期刊文献+
共找到538篇文章
< 1 2 27 >
每页显示 20 50 100
Binaural Speech Separation Algorithm Based on Long and Short Time Memory Networks 被引量:1
1
作者 Lin Zhou Siyuan Lu +3 位作者 Qiuyue Zhong Ying Chen Yibin Tang Yan Zhou 《Computers, Materials & Continua》 SCIE EI 2020年第6期1373-1386,共14页
Speaker separation in complex acoustic environment is one of challenging tasks in speech separation.In practice,speakers are very often unmoving or moving slowly in normal communication.In this case,the spatial featur... Speaker separation in complex acoustic environment is one of challenging tasks in speech separation.In practice,speakers are very often unmoving or moving slowly in normal communication.In this case,the spatial features among the consecutive speech frames become highly correlated such that it is helpful for speaker separation by providing additional spatial information.To fully exploit this information,we design a separation system on Recurrent Neural Network(RNN)with long short-term memory(LSTM)which effectively learns the temporal dynamics of spatial features.In detail,a LSTM-based speaker separation algorithm is proposed to extract the spatial features in each time-frequency(TF)unit and form the corresponding feature vector.Then,we treat speaker separation as a supervised learning problem,where a modified ideal ratio mask(IRM)is defined as the training function during LSTM learning.Simulations show that the proposed system achieves attractive separation performance in noisy and reverberant environments.Specifically,during the untrained acoustic test with limited priors,e.g.,unmatched signal to noise ratio(SNR)and reverberation,the proposed LSTM based algorithm can still outperforms the existing DNN based method in the measures of PESQ and STOI.It indicates our method is more robust in untrained conditions. 展开更多
关键词 Binaural speech separation long and short time memory networks feature vectors ideal ratio mask
在线阅读 下载PDF
LONG-TIME BEHAVIOR OF TRANSIENT SOLUTIONS FOR CELLULAR NEURAL NETWORK SYSTEMS
2
作者 蒋耀林 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2000年第3期321-326,共6页
By establishing concept an transient solutions of general nonlinear systems converging to its equilibrium set, long-time behavior of solutions for cellular neural network systems is studied. A stability condition in g... By establishing concept an transient solutions of general nonlinear systems converging to its equilibrium set, long-time behavior of solutions for cellular neural network systems is studied. A stability condition in generalized sense is obtained. This result reported has an important guide to concrete neural network designs. 展开更多
