期刊文献+
共找到530篇文章
< 1 2 27 >
每页显示 20 50 100
Binaural Speech Separation Algorithm Based on Long and Short Time Memory Networks 被引量:1
1
作者 Lin Zhou Siyuan Lu +3 位作者 Qiuyue Zhong Ying Chen Yibin Tang Yan Zhou 《Computers, Materials & Continua》 SCIE EI 2020年第6期1373-1386,共14页
Speaker separation in complex acoustic environment is one of challenging tasks in speech separation.In practice,speakers are very often unmoving or moving slowly in normal communication.In this case,the spatial featur... Speaker separation in complex acoustic environment is one of challenging tasks in speech separation.In practice,speakers are very often unmoving or moving slowly in normal communication.In this case,the spatial features among the consecutive speech frames become highly correlated such that it is helpful for speaker separation by providing additional spatial information.To fully exploit this information,we design a separation system on Recurrent Neural Network(RNN)with long short-term memory(LSTM)which effectively learns the temporal dynamics of spatial features.In detail,a LSTM-based speaker separation algorithm is proposed to extract the spatial features in each time-frequency(TF)unit and form the corresponding feature vector.Then,we treat speaker separation as a supervised learning problem,where a modified ideal ratio mask(IRM)is defined as the training function during LSTM learning.Simulations show that the proposed system achieves attractive separation performance in noisy and reverberant environments.Specifically,during the untrained acoustic test with limited priors,e.g.,unmatched signal to noise ratio(SNR)and reverberation,the proposed LSTM based algorithm can still outperforms the existing DNN based method in the measures of PESQ and STOI.It indicates our method is more robust in untrained conditions. 展开更多
关键词 Binaural speech separation long and short time memory networks feature vectors ideal ratio mask
在线阅读 下载PDF
基于TL-TimeGAN的多维时间序列数据增强及其应用分析
2
