pathway”has been retracted from Oncology Research...The published article titled“Long Noncoding RNA SChLAP1 Accelerates the Proliferation and Metastasis of Prostate Cancer via Targeting miR-198 and Promoting the MAPK1 Pathway”has been retracted from Oncology Research,Vol.26,No.1,2018,pp.131–143.展开更多
Soybean seed isoflavones are a type of secondary metabolites that can provide health and nutrition benefits for humans. In our previous study, a stable quantitative trait locus(QTL) qIF05-1 controlling the seed isofla...Soybean seed isoflavones are a type of secondary metabolites that can provide health and nutrition benefits for humans. In our previous study, a stable quantitative trait locus(QTL) qIF05-1 controlling the seed isoflavone content in soybean was detected on chromosome(Chr.) 05 in a recombinant inbred line(RIL) population from a cross of Huachun 2×Wayao. In this study, the parental lines were re-sequenced using the Illumina Solexa System with deep coverage. A total of 63,099 polymorphic long insertions and deletions(InDels)(≥15 bp)were identified between the parents Huachun 2 and Wayao. The InDels were unevenly distributed on 20chromosomes of soybean, varying from 1,826 in Chr. 12 to 4,544 in Chr. 18. A total of 10,002 long InDels(15.85% of total) were located in genic regions, including 1,139 large-effect long InDels which resulted in truncated or elongated protein sequences. In the qIF05-1 region, 68 long InDels were detected between the two parents. Using a progeny recombination experiment and genotype analysis, the qIF05-1 locus was mapped into a 102.2 kb genomic region, and this region contained 12 genes. By RNA-seq data analysis, genome sequence comparison and functional validation through ectopic expression in Arabidopsis thaliana, Glyma.05G208300(described as GmEGL3), which is a basic helix-loop-helix(bHLH) transcription factor in plants, emerged as the most likely confirmed gene in qIF05-1. These long InDels can be used as a type of complementary genetic method for QTL fine mapping, and they can facilitate genetic studies and molecular-assisted selection breeding in soybean.展开更多
Chronic long-segment iliac artery occlusion represents a relatively rare and particularly severe form of iliac artery disease,often associated with complex anatomical challenges.When symptomatic,these patients are typ...Chronic long-segment iliac artery occlusion represents a relatively rare and particularly severe form of iliac artery disease,often associated with complex anatomical challenges.When symptomatic,these patients are typically candidates for surgical revascularization.展开更多
Over the past few years,Malware attacks have become more and more widespread,posing threats to digital assets throughout the world.Although numerous methods have been developed to detect malicious attacks,these malwar...Over the past few years,Malware attacks have become more and more widespread,posing threats to digital assets throughout the world.Although numerous methods have been developed to detect malicious attacks,these malware detection techniques need to be more efficient in detecting new and progressively sophisticated variants of malware.Therefore,the development of more advanced and accurate techniques is necessary for malware detection.This paper introduces a comprehensive Dual-Channel Attention Deep Bidirectional Long Short-Term Memory(DCADBiLSTM)model for malware detection and riskmitigation.The Dual Channel Attention(DCA)mechanism improves themodel’s capability to concentrate on the features that aremost appropriate in the input data,which reduces the false favourable rates.The Bidirectional Long,Short-Term Memory framework helps capture crucial interdependence from past and future circumstances,which is essential for enhancing the model’s understanding of malware behaviour.As soon as malware is detected,the risk mitigation phase is implemented,which evaluates the severity of each threat and helps mitigate threats earlier.The outcomes of the method demonstrate better accuracy of 98.96%,which outperforms traditional models.It indicates the method detects and mitigates several kinds of malware threats,thereby providing a proactive defence mechanism against the emerging challenges in cybersecurity.展开更多