关键词 dynamic stability cellular neural network systems long-time behavior of transient solutions
在线阅读 下载PDF
基于TL-TimeGAN的多维时间序列数据增强及其应用分析
3
作者 智路平 汪万敏 《运筹与管理》 北大核心 2025年第5期177-184,I0060-I0064,共13页
针对部分场景下标签较少、样本不均衡的时序数据,为了更好的捕捉序列之间的逐步依赖关系,本文一方面使用具有因果关系属性的时域卷积网络构建生成对抗网络,另一方面使用长短期记忆网络构建嵌入网络和复现网络,以实现模型同时处理短期依... 针对部分场景下标签较少、样本不均衡的时序数据,为了更好的捕捉序列之间的逐步依赖关系,本文一方面使用具有因果关系属性的时域卷积网络构建生成对抗网络,另一方面使用长短期记忆网络构建嵌入网络和复现网络,以实现模型同时处理短期依存项和长期依存项,从而提出一种基于时域卷积网络和长短期记忆网络的时间序列生成对抗网络(A Time-series Generative Adversarial Network based on Temporal convolutional network and Long-short term memory network, TL-TimeGAN)。采用覆盖性、有用性和相似度检验的综合分析方法作为合成数据质量的评价指标,进一步全面地评价合成数据的覆盖性、预测程度和相似性。最终,基于以太坊欺诈检测数据集,使用Tabnet网络对扩增数据进行异常检测并获得局部特征重要性以及全局特征重要性,以增强扩增数据应用于实际工作的实践指导价值。 展开更多
关键词 时域卷积网络 长短期记忆网络 时间序列生成对抗网络 时序数据增强 多维时间序列
在线阅读 下载PDF
基于TimeGAN数据增强和LSTM-BERT的非侵入式负荷分解方法
4
作者 张柳健 张禄亮 刘紫罡 《电气自动化》 2025年第6期52-55,共4页
为解决非侵入式负荷监测数据难以大量采集的问题,提出一种基于时序生成对抗网络数据增强的长短期记忆双向编码表示转换器负荷分解模型。首先,通过时序生成对抗网络生成高质量负荷数据。其次,通过长短期记忆网络提取负荷数据中的长短期特... 为解决非侵入式负荷监测数据难以大量采集的问题,提出一种基于时序生成对抗网络数据增强的长短期记忆双向编码表示转换器负荷分解模型。首先,通过时序生成对抗网络生成高质量负荷数据。其次,通过长短期记忆网络提取负荷数据中的长短期特征,并结合双向编码表示转换器模块同时处理左右两侧的上下文负荷信息,实现负荷分解。结果表明,所提模型能够实现高质量负荷数据的生成,负荷分解结果评价指标的均值优于对比模型。通过数据增强方法,所提模型能够具有更高的负荷分解精度和泛用性。 展开更多
关键词 非侵入式负荷分解 数据增强 时序生成对抗网络 长短期记忆
在线阅读 下载PDF
基于TimeGAN-CNN-LSTM模型的河流水质预测研究 被引量:9
5
作者 张丽娜 陈会娟 余昭旭 《自动化仪表》 CAS 2022年第8期11-15,共5页
为精确预测河流水质中的铵离子(NH_(4)^(+))浓度,针对某公开水质数据进行了研究,提出了一种基于时间序列对抗生成网络(TimeGAN)、卷积神经网络(CNN)和长短期记忆(LSTM)网络的混合模型。使用TimeGAN对河流水质历史数据进行数据增强,生成... 为精确预测河流水质中的铵离子(NH_(4)^(+))浓度,针对某公开水质数据进行了研究,提出了一种基于时间序列对抗生成网络(TimeGAN)、卷积神经网络(CNN)和长短期记忆(LSTM)网络的混合模型。使用TimeGAN对河流水质历史数据进行数据增强,生成合成时间序列数据;采用CNN对输入的数据进行特征提取,并通过全连接层将数据输入到LSTM中得到预测值,从而建立TimeGANCNN-LSTM河流水质预测模型。试验结果表明,模型预测效果良好,其平均绝对误差(MAE)、均方根误差(RMSE)和决定系数(R^(2))分别为0.07、0.08和0.97,比CNN-LSTM模型分别提高了45.45%、47.06%和19.75%,比LSTM模型分别提高了50%、50%和21.25%。TimeGAN-CNN-LSTM既解决了训练模型时数据不充分的问题,又能够充分提取水质数据在时间和空间上的特征,具有较高的应用价值。 展开更多
关键词 水质预测 混合模型 时间序列对抗生成网络 卷积神经网络 长短期记忆网络 时间序列数据
在线阅读 下载PDF
基于TimeGAN增强的CNN-LSTM模型在盾构掘进地表沉降中的预测研究 被引量:1
6
作者 郁万浩 刘陕南 肖晓春 《隧道建设(中英文)》 CSCD 北大核心 2024年第11期2223-2232,共10页