作者 智路平 汪万敏 《运筹与管理》 北大核心 2025年第5期177-184,I0060-I0064,共13页
针对部分场景下标签较少、样本不均衡的时序数据,为了更好的捕捉序列之间的逐步依赖关系,本文一方面使用具有因果关系属性的时域卷积网络构建生成对抗网络,另一方面使用长短期记忆网络构建嵌入网络和复现网络,以实现模型同时处理短期依... 针对部分场景下标签较少、样本不均衡的时序数据,为了更好的捕捉序列之间的逐步依赖关系,本文一方面使用具有因果关系属性的时域卷积网络构建生成对抗网络,另一方面使用长短期记忆网络构建嵌入网络和复现网络,以实现模型同时处理短期依存项和长期依存项,从而提出一种基于时域卷积网络和长短期记忆网络的时间序列生成对抗网络(A Time-series Generative Adversarial Network based on Temporal convolutional network and Long-short term memory network, TL-TimeGAN)。采用覆盖性、有用性和相似度检验的综合分析方法作为合成数据质量的评价指标,进一步全面地评价合成数据的覆盖性、预测程度和相似性。最终,基于以太坊欺诈检测数据集,使用Tabnet网络对扩增数据进行异常检测并获得局部特征重要性以及全局特征重要性,以增强扩增数据应用于实际工作的实践指导价值。 展开更多
关键词 时域卷积网络 长短期记忆网络 时间序列生成对抗网络 时序数据增强 多维时间序列
在线阅读 下载PDF
LONG-TIME BEHAVIOR OF TRANSIENT SOLUTIONS FOR CELLULAR NEURAL NETWORK SYSTEMS
3
作者 蒋耀林 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2000年第3期321-326,共6页
By establishing concept an transient solutions of general nonlinear systems converging to its equilibrium set, long-time behavior of solutions for cellular neural network systems is studied. A stability condition in g... By establishing concept an transient solutions of general nonlinear systems converging to its equilibrium set, long-time behavior of solutions for cellular neural network systems is studied. A stability condition in generalized sense is obtained. This result reported has an important guide to concrete neural network designs. 展开更多
关键词 dynamic stability cellular neural network systems long-time behavior of transient solutions
在线阅读 下载PDF
基于TimeGAN增强的CNN-LSTM模型在盾构掘进地表沉降中的预测研究 被引量:1
4
作者 郁万浩 刘陕南 肖晓春 《隧道建设(中英文)》 CSCD 北大核心 2024年第11期2223-2232,共10页
为更准确地预测小数据量下盾构法施工造成的地表沉降,提出基于TimeGAN(time series generative adversarial networks,时间序列生成对抗网络)增强的CNN(convolutional neural networks,卷积神经网络)-LSTM(long short-term memory,长短... 为更准确地预测小数据量下盾构法施工造成的地表沉降,提出基于TimeGAN(time series generative adversarial networks,时间序列生成对抗网络)增强的CNN(convolutional neural networks,卷积神经网络)-LSTM(long short-term memory,长短期记忆网络)盾构掘进地表沉降预测模型,并依托上海北横通道新建工程Ⅱ标盾构施工项目验证该增强模型的性能。首先,选取300环的部分施工参数、地质参数、几何参数以及地表最大沉降,对比LSTM、CNN-LSTM与TimeGAN-CNN-LSTM的性能,证明CNN-LSTM对于盾构施工环境下多参数的预测效果明显优于LSTM,TimeGAN-CNN-LSTM增强模型优于CNN-LSTM;然后,通过更改训练集及测试集的大小,对不同数据集下TimeGAN-CNN-LSTM增强模型相较CNN-LSTM的预测效果进行研究。结果表明:TimeGAN-CNN-LSTM增强模型预测效果相较CNN-LSTM模型提升显著,且当训练集与测试集比值为4~8时,提升最为显著。 展开更多