Gastric cancer(GC)is one of the most aggressive malignancies worldwide and is characterized by its poor prognosis and resistance to conventional therapies.Autophagy and long non-coding RNAs(lncRNAs)play critical yet c...Gastric cancer(GC)is one of the most aggressive malignancies worldwide and is characterized by its poor prognosis and resistance to conventional therapies.Autophagy and long non-coding RNAs(lncRNAs)play critical yet complex roles in GC,functioning as both tumor suppressors and promoters depending on the disease stage and context.Autophagy influences cellular homeostasis and metabolism,whereas lncRNAs regulate gene expression through epigenetic modifications,RNA sponging,and protein interactions.Notably,the interplay between lncRNAs and autophagy modulates tumor progression,metastasis,chemoresistance,and the tumor microenvironment.This study explored the intricate relationship between lncRNAs and autophagy in GC,highlighting their roles in pathogenesis and treatment resistance.By addressing current knowledge gaps and proposing innovative therapeutic strategies,we have emphasized the potential of targeting this dynamic interplay for improved diagnostic and therapeutic outcomes.展开更多
Rainbows-symbolizing peace,hope,promise and endurance(忍耐力)in hard times-are springing up in neighborhoods throughout Long Island in an effort to color the future road with optimism.The campaign,Rainbows over Nassau...Rainbows-symbolizing peace,hope,promise and endurance(忍耐力)in hard times-are springing up in neighborhoods throughout Long Island in an effort to color the future road with optimism.The campaign,Rainbows over Nassau and Suffolk Counties and Beyond,started on March 21 and spread through a group.It's a campaign that encourages participants to make rainbows to display outside their homes,anywhere from their front windows and doors to lawns and sidewalks.It follows another similar project,Chalk Your Walk,which promotes writing hopeful messages in chalk on driveways and sidewalks.展开更多
BACKGROUND The World Health Organization defined long coronavirus disease 2019(COVID-19)as the continuation or development of new symptoms 3 months after the initial severe acute respiratory syndrome coronavirus 2 inf...BACKGROUND The World Health Organization defined long coronavirus disease 2019(COVID-19)as the continuation or development of new symptoms 3 months after the initial severe acute respiratory syndrome coronavirus 2 infection,with these symptoms lasting for at least 2 months with no other explanation.AIM To evaluate the potential laboratory and instrumental findings(short-term and long-term)resulting from COVID-19.METHODS This longitudinal observational COVID-19 cohort study(March 1,2020-March 1,2021)was carried out on patients≥18 years old who were admitted to the University Hospitals of Pisa,Siena and Careggi and the Azienda USL Toscana Nord Ovest,Sud Est and USL Centro Toscana and were subjected to follow-up.Follow-up was conducted between 0 day and 89 days,90 days and 179 days,180 days and 269 days,270 days and 359 days,and more than 360 days after hospitalization.RESULTS Of 2887 patients(58.5%males,average age 66.2 years)hospitalized in the study period(March 1,2020-March 1,2021)carrying out at least one follow-up examination within 12 months of discharge,a total of 1739 patients(705 males,average age 66 years)underwent laboratory tests,of whom 714 patients(470 males,average age 63 years)underwent spirometry.Some laboratory test results remained above the threshold even at follow-up beyond 360 days(C-reactive protein:36%,fibrin degradation fragment:48.8%,gamma-glutamyl transferase:16.8%),while others showed a return to normal range more quickly in almost all patients.Alterations in liver enzymes,hematocrit,hemoglobin,lymphocytes and neutrophils were associated with the risk of requiring oxygen therapy or forced expiratory volume in one second/forced vital capacity alterations at follow-up.CONCLUSION Alterations in liver enzymes,hematocrit or hemoglobin,lymphocytes and neutrophils were associated with risk outcomes(need for oxygen therapy or spirometry alterations).These imbalanced conditions may contribute to pulmonary dysfunction.展开更多
Solar flares are violent solar outbursts which have a great influence on the space environment surrounding Earth,potentially causing disruption of the ionosphere and interference with the geomagnetic field,thus causin...Solar flares are violent solar outbursts which have a great influence on the space environment surrounding Earth,potentially causing disruption of the ionosphere and interference with the geomagnetic field,thus causing magnetic storms.Consequently,it is very important to accurately predict the time period of solar flares.This paper proposes a flare prediction model,based on physical images of active solar regions.We employ X-ray flux curves recorded directly by the Geostationary Operational Environmental Satellite,used as input data for the model,allowing us to largely avoid the influence of accidental errors,effectively improving the model prediction efficiency.A model based on the X-ray flux curve can predict whether there will be a flare event within 24 hours.The reverse can also be verified by the peak of the X-ray flux curve to see if a flare has occurred within the past 24 hours.The True Positive Rate and False Positive Rate of the prediction model,based on physical images of active regions are 0.6070 and 0.2410 respectively,and the accuracy and True Skill Statistics are 0.7590 and 0.5556.Our model can effectively improve prediction efficiency compared with models based on the physical parameters of active regions or magnetic field records,providing a simple method for solar flare prediction.展开更多