为更准确地预测小数据量下盾构法施工造成的地表沉降,提出基于TimeGAN(time series generative adversarial networks,时间序列生成对抗网络)增强的CNN(convolutional neural networks,卷积神经网络)-LSTM(long short-term memory,长短... 为更准确地预测小数据量下盾构法施工造成的地表沉降,提出基于TimeGAN(time series generative adversarial networks,时间序列生成对抗网络)增强的CNN(convolutional neural networks,卷积神经网络)-LSTM(long short-term memory,长短期记忆网络)盾构掘进地表沉降预测模型,并依托上海北横通道新建工程Ⅱ标盾构施工项目验证该增强模型的性能。首先,选取300环的部分施工参数、地质参数、几何参数以及地表最大沉降,对比LSTM、CNN-LSTM与TimeGAN-CNN-LSTM的性能,证明CNN-LSTM对于盾构施工环境下多参数的预测效果明显优于LSTM,TimeGAN-CNN-LSTM增强模型优于CNN-LSTM;然后,通过更改训练集及测试集的大小,对不同数据集下TimeGAN-CNN-LSTM增强模型相较CNN-LSTM的预测效果进行研究。结果表明:TimeGAN-CNN-LSTM增强模型预测效果相较CNN-LSTM模型提升显著,且当训练集与测试集比值为4~8时,提升最为显著。 展开更多
关键词 盾构隧道 地表沉降 卷积神经网络 长短期记忆网络 时间序列生成对抗网络
在线阅读 下载PDF
基于改进神经网络方法的继电保护设备健康状态预测方法 被引量:5
7
作者 杨畅 王洋 +2 位作者 张永伍 田琨 苏红 《中国测试》 北大核心 2025年第3期123-130,共8页
针对传统继电保护设备健康状态评估方法不全面、依赖专家系统且缺乏相关预测方法的问题,在电力系统全时空量测的环境下,基于长短时记忆网络提出继电保护设备健康状态预测方法。首先,提出继电保护设备家族缺陷健康评估模型、老化评估模... 针对传统继电保护设备健康状态评估方法不全面、依赖专家系统且缺乏相关预测方法的问题,在电力系统全时空量测的环境下,基于长短时记忆网络提出继电保护设备健康状态预测方法。首先,提出继电保护设备家族缺陷健康评估模型、老化评估模型、环境影响模型;其次,考虑到继电保护设备的负载是其老化故障的主因,提出负荷时空分布预测模型;第三,在上述模型的基础上,提出长短期记忆网络的继电保护设备健康状态预测模型;最后,以实际电网为例对所提方法进行验证,表明所提方法有效。 展开更多
关键词 继电保护设备 健康状态 预测 长短时记忆网络
在线阅读 下载PDF
基于IWOA-LSTM算法的预应力钢筋混凝土梁损伤识别 被引量:5
8
作者 范旭红 章立栋 +2 位作者 杨帆 李青 郁董凯 《江苏大学学报(自然科学版)》 CAS 北大核心 2025年第1期105-112,119,共9页
为准确识别桥梁结构的损伤程度,制作了桥梁的关键构件——预应力钢筋混凝土梁,进行三点弯曲加载试验.收集了损伤破坏全过程的声发射(AE)信号,通过AE信号参数分析,将梁的损伤破坏过程划分为4个典型阶段.构建了长短时记忆神经网络(LSTM)模... 为准确识别桥梁结构的损伤程度,制作了桥梁的关键构件——预应力钢筋混凝土梁,进行三点弯曲加载试验.收集了损伤破坏全过程的声发射(AE)信号,通过AE信号参数分析,将梁的损伤破坏过程划分为4个典型阶段.构建了长短时记忆神经网络(LSTM)模型,根据经验设置LSTM模型的超参数容易导致网络陷入局部最优而影响了分类结果,提出采用Sine混沌映射和自适应权重来改进鲸鱼优化算法(WOA),对LSTM进行超参数寻优.设计了IWOA-LSTM算法模型,训练识别试验梁各损伤阶段的AE信号特征参数.定型网络结构,并识别同种工况下其他梁的AE信号.结果表明:IWOA-LSTM算法模型识别准确率均超过或接近92%,相较于普通LSTM模型,IWOA-LSTM模型识别准确率提高了约7%. 展开更多
关键词 预应力钢筋混凝土梁 声发射 损伤识别 长短时记忆神经网络 改进的鲸鱼优化算法
在线阅读 下载PDF
基于卷积神经网络和时间序列的烧结终点长期预测
9
作者 范晓慧 庄戴鸿 +4 位作者 周茂军 向家发 黄晓贤 陈许玲 冯振湘 《钢铁研究学报》 北大核心 2025年第11期1437-1445,共9页
烧结终点(Burn-through Point, BTP)状态直接影响烧结过程的产量、质量和能耗指标。针对目前BTP的预测在时间跨度和工况适应性方面均存在不足的情况,提出一种结合卷积神经网络(Convolutional Neural Network, CNN)和长短期记忆神经网络(... 烧结终点(Burn-through Point, BTP)状态直接影响烧结过程的产量、质量和能耗指标。针对目前BTP的预测在时间跨度和工况适应性方面均存在不足的情况,提出一种结合卷积神经网络(Convolutional Neural Network, CNN)和长短期记忆神经网络(Long Short-term Memory, LSTM)的烧结终点长期预测方法。利用可以通过CNN模块从输入数据中提取跨特征的局部时序模式,结合LSTM的时序动态建模能力,对数据集内部特征的长时间尺度关系建模,形成高效的混合模型,进而在混合料布料点火阶段提前对烧结终点进行预测。试验和应用结果表明,在45 min的预测窗口下该模型的平均绝对误差低于0.4节风箱,在±0.8节风箱内预测准确率达89.2%,为长时间跨度下烧结终点预测提供了实用的解决方案。 展开更多