关键词 盾构隧道 地表沉降 卷积神经网络 长短期记忆网络 时间序列生成对抗网络
在线阅读 下载PDF
基于改进神经网络方法的继电保护设备健康状态预测方法 被引量:3
5
作者 杨畅 王洋 +2 位作者 张永伍 田琨 苏红 《中国测试》 北大核心 2025年第3期123-130,共8页
针对传统继电保护设备健康状态评估方法不全面、依赖专家系统且缺乏相关预测方法的问题,在电力系统全时空量测的环境下,基于长短时记忆网络提出继电保护设备健康状态预测方法。首先,提出继电保护设备家族缺陷健康评估模型、老化评估模... 针对传统继电保护设备健康状态评估方法不全面、依赖专家系统且缺乏相关预测方法的问题,在电力系统全时空量测的环境下,基于长短时记忆网络提出继电保护设备健康状态预测方法。首先,提出继电保护设备家族缺陷健康评估模型、老化评估模型、环境影响模型;其次,考虑到继电保护设备的负载是其老化故障的主因,提出负荷时空分布预测模型;第三,在上述模型的基础上,提出长短期记忆网络的继电保护设备健康状态预测模型;最后,以实际电网为例对所提方法进行验证,表明所提方法有效。 展开更多
关键词 继电保护设备 健康状态 预测 长短时记忆网络
在线阅读 下载PDF
基于IWOA-LSTM算法的预应力钢筋混凝土梁损伤识别 被引量:5
6
作者 范旭红 章立栋 +2 位作者 杨帆 李青 郁董凯 《江苏大学学报(自然科学版)》 CAS 北大核心 2025年第1期105-112,119,共9页
为准确识别桥梁结构的损伤程度,制作了桥梁的关键构件——预应力钢筋混凝土梁,进行三点弯曲加载试验.收集了损伤破坏全过程的声发射(AE)信号,通过AE信号参数分析,将梁的损伤破坏过程划分为4个典型阶段.构建了长短时记忆神经网络(LSTM)模... 为准确识别桥梁结构的损伤程度,制作了桥梁的关键构件——预应力钢筋混凝土梁,进行三点弯曲加载试验.收集了损伤破坏全过程的声发射(AE)信号,通过AE信号参数分析,将梁的损伤破坏过程划分为4个典型阶段.构建了长短时记忆神经网络(LSTM)模型,根据经验设置LSTM模型的超参数容易导致网络陷入局部最优而影响了分类结果,提出采用Sine混沌映射和自适应权重来改进鲸鱼优化算法(WOA),对LSTM进行超参数寻优.设计了IWOA-LSTM算法模型,训练识别试验梁各损伤阶段的AE信号特征参数.定型网络结构,并识别同种工况下其他梁的AE信号.结果表明:IWOA-LSTM算法模型识别准确率均超过或接近92%,相较于普通LSTM模型,IWOA-LSTM模型识别准确率提高了约7%. 展开更多
关键词 预应力钢筋混凝土梁 声发射 损伤识别 长短时记忆神经网络 改进的鲸鱼优化算法
在线阅读 下载PDF
基于Bi-LSTM和改进残差学习的风电功率超短期预测方法 被引量:2
7
作者 王进峰 吴盛威 +1 位作者 花广如 吴自高 《华北电力大学学报(自然科学版)》 北大核心 2025年第1期56-65,共10页
现有的方法在以风电功率时间序列拟合功率曲线时,难以表达风电功率数据所包含的趋势性和周期性等时间信息而出现性能退化问题,从而导致预测精度下降。为了解决性能退化问题从而提高风电功率时间序列预测的精度,提出了基于双向长短时记忆... 现有的方法在以风电功率时间序列拟合功率曲线时,难以表达风电功率数据所包含的趋势性和周期性等时间信息而出现性能退化问题,从而导致预测精度下降。为了解决性能退化问题从而提高风电功率时间序列预测的精度,提出了基于双向长短时记忆(Bi-LSTM)和改进残差学习的风电功率预测方法。方法由两个部分组成,第一部分是以Bi-LSTM为主的多残差块上,结合稠密残差块网络(DenseNet)与多级残差网络(MRN)的残差连接方式,并且在残差连接上使用一维卷积神经网络(1D CNN)来提取风电功率值中时序的非线性特征部分。第二部分是Bi-LSTM与全连接层(Dense)组成的解码器,将多残差块提取到的功率值时序非线性特征映射为预测结果。方法在实际运行的风电功率数据上进行实验,并与常见的残差网络方法和时间序列预测方法进行对比。方法相比于其他模型方法有着更高的预测精度以及更好的泛化能力。 展开更多