Hepatocellular carcinoma(HCC)is the predominant form of primary liver cancer,accounting for 90%of all cases.Currently,early diagnosis of HCC can be achieved through serum alpha-fetoprotein detection,B-ultrasound,and c...Hepatocellular carcinoma(HCC)is the predominant form of primary liver cancer,accounting for 90%of all cases.Currently,early diagnosis of HCC can be achieved through serum alpha-fetoprotein detection,B-ultrasound,and computed tomography scanning;however,their specificity and sensitivity are suboptimal.Despite significant advancements in HCC biomarker detection,the prognosis for patients with HCC remains unfavorable due to tumor heterogeneity and limited understanding of its pathogenesis.Therefore,it is crucial to explore more sensitive HCC biomarkers for improved diagnosis,monitoring,and management of the disease.Long non-coding RNA(lncRNA)serves as an auxiliary carrier of genetic information and also plays diverse intricate regulatory roles that greatly contribute to genome complexity.Moreover,investigating gene expression regulation networks from the perspective of lncRNA may provide insights into the diagnosis and prognosis of HCC.We searched the PubMed database for literature,comprehensively classified regulated cell death mechanisms and systematically reviewed research progress on lncRNA-mediated cell death pathways in HCC cells.Furthermore,we prospectively summarize its potential implications in diagnosing and treating HCC.展开更多
基金supported by the Natural Science Foundation of Jiangsu Province (BK2006202)
文摘Focusing on the networked control system with long time-delays and data packet dropout,the problem of observerbased fault detection of the system is studied.According to conditions of data arrival of the controller,the state observers of the system are designed to detect faults when they occur in the system.When the system is normal,the observers system is modeled as an uncertain switched system.Based on the model,stability condition of the whole system is given.When conditions are satisfied,the system is asymptotically stable.When a fault occurs,the observers residual can change rapidly to detect the fault.A numerical example shows the effectiveness of the proposed method.
基金co-supported by the National Key R&D Program of China(No.2023YFB4704400)the Zhejiang Provincial Natural Science Foundation of China(No.LQ24F030012)the National Natural Science Foundation of China General Project(No.62373033)。
文摘A composite anti-disturbance predictive control strategy employing a Multi-dimensional Taylor Network(MTN)is presented for unmanned systems subject to time-delay and multi-source disturbances.First,the multi-source disturbances are addressed according to their specific characteristics as follows:(A)an MTN data-driven model,which is used for uncertainty description,is designed accompanied with the mechanism model to represent the unmanned systems;(B)an adaptive MTN filter is used to remove the influence of the internal disturbance;(C)an MTN disturbance observer is constructed to estimate and compensate for the influence of the external disturbance;(D)the Extended Kalman Filter(EKF)algorithm is utilized as the learning mechanism for MTNs.Second,to address the time-delay effect,a recursiveτstep-ahead MTN predictive model is designed utilizing recursive technology,aiming to mitigate the impact of time-delay,and the EKF algorithm is employed as its learning mechanism.Then,the MTN predictive control law is designed based on the quadratic performance index.By implementing the proposed composite controller to unmanned systems,simultaneous feedforward compensation and feedback suppression to the multi-source disturbances are conducted.Finally,the convergence of the MTN and the stability of the closed-loop system are established utilizing the Lyapunov theorem.Two exemplary applications of unmanned systems involving unmanned vehicle and rigid spacecraft are presented to validate the effectiveness of the proposed approach.