关键词 深度学习 残差网络 风电功率预测 双向长短时记忆 一维卷积神经网络
在线阅读 下载PDF
多因素土壤墒情预测模型DA-LSTM-soil构建 被引量:1
8
作者 车银超 郑光 +3 位作者 熊淑萍 张明天 马新明 席磊 《河南农业大学学报》 北大核心 2025年第4期698-710,共13页
【目的】针对土壤墒情预测时特征因素复杂、预测精度不佳的问题,构建多因素土壤墒情预测模型DA-LSTM-soil,提高土壤墒情预测精度。【方法】以包含10个特征的气象和土壤时序数据作为输入,采用LSTM网络为基本单元,构建Encoder-Decoder网... 【目的】针对土壤墒情预测时特征因素复杂、预测精度不佳的问题,构建多因素土壤墒情预测模型DA-LSTM-soil,提高土壤墒情预测精度。【方法】以包含10个特征的气象和土壤时序数据作为输入,采用LSTM网络为基本单元,构建Encoder-Decoder网络结构,分别引入特征和时间两个注意力模块。利用河南省许昌市2020—2021年冬小麦生长过程中物联网监测站的气象、土壤数据集,对DA-LSTM-soil模型进行训练和测试。同时,利用DA-LSTM-soil模型对河南省4个不同土壤类型的小麦种植区的数据集进行预测。【结果】对比试验表明,相较于LSTM、CNN-LSTM、CNN-LSTM-attention、LSTM-attention等深度学习模型,DA-LSTM-soil模型在S_(RME)、S_(ME)、A_(ME)、R^(2)评价指标更优,分别达到0.1764、0.0311、0.0466、0.9938。消融试验显示,时间注意力对模型性能的提升高于特征注意力。对时间步的试验显示,用过往3000 min的数据进行预测时,模型性能最佳;模型精度随着预测时长的增加有所下降,然而在5000 min内,决定系数R2仍保持在0.7以上。【结论】利用注意力机制,DA-LSTMsoil模型在Encoder前计算不同气象和土壤因素对墒情影响的权重,在Decoder前计算数据的时序对墒情预测的权重,双阶段注意力机制在特征提取和权重分配方面的作用显著,使模型具有更好的预测性能和泛化能力,可以为田块尺度麦田土壤墒情预测提供技术依据。 展开更多
关键词 麦田 土壤墒情预测 时序数据 长短期记忆网络 注意力机制
在线阅读 下载PDF
基于多空间维度联合方法改进的BiLSTM出水氨氮预测方法 被引量:3
9
作者 王雷 张煜 +3 位作者 赵艺琨 刘明勇 刘子航 李杰 《中国农村水利水电》 北大核心 2025年第2期17-24,共8页
出水氨氮作为衡量污水处理厂水质处理工艺的重要指标之一,准确预测污水处理厂出水水质中的氨氮含量对于及时调整处理工艺,保障水环境安全有着重要的作用。提出了一种基于联合多空间维度(Multi-spatial Dimensional Cooperative Attenti... 出水氨氮作为衡量污水处理厂水质处理工艺的重要指标之一,准确预测污水处理厂出水水质中的氨氮含量对于及时调整处理工艺,保障水环境安全有着重要的作用。提出了一种基于联合多空间维度(Multi-spatial Dimensional Cooperative Attention)改进的双向长短期记忆网络(Bi-directional Long Short-Term Memory,BiLSTM)的水质预测模型,首先通过皮尔逊(Pearson)系数法筛选出与出水氨氮相关性较强的总氮、污泥沉降比和温度3个指标作为模型输入,联合3个维度的强相关信息对未来6 h的出水氨氮进行预测。结果表明,MDCA-BiLSTM模型在融合残差序列后对出水氨氮的预测准确率R2为0.979,并在太平污水处理厂和文昌污水处理厂两个站点收集到的数据集上总氮、总磷和溶解氧的均方根误差分别为0.002、0.003、0.001和0.004、0.003、0.002;预测精度分别为0.959、0.947、0.971和0.962、0.951、0.983;与BiLSTM相比,均方根误差分别降低了0.007、0.007、0.007和0.017、0.006、0.005;预测精度分别提高了0.176、0.183、0.258和0.098、0.109、0.11。同时,该模型在面对未来6、12和24 h的预测步长时,仍能够达到0.956、0.933和0.917的预测精度,说明改进后的模型在预测准确性和鲁棒性方面表现出显著优势。该方法能够有效提高污水处理厂出水氨氮的及其他指标的预测准确性,可作为水资源循环和管理决策的一种有效参考手段,具有较强的实际应用价值。 展开更多
关键词 水质参数 时序预测 时序卷积网络 双向长短期记忆循环神经网络 注意力机制
在线阅读 下载PDF
基于AI的噪声环境下远距离高清音频采集研究 被引量:1
10
作者 黄丽娜 《现代电子技术》 北大核心 2025年第4期130-134,共5页
为提升远距离采集音频信号的强度,深度滤除音频信号噪声以提取有用音频部分,提出一种基于AI的噪声环境下远距离高清音频采集方法。构建远距离高清音频采集结构,分别通过模拟增益和数字增益技术进行音频信号增益处理,以提升音频信号强度... 为提升远距离采集音频信号的强度,深度滤除音频信号噪声以提取有用音频部分,提出一种基于AI的噪声环境下远距离高清音频采集方法。构建远距离高清音频采集结构,分别通过模拟增益和数字增益技术进行音频信号增益处理,以提升音频信号强度。依据短时傅里叶变换提取音频增益信号频域特征,输入到长短期记忆网络中,实现音频信号深度噪声去除,得到高清音频频域信息;再通过短时傅里叶逆变换处理该信号,实现音频信号重构,最终达到噪声环境下远距离高清音频采集的目的。实验验证结果表明:依据音频信号增益能够有效提升采集音频信号的强度,并避免信号受距离、噪声影响而逐渐衰减,继而有效滤除音频信号噪声数据,提取其中有用的音频信号,确保音频信号高清度;且最终采集音频信号信噪比均高于18 dB,可懂度均高于97%,有效验证了所提方法的有效性和准确性。 展开更多
关键词 高清音频采集 AI 噪声环境 信号强度 远距离 长短期记忆网络 短时傅里叶变换
在线阅读 下载PDF
时间序列雷达数据识别耕地种粮类型的研究
11
作者 武晓天 欧正蜂 +3 位作者 王晓蕾 孙汉英 王长委 黄永奇 《中国农村水利水电》 北大核心 2025年第1期124-128,135,共6页
以广东省揭阳市揭西县为研究对象,采用2021年下半年的时间序列哨兵一号数据,分析了实测样本的水稻、玉米、坑塘水面、未耕种、树林和蔬菜等耕地上不同覆盖物的时间序列后向散射系数特征和类间差异性,结果表明耕地种粮类型分类的最优极... 以广东省揭阳市揭西县为研究对象,采用2021年下半年的时间序列哨兵一号数据,分析了实测样本的水稻、玉米、坑塘水面、未耕种、树林和蔬菜等耕地上不同覆盖物的时间序列后向散射系数特征和类间差异性,结果表明耕地种粮类型分类的最优极化方式为VH极化,在此基础上构建了基于长短期记忆网络(Long Short-Term Memory networks,LSTM)的耕地种粮类型识别模型,模型精度达到90%。根据模型提取了研究区的水稻、玉米、坑塘水面、未耕种、树林和蔬菜的空间分布,为多云地区的耕地种类监测提供了新的遥感技术手段。 展开更多
关键词 耕地种粮监测 哨兵一号 时间序列 长短期记忆网络 揭西县
在线阅读 下载PDF
基于注意力机制的LSTNet日前电价预测
12
作者 李璐 阚小瑞 +3 位作者 毕贵红 范玉瑞 朱泽良 周旭龙 《电力科学与工程》 2025年第4期1-10,共10页
为了提高日前电价预测精度,提出了一种基于注意力机制的长期和短期时间序列网络日前电价预测模型。首先,通过相关性分析筛选出对日前电价预测影响较大的因素;然后,利用卷积神经网络初步提取电价数据和各个因素之间的局部依赖关系;进一步... 为了提高日前电价预测精度,提出了一种基于注意力机制的长期和短期时间序列网络日前电价预测模型。首先,通过相关性分析筛选出对日前电价预测影响较大的因素;然后,利用卷积神经网络初步提取电价数据和各个因素之间的局部依赖关系;进一步,运用循环神经网络和循环跳跃神经网络挖掘出当前数据与前后时刻数据之间的联系,再通过注意力机制进行权重自适应分配后,仿真非线性部分的预测值。采用自回归模型对线性部分的电价数据进行提取。最后,将线性和非线性部分的预测值进行融合,得到最终预测结果。经仿真验证,所提模型有效提高了日前电价预测的精度。 展开更多
关键词 注意力机制 电价预测 卷积神经网络 长期和短期时间序列网络 自回归模型
在线阅读 下载PDF
基于IEGWO-VMD的滚动轴承故障诊断策略
13
作者 李国洪 李智 +2 位作者 王鹏 杨瑞 江超 《天津理工大学学报》 2025年第5期11-18,共8页