基金support of the National Natural Science Foundation of China(No.22361011)Guizhou Provincial Science and Technology Projects(No.ZK[2023]General 040)the Guizhou Provincial Key Laboratory Platform Project(No.ZSYS[2025]008)。
文摘This investigation focuses on the utilization of cucurbit[6]uril(Q[6])as the host compound for the development of long-lasting afterglow materials.By strategically manipulating the outer surface interactions of Q[6],classical aggregation-caused quenching(ACQ)compounds such as fluorescein sodium(FluNa)and calcein sodium(CalNa)were transformed into afterglow materials with varying colors and durations upon exposure to ultraviolet light.This transformation was facilitated through a host-vip doping method combined with coordination with metal ions.Even at a reduced doping concentration of 5×10^(-5)wt%,the materials exhibit remarkable afterglow properties,lasting up to 2 s,with a phosphorescence lifetime of up to 150 ms.Moreover,by adjusting the concentration of the vip compound,the persistent luminescence color of the materials could be easily transitioned from orange to yellow and subsequently to green.These findings suggest that the developed afterglow materials hold significant potential for multilevel anti-counterfeiting and information encryption applications when exposed to ultraviolet light.The supramolecular assembly strategy,which relies on the outer surface interactions of cucurbit[n]uril,offers a simpler and more efficient approach to crafting multi-color luminescent materials.Additionally,this method opens avenues for enhancing the application potential of aggregation-caused quenching(ACQ)compounds in various technological domains.
文摘This paper mainly studies the well-posedness of steady incompressible impinging jet flow problem through a 3D axisymmetric finitely long nozzle.This problem originates from the physical phenomena encountered in practical engineering fields,such as in short take-off and vertical landing(STOVL)aircraft.Nowadays many intricate phenomena associated with impinging jet flows remain inadequately elucidated,which limits the ability to optimize aircraft design.Given a boundary condition in the inlet,the impinging jet problem is transformed into a Bernoulli-type free boundary problem according to the stream function.Then the variational method is used to study the corresponding variational problem with one parameter,thereby the wellposedness is established.The main conclusion is as follows.For a 3D axisymmetric finitely long nozzle and an infinitely long vertical wall,given an axial velocity in the inlet of nozzle,there exists a unique smooth incom‑pressible impinging jet flow such that the free boundary initiates smoothly at the endpoint of the nozzle and extends to infinity along the vertical wall at far fields.The key point is to investigate the regularity of the corner where the nozzle and the vertical axis intersect.
文摘Deep learning plays a vital role in real-life applications, for example object identification, human face recognition, speech recognition, biometrics identification, and short and long-term forecasting of data. The main objective of our work is to predict the market performance of the Dhaka Stock Exchange (DSE) on day closing price using different Deep Learning techniques. In this study, we have used the LSTM (Long Short-Term Memory) network to forecast the data of DSE for the convenience of shareholders. We have enforced LSTM networks to train data as well as forecast the future time series that has differentiated with test data. We have computed the Root Mean Square Error (RMSE) value to scrutinize the error between the forecasted value and test data that diminished the error by updating the LSTM networks. As a consequence of the renovation of the network, the LSTM network provides tremendous performance which outperformed the existing works to predict stock market prices.
基金supported in part by the National Natural Science Foundation of China(Grant No.12432001)Natural Science Foundation of Hunan Province(Grant Nos.2023JJ60527,2023JJ30152,and 2023JJ30259)the Natural Science Foundation of Changsha(KQ2202133).
文摘This study investigates the nonlinear resonance responses of suspended cables subjected to multi-frequency excitations and time-delayed feedback.Two specific combinations and simultaneous resonances are selected for detailed examination.Initially,utilizing Hamilton’s variational principle,a nonlinear vibration control model of suspended cables under multi-frequency excitations and longitudinal time-delayed velocity feedback is developed,and the Galerkin method is employed to obtain the discrete model.Subsequently,focusing solely on single-mode discretization,analytical solutions for the two simultaneous resonances are derived using the method of multiple scales.The frequency response equations are derived,and the stability analysis is presented for two simultaneous resonance cases.The results demonstrate that suspended cables exhibit complex nonlinearity under multi-frequency excitations.Multiple solutions under multi-frequency excitation can be distinguished through the frequency–response and the detuning-phase curves.By adjusting the control gain and time delay,the resonance range,response amplitude,and phase of suspended cables can be modified.
基金supported by the National Natural Science Foundation of China(Grant No.51507106)China Postdoctoral Science Foundation(Grant No.2021M702371)。
文摘To ensure the safety of power energy transmission channel and mitigate the harm caused by galloping of iced transmission lines,the axial time-delay velocity feedback strategy is adopted to suppress the galloping.The par-tial differential equation of galloping with axial time-delay velocity feedback strategy is established based on the variational principle for Hamiltonian.Then,the partial differential equation of galloping is transformed into or-dinary differential equation based on normalization and the Galerkin method.The primary amplitude-frequency response equation,the first-order steady-state approximate solution,and the harmonic amplitude-frequency re-sponse equation are derived by the multiscale method.The impact of different parameters such as time-delay value,control coefficient,and amplitude of external excitation on the galloping response are analyzed.The am-plitude under the primary resonance exhibits periodicity as time-delay value varies.The amplitude diminishes with increased control coefficient and increases with external excitation.Comprehensive consideration of vari-ous influences of parameters on vibration characteristics is crucial when employing the axial time-delay velocity feedback strategy to suppress galloping.Therefore,to achieve the best vibration suppression effect,it is crucial to adjust the time-delay parameter for modifying the range and amplitude of the resonance zone.The conclusions obtained by this study are expected to advance the refinement of active control techniques for iced transmission lines,and may provide valuable insights for practical engineering applications.
文摘Background:Over 65 million people have long COVID.Evidence for using Chinese herbal medicine(CHM)to treat long COVID is growing.A systematic review of evidence for guiding clinical decision is warranted.Objective:To examine the effects and safety of CHM in alleviating the severity of dyspnea,fatigue,exercise intolerance,depression,anxiety and insomnia in long COVID adults based on registered randomized clinical trials(RCT).Search strategy:World Health Organization International Clinical Trials Registry Platform and Chinese Clinical Trial Registry were searched for registered trial protocols from database inception to February 10,2023.English(PubM ed,Embase,AMED and CINAHL)and Chinese databases(CNKI,Wanfang Data and CQVIP)were then searched to identify relevant publications from December 2019 through April 6,2023.Inclusion criteria:Registered RCTs that compared the effects of Chinese herbal medicines or Chinese herbal formulas against a control treatment(i.e.,the placebo or usual care)in adults with persistent symptoms of long COVID.The primary outcome of dyspnea,and secondary outcomes of fatigue,exercise intolerance,depression,anxiety and insomnia were measured using validated tools at the end of the treatment.Data extraction and analysis:Data were extracted,and eligible RCTs were evaluated using version 2 of the Cochrane risk-of-bias tool for randomized trials and Grading of Recommendations,Assessment,Development and Evaluations independently by two researchers.Effect sizes were estimated by randomeffects modelling and mean difference(MD).Heterogeneity between trials was quantified by I^(2).Results:Among the 38 registered clinical trials we identified,seven RCTs(1,519 patients)were included in the systematic review.One RCT had a low overall risk of bias.Compared to the control,CHM reduces dyspnea on the Borg Dyspnea Scale score(MD=–0.2,95%confidence interval[CI]=–0.65 to 0.25)with moderate certainty,and reduces fatigue on the Borg Scale(MD=–0.48,95%CI=–0.74 to–0.22)with low certainty.CHM clinically reduces depression on Hamilton Depression Rating Scale score(MD=–6.00,95%CI=–7.56 to–4.44)and anxiety on Hamilton Anxiety Rating Scale score(MD=–6.10,95%CI=–7.67 to–4.53),and reduces insomnia on the Insomnia Severity Index(MD=–4.86,95%CI=–12.50 to 2.79)with moderate certainty.Meta-analysis of two RCTs(517 patients)showed that CHM clinically improves exercise intolerance by increasing 6-minute walking distance(MD=–15.92,95%CI=–10.20 to 42.05)with substantial heterogeneity(I^(2)=68%)and low certainty.Conclusion:CHM is associated with a post-treatment clinical reduction in depression and anxiety in long COVID adults,compared to the control,but it does not have a strong treatment effect on dyspnea and insomnia.Effects of CHM on exercise intolerance and fatigue are uncertain,and the safety of using CHM remains questionable.