针对滚动轴承故障诊断中故障特征提取困难及诊断准确率低的问题,提出了一种改进的灰狼优化算法(grey wolf optimizer,GWO)-变分模态分解(variational mode decomposition,VMD)的新诊断方法。首先将GWO改进为混沌增强灰狼优化算法(improv... 针对滚动轴承故障诊断中故障特征提取困难及诊断准确率低的问题,提出了一种改进的灰狼优化算法(grey wolf optimizer,GWO)-变分模态分解(variational mode decomposition,VMD)的新诊断方法。首先将GWO改进为混沌增强灰狼优化算法(improved enhancement grey wolf optimizer,IEGWO),随后基于改进后的算法优化VMD的关键参数后,对故障信号进行分解。最后将分解后的信号构造故障特征向量并输入到双向长短时神经网络(bi-directional long short-term memory,Bi-LSTM)中进行轴承故障诊断分类。将所提方法与其他故障提取模型进行对比分析实验,结果表明,该模型将故障诊断准确率提高到了99%。实验结果证明,所提方法能够更好地提取故障特征,提高故障诊断的准确率。 展开更多
关键词 故障特征提取 改进灰狼优化算法 变分模态分解 双向长短时神经网络 故障诊断
在线阅读 下载PDF
Study on Ecological Change Remote Sensing Monitoring Method Based on Elman Dynamic Recurrent Neural Network
14
作者 Zhen Chen Yiyang Zheng 《Journal of Geoscience and Environment Protection》 2024年第4期31-44,共14页
In this paper, Hailin City of Heilongjiang Province, China is taken as the research area. As an important city in Heilongjiang Province, China, the sustainable development of its ecological environment is related to t... In this paper, Hailin City of Heilongjiang Province, China is taken as the research area. As an important city in Heilongjiang Province, China, the sustainable development of its ecological environment is related to the opening up, economic prosperity and social stability of Northeast China. In this paper, the remote sensing ecological index (RSEI) of Hailin City in recent 20 years was calculated by using Landsat 5/8/9 series satellite images, and the temporal and spatial changes of the ecological environment in Hailin City were further analyzed and the influencing factors were discussed. From 2003 to 2023, the mean value of RSEI in Hailin City decreased and increased, and the ecological environment decreased slightly as a whole. RSEI declined most significantly from 2003 to 2008, and it increased from 2008 to 2013, decreased from 2013 to 2018, and increased from 2018 to 2023 again, with higher RSEI value in the south and lower RSEI value in the northwest. It is suggested to appropriately increase vegetation coverage in the northwest to improve ecological quality. As a result, the predicted value of Elman dynamic recurrent neural network model is consistent with the change trend of the mean value, and the prediction error converges quickly, which can accurately predict the ecological environment quality in the future study area. 展开更多