基金supported by the fund of Beijing Municipal Commission of Education(KM202210017001 and 22019821001)the Natural Science Foundation of Henan Province(222300420253).
文摘This paper discusses the design of event-triggered output-feedback controller for a class of nonlinear time-delay systems with multiple uncertainties. In sharp contrast to previous works, the considered systems possess two important characteristics: (i) The uncertain nonlinear terms meet the linearly unmeasurable-states dependent growth with the growth rate being an unknown function of the input and output. (ii) There exist input matching uncertainty and unknown measurement sensitivity. By introducing a single dynamic gain and employing a cleverly devised event-triggering mechanism (ETM), we design a new gain-based event-triggered output-feedback controller, which globally regulates all states of the considered systems and maintains global boundedness of the closed-loop system. Furthermore, the estimation of input matching uncertainty achieves convergence towards its actual value, and Zeno behavior does not happen. Two simulation examples including a practical one show that the proposed approach is effective.
文摘The published article titled“Overexpression of long noncoding RNA PTENP1 inhibits cell proliferation and migration via suppression of miR-19b in breast cancer cells”has been retracted from Oncology Research,Vol.26,No.6,2018,pp.869–878.
文摘The published article titled“Long Noncoding RNA SChLAP1 Accelerates the Proliferation and Metastasis of Prostate Cancer via Targeting miR-198 and Promoting the MAPK1 Pathway”has been retracted from Oncology Research,Vol.26,No.1,2018,pp.131–143.
基金supported by the China Agriculture Research System of MOF and MARA(CARS-04-PS12)the Research and Development Program in the Key-Areas of Guangdong Province,China(2020B020220008)the Guangdong Agricultural Research System,China(2023KJ136-03).
文摘Soybean seed isoflavones are a type of secondary metabolites that can provide health and nutrition benefits for humans. In our previous study, a stable quantitative trait locus(QTL) qIF05-1 controlling the seed isoflavone content in soybean was detected on chromosome(Chr.) 05 in a recombinant inbred line(RIL) population from a cross of Huachun 2×Wayao. In this study, the parental lines were re-sequenced using the Illumina Solexa System with deep coverage. A total of 63,099 polymorphic long insertions and deletions(InDels)(≥15 bp)were identified between the parents Huachun 2 and Wayao. The InDels were unevenly distributed on 20chromosomes of soybean, varying from 1,826 in Chr. 12 to 4,544 in Chr. 18. A total of 10,002 long InDels(15.85% of total) were located in genic regions, including 1,139 large-effect long InDels which resulted in truncated or elongated protein sequences. In the qIF05-1 region, 68 long InDels were detected between the two parents. Using a progeny recombination experiment and genotype analysis, the qIF05-1 locus was mapped into a 102.2 kb genomic region, and this region contained 12 genes. By RNA-seq data analysis, genome sequence comparison and functional validation through ectopic expression in Arabidopsis thaliana, Glyma.05G208300(described as GmEGL3), which is a basic helix-loop-helix(bHLH) transcription factor in plants, emerged as the most likely confirmed gene in qIF05-1. These long InDels can be used as a type of complementary genetic method for QTL fine mapping, and they can facilitate genetic studies and molecular-assisted selection breeding in soybean.