关键词 Remote Sensing Ecological Index long time Series Space-time Change Elman Dynamic Recurrent Neural network
在线阅读 下载PDF
基于特征重构与多时间尺度的锂电池SOH和RUL联合估计 被引量:1
15
作者 寇发荣 杨天祥 +2 位作者 罗希 王衎 周东明 《太阳能学报》 北大核心 2025年第6期68-78,共11页
提出一种基于特征重构与多时间尺度的健康状态(SOH)和剩余寿命(RUL)联合估计方法。首先,从锂电池老化数据集中提取健康特征,使用变分模态分解算法重构特征数据;在此基础上,利用贝叶斯算法优化卷积长短期记忆网络构建SOH估计模型,通过微... 提出一种基于特征重构与多时间尺度的健康状态(SOH)和剩余寿命(RUL)联合估计方法。首先,从锂电池老化数据集中提取健康特征,使用变分模态分解算法重构特征数据;在此基础上,利用贝叶斯算法优化卷积长短期记忆网络构建SOH估计模型,通过微观尺度下的算法迭代与宏观尺度下的卷积神经网络模型相结合来实现SOH与RUL准确且高效的估计。利用美国国家航空航天局(NASA)和马里兰大学(CALCE)公开数据集进行验证,结果显示:SOH的估计误差稳定保持在1%以内,估计精度较特征重构前提升约35%;RUL预测结果的平均绝对误差(MAE)和均方根误差(RMSE)分别保持在0.42和0.78以内,实现了SOH和RUL的高精度估计。 展开更多
关键词 锂电池 长短期记忆网络 模态分解 多时间尺度 联合估计 清洁能源
原文传递
基于神经网络实时预测飞机着陆距离
16
作者 章涛 张文斌 +1 位作者 刘立朝 王效瑞 《计算机仿真》 2025年第7期175-180,323,共7页
为防止飞机着陆时冲出跑道事故的发生,民用客机装备防止飞机冲出跑道系统已成未来发展趋势。采用最大互信息系数MIC算法选择特征参数,采用通道注意力模块SE(squeeze-and-excitation)优化INCEPTION模块,联合长短期记忆网络LSTM(long shor... 为防止飞机着陆时冲出跑道事故的发生,民用客机装备防止飞机冲出跑道系统已成未来发展趋势。采用最大互信息系数MIC算法选择特征参数,采用通道注意力模块SE(squeeze-and-excitation)优化INCEPTION模块,联合长短期记忆网络LSTM(long short-term memory neural network)构建预测模型,实现机载防冲出跑道系统实时着陆距离预测。上述方法面向真实航班着陆阶段飞行参数,利用INCEPTION模块提取输入信息中不同参数之间的特征信息,通过引入SE模块自适应调整通道特征的重要性,再利用LSTM模块提取输入信息的时间依赖关系。以NASA开源数据模拟机载传感器实时状态参数并设计实验,实验结果表明,所提出的预测算法能够有效的实时预测飞机着陆距离,预测精度优于现有算法。 展开更多
关键词 着陆距离 实时预测 长短期记忆网络 注意力机制 卷积神经网络
在线阅读 下载PDF
长短期记忆网络在隧道火灾实时致灾态势预测中应用研究
17
作者 贾进章 陈佳琦 陈怡诺 《安全与环境学报》 北大核心 2025年第4期1298-1309,共12页
针对隧道火灾过程中高温烟气对人员避灾的威胁,为实现隧道火灾有效控制,及时提供隧道火灾实时救援决策,提出了一种试验测量和人工智能相结合的方法,基于温度传感器和长短期记忆(Long Short-Term Memory,LSTM)网络对烟气温度进行实时预... 针对隧道火灾过程中高温烟气对人员避灾的威胁,为实现隧道火灾有效控制,及时提供隧道火灾实时救援决策,提出了一种试验测量和人工智能相结合的方法,基于温度传感器和长短期记忆(Long Short-Term Memory,LSTM)网络对烟气温度进行实时预测。首先,通过1∶20小面积火灾试验收集不同工况下的温度数据,然后,采用LSTM模型从试验火灾数据库中学习、训练,并进行不同火源类型测试,发现该算法模型可以很好地预测隧道内温度分布。对模型的预测能力进行测试,测试结果表明,预测结果精度高,相对误差在±10%内。与反向传播神经网络(Back Propagation Neural Network,BPNN)模型进行比较,测试误差均值降低3.85百分点,对比效果明显,满足隧道火灾实时态势检测需要,为隧道火灾事故的应急救援建立了较为新颖的智能预测方法。 展开更多