文摘Chronic long-segment iliac artery occlusion represents a relatively rare and particularly severe form of iliac artery disease,often associated with complex anatomical challenges.When symptomatic,these patients are typically candidates for surgical revascularization.
基金funded by the Deanship of Scientific Research(DSR)at King Abdulaziz University,Jeddah,under grant No.(IPP:421-611-2025).
文摘Over the past few years,Malware attacks have become more and more widespread,posing threats to digital assets throughout the world.Although numerous methods have been developed to detect malicious attacks,these malware detection techniques need to be more efficient in detecting new and progressively sophisticated variants of malware.Therefore,the development of more advanced and accurate techniques is necessary for malware detection.This paper introduces a comprehensive Dual-Channel Attention Deep Bidirectional Long Short-Term Memory(DCADBiLSTM)model for malware detection and riskmitigation.The Dual Channel Attention(DCA)mechanism improves themodel’s capability to concentrate on the features that aremost appropriate in the input data,which reduces the false favourable rates.The Bidirectional Long,Short-Term Memory framework helps capture crucial interdependence from past and future circumstances,which is essential for enhancing the model’s understanding of malware behaviour.As soon as malware is detected,the risk mitigation phase is implemented,which evaluates the severity of each threat and helps mitigate threats earlier.The outcomes of the method demonstrate better accuracy of 98.96%,which outperforms traditional models.It indicates the method detects and mitigates several kinds of malware threats,thereby providing a proactive defence mechanism against the emerging challenges in cybersecurity.
文摘Gastric cancer(GC)is one of the most aggressive malignancies worldwide and is characterized by its poor prognosis and resistance to conventional therapies.Autophagy and long non-coding RNAs(lncRNAs)play critical yet complex roles in GC,functioning as both tumor suppressors and promoters depending on the disease stage and context.Autophagy influences cellular homeostasis and metabolism,whereas lncRNAs regulate gene expression through epigenetic modifications,RNA sponging,and protein interactions.Notably,the interplay between lncRNAs and autophagy modulates tumor progression,metastasis,chemoresistance,and the tumor microenvironment.This study explored the intricate relationship between lncRNAs and autophagy in GC,highlighting their roles in pathogenesis and treatment resistance.By addressing current knowledge gaps and proposing innovative therapeutic strategies,we have emphasized the potential of targeting this dynamic interplay for improved diagnostic and therapeutic outcomes.
文摘Rainbows-symbolizing peace,hope,promise and endurance(忍耐力)in hard times-are springing up in neighborhoods throughout Long Island in an effort to color the future road with optimism.The campaign,Rainbows over Nassau and Suffolk Counties and Beyond,started on March 21 and spread through a group.It's a campaign that encourages participants to make rainbows to display outside their homes,anywhere from their front windows and doors to lawns and sidewalks.It follows another similar project,Chalk Your Walk,which promotes writing hopeful messages in chalk on driveways and sidewalks.
基金Supported by Regione Toscana,No.D55H20000210002.
文摘BACKGROUND The World Health Organization defined long coronavirus disease 2019(COVID-19)as the continuation or development of new symptoms 3 months after the initial severe acute respiratory syndrome coronavirus 2 infection,with these symptoms lasting for at least 2 months with no other explanation.AIM To evaluate the potential laboratory and instrumental findings(short-term and long-term)resulting from COVID-19.METHODS This longitudinal observational COVID-19 cohort study(March 1,2020-March 1,2021)was carried out on patients≥18 years old who were admitted to the University Hospitals of Pisa,Siena and Careggi and the Azienda USL Toscana Nord Ovest,Sud Est and USL Centro Toscana and were subjected to follow-up.Follow-up was conducted between 0 day and 89 days,90 days and 179 days,180 days and 269 days,270 days and 359 days,and more than 360 days after hospitalization.RESULTS Of 2887 patients(58.5%males,average age 66.2 years)hospitalized in the study period(March 1,2020-March 1,2021)carrying out at least one follow-up examination within 12 months of discharge,a total of 1739 patients(705 males,average age 66 years)underwent laboratory tests,of whom 714 patients(470 males,average age 63 years)underwent spirometry.Some laboratory test results remained above the threshold even at follow-up beyond 360 days(C-reactive protein:36%,fibrin degradation fragment:48.8%,gamma-glutamyl transferase:16.8%),while others showed a return to normal range more quickly in almost all patients.Alterations in liver enzymes,hematocrit,hemoglobin,lymphocytes and neutrophils were associated with the risk of requiring oxygen therapy or forced expiratory volume in one second/forced vital capacity alterations at follow-up.CONCLUSION Alterations in liver enzymes,hematocrit or hemoglobin,lymphocytes and neutrophils were associated with risk outcomes(need for oxygen therapy or spirometry alterations).These imbalanced conditions may contribute to pulmonary dysfunction.
基金partially supported by the National Key R&D Program of China (2022YFE0133700)the National Natural Science Foundation of China(12273007)+4 种基金the Guizhou Provincial Excellent Young Science and Technology Talent Program (YQK[2023]006)the National SKA Program of China (2020SKA0110300)the National Natural Science Foundation of China(11963003)the Guizhou Provincial Basic Research Program (Natural Science)(ZK[2022]143)the Cultivation project of Guizhou University ([2020]76).
文摘Solar flares are violent solar outbursts which have a great influence on the space environment surrounding Earth,potentially causing disruption of the ionosphere and interference with the geomagnetic field,thus causing magnetic storms.Consequently,it is very important to accurately predict the time period of solar flares.This paper proposes a flare prediction model,based on physical images of active solar regions.We employ X-ray flux curves recorded directly by the Geostationary Operational Environmental Satellite,used as input data for the model,allowing us to largely avoid the influence of accidental errors,effectively improving the model prediction efficiency.A model based on the X-ray flux curve can predict whether there will be a flare event within 24 hours.The reverse can also be verified by the peak of the X-ray flux curve to see if a flare has occurred within the past 24 hours.The True Positive Rate and False Positive Rate of the prediction model,based on physical images of active regions are 0.6070 and 0.2410 respectively,and the accuracy and True Skill Statistics are 0.7590 and 0.5556.Our model can effectively improve prediction efficiency compared with models based on the physical parameters of active regions or magnetic field records,providing a simple method for solar flare prediction.
基金Supported by Science Project of Hunan Provincial Healthy Commission,No.20230844.
文摘Hepatocellular carcinoma(HCC)is the predominant form of primary liver cancer,accounting for 90%of all cases.Currently,early diagnosis of HCC can be achieved through serum alpha-fetoprotein detection,B-ultrasound,and computed tomography scanning;however,their specificity and sensitivity are suboptimal.Despite significant advancements in HCC biomarker detection,the prognosis for patients with HCC remains unfavorable due to tumor heterogeneity and limited understanding of its pathogenesis.Therefore,it is crucial to explore more sensitive HCC biomarkers for improved diagnosis,monitoring,and management of the disease.Long non-coding RNA(lncRNA)serves as an auxiliary carrier of genetic information and also plays diverse intricate regulatory roles that greatly contribute to genome complexity.Moreover,investigating gene expression regulation networks from the perspective of lncRNA may provide insights into the diagnosis and prognosis of HCC.We searched the PubMed database for literature,comprehensively classified regulated cell death mechanisms and systematically reviewed research progress on lncRNA-mediated cell death pathways in HCC cells.Furthermore,we prospectively summarize its potential implications in diagnosing and treating HCC.