关键词 安全工程 隧道火灾 长短期记忆网络 烟气温度 实时预测
原文传递
基于时间序列预测算法的贸易商品价格动态波动研究
18
作者 李亮亮 《佳木斯大学学报(自然科学版)》 2025年第7期155-159,共5页
随着全球贸易的快速发展,商品价格的动态波动对经济活动和企业决策产生重要影响。为解决传统预测模型在处理时间序列非线性和高维数据时的局限性,研究提出了一种结合随机森林、鲸鱼优化算法和长短期记忆网络的价格动态波动预测模型。模... 随着全球贸易的快速发展,商品价格的动态波动对经济活动和企业决策产生重要影响。为解决传统预测模型在处理时间序列非线性和高维数据时的局限性,研究提出了一种结合随机森林、鲸鱼优化算法和长短期记忆网络的价格动态波动预测模型。模型通过随机森林筛选关键特征,通过鲸鱼优化算法优化长短期记忆网络超参数,并基于优化的长短期记忆网络实现价格预测。实验结果表明,基于时间序列预测算法的贸易商品价格动态波动预测模型的预测准确率达到92.5%,均方根误差仅为0.15,优于传统模型。研究结果证明,随机森林与鲸鱼优化算法结合显著提升了长短期记忆网络模型的预测精度与稳定性,为复杂时间序列预测提供了有效方法。 展开更多
关键词 时间序列 贸易 商品价格 预测 长短期记忆网络
在线阅读 下载PDF
长短期记忆网络在P波初至震相识别中的实验研究 被引量:1
19
作者 王天哲 张万佶 +1 位作者 祁善博 江国明 《CT理论与应用研究(中英文)》 2025年第2期205-215,共11页
初至震相的识别是地震数据处理中的基本内容。由于人工识别效率较低,且受到人为主观因素的影响,因此近年来陆续发展出许多自动识别初至震相的方法。然而,这些自动识别方法主要基于背景噪声和地震信号的差异,并且通常需要一个阈值,因此... 初至震相的识别是地震数据处理中的基本内容。由于人工识别效率较低,且受到人为主观因素的影响,因此近年来陆续发展出许多自动识别初至震相的方法。然而,这些自动识别方法主要基于背景噪声和地震信号的差异,并且通常需要一个阈值,因此难以在复杂的地震区域实施或应对海量的地震数据。为克服这些不足,本文搭建7层基于长短期记忆网络(Lstm)的卷积循环神经网络,开展P波初至震相识别的实验研究,并利用南加州公开的数据集对新建的卷积循环神经网络进行训练和测试。通过与传统的卷积神经网络、自动识别算法、Pick-Net、EQtransformer网络等进行对比,本研究搭建的卷积循环神经网络的识别精度相对较高,因此可直接使用地震波形数据作为时间序列进行训练。此外,虽然本研究建立的卷积循环神经网络只有7层网络,但基本达到复杂网络模型的震相识别精度,充分说明卷积循环神经网络的优势。综上,本研究提出的基于时间序列卷积循环神经网络为P波初至震相的自动识别提供一种新思路,为快速精准的自动识别震相问题提供技术支持。 展开更多
关键词 深度学习 初至震相 卷积循环神经网络 长短期记忆网络 时间序列
原文传递
基于Bi-LSTM的普通话测试仪回声消除研究
20
作者 何小华 卢宙 蒙沛清 《自动化与仪器仪表》 2025年第4期228-232,共5页
为了提升普通话测试仪的语音识别效率,研究提出了一种基于双向长短期记忆网络的回声消除算法。研究方法借助连接时序分类算法建立了声学识别模块,再以短时傅里叶变换转化音频优化网络对音频特征的提取,强化了算法对普通话识别效率。结... 为了提升普通话测试仪的语音识别效率,研究提出了一种基于双向长短期记忆网络的回声消除算法。研究方法借助连接时序分类算法建立了声学识别模块,再以短时傅里叶变换转化音频优化网络对音频特征的提取,强化了算法对普通话识别效率。结果显示,研究算法对测试音频的回声消除效率为83.11%~87.43%,对残余回声的消除效率均值为76.89%。表明研究算法在普通话测试过程中可以有较好的回声消除效果,在初始回声消除阶段的消除率较高,后期残余回声的消除效果也很明显。并且相较于其他算法,研究算法的音频重构能力更强,在普通话识别效果和音频重构效果上都具有明显的优势。因此,研究算法可以为普通话测试仪的性能优化提供有效的技术方向。 展开更多
关键词 普通话测试仪 双向长短期记忆网络 回声消除 短时傅里叶变换
原文传递
上一页 1 2 27 下一页 到第
使用帮助 返回顶部