关键词 烧结终点 长期预测 卷积神经网络 时间序列 长短期记忆神经网络
原文传递
基于Bi-LSTM和改进残差学习的风电功率超短期预测方法 被引量:2
10
作者 王进峰 吴盛威 +1 位作者 花广如 吴自高 《华北电力大学学报(自然科学版)》 北大核心 2025年第1期56-65,共10页
现有的方法在以风电功率时间序列拟合功率曲线时,难以表达风电功率数据所包含的趋势性和周期性等时间信息而出现性能退化问题,从而导致预测精度下降。为了解决性能退化问题从而提高风电功率时间序列预测的精度,提出了基于双向长短时记忆... 现有的方法在以风电功率时间序列拟合功率曲线时,难以表达风电功率数据所包含的趋势性和周期性等时间信息而出现性能退化问题,从而导致预测精度下降。为了解决性能退化问题从而提高风电功率时间序列预测的精度,提出了基于双向长短时记忆(Bi-LSTM)和改进残差学习的风电功率预测方法。方法由两个部分组成,第一部分是以Bi-LSTM为主的多残差块上,结合稠密残差块网络(DenseNet)与多级残差网络(MRN)的残差连接方式,并且在残差连接上使用一维卷积神经网络(1D CNN)来提取风电功率值中时序的非线性特征部分。第二部分是Bi-LSTM与全连接层(Dense)组成的解码器,将多残差块提取到的功率值时序非线性特征映射为预测结果。方法在实际运行的风电功率数据上进行实验,并与常见的残差网络方法和时间序列预测方法进行对比。方法相比于其他模型方法有着更高的预测精度以及更好的泛化能力。 展开更多
关键词 深度学习 残差网络 风电功率预测 双向长短时记忆 一维卷积神经网络
在线阅读 下载PDF
多因素土壤墒情预测模型DA-LSTM-soil构建 被引量:1
11
作者 车银超 郑光 +3 位作者 熊淑萍 张明天 马新明 席磊 《河南农业大学学报》 北大核心 2025年第4期698-710,共13页
【目的】针对土壤墒情预测时特征因素复杂、预测精度不佳的问题,构建多因素土壤墒情预测模型DA-LSTM-soil,提高土壤墒情预测精度。【方法】以包含10个特征的气象和土壤时序数据作为输入,采用LSTM网络为基本单元,构建Encoder-Decoder网... 【目的】针对土壤墒情预测时特征因素复杂、预测精度不佳的问题,构建多因素土壤墒情预测模型DA-LSTM-soil,提高土壤墒情预测精度。【方法】以包含10个特征的气象和土壤时序数据作为输入,采用LSTM网络为基本单元,构建Encoder-Decoder网络结构,分别引入特征和时间两个注意力模块。利用河南省许昌市2020—2021年冬小麦生长过程中物联网监测站的气象、土壤数据集,对DA-LSTM-soil模型进行训练和测试。同时,利用DA-LSTM-soil模型对河南省4个不同土壤类型的小麦种植区的数据集进行预测。【结果】对比试验表明,相较于LSTM、CNN-LSTM、CNN-LSTM-attention、LSTM-attention等深度学习模型,DA-LSTM-soil模型在S_(RME)、S_(ME)、A_(ME)、R^(2)评价指标更优,分别达到0.1764、0.0311、0.0466、0.9938。消融试验显示,时间注意力对模型性能的提升高于特征注意力。对时间步的试验显示,用过往3000 min的数据进行预测时,模型性能最佳;模型精度随着预测时长的增加有所下降,然而在5000 min内,决定系数R2仍保持在0.7以上。【结论】利用注意力机制,DA-LSTMsoil模型在Encoder前计算不同气象和土壤因素对墒情影响的权重,在Decoder前计算数据的时序对墒情预测的权重,双阶段注意力机制在特征提取和权重分配方面的作用显著,使模型具有更好的预测性能和泛化能力,可以为田块尺度麦田土壤墒情预测提供技术依据。 展开更多
关键词 麦田 土壤墒情预测 时序数据 长短期记忆网络 注意力机制
在线阅读 下载PDF
使用TimeGAN和LSTM神经网络预测隧道开挖引起的建筑物沉降
12
作者 陈雪峰 《华南地震》 2022年第3期107-115,共9页
隧道开挖可能引起施工场所附近建筑物的沉降,进而导致建筑物破坏。考虑到建筑物沉降的传统预测模型难以处理复杂非线性数据的问题,以宁波地铁5号线同德路站—石碶站区间监测数据为例,使用时间序列对抗神经网络(TimeGAN)对原始监测数据... 隧道开挖可能引起施工场所附近建筑物的沉降,进而导致建筑物破坏。考虑到建筑物沉降的传统预测模型难以处理复杂非线性数据的问题,以宁波地铁5号线同德路站—石碶站区间监测数据为例,使用时间序列对抗神经网络(TimeGAN)对原始监测数据进行扩增,建立了基于长短期记忆神经网络(LSTM)深度学习网络的建筑物沉降预测模型,分析了原始监测数据扩增前后建筑物沉降预测模型的预测结果。结果表明:TimeGAN新生成的数据与原始建筑物沉降数据重叠性较好;新生成建筑物沉降数据的判别分数(Discriminative Score)、预测分数(Predictive Score)分别为0.1759和0.0412;新生成数据与原始数据相似程度较高、较好的保留了原始数据的预测特性;与原始数据相比,使用新生成数据进行建筑物沉降预测,LSTM网络预测结果的准确率提高了23%;TimeGAN-LSTM网络预测结果的准确率达到了80%、预测值与监测值吻合性较好。研究成果对隧道开挖的正常施工具有一定的参考价值。 展开更多
关键词 隧道开挖 建筑物沉降 预测 长短期记忆神经网络 时间序列对抗神经网络
在线阅读 下载PDF
基于多空间维度联合方法改进的BiLSTM出水氨氮预测方法 被引量:3
13
作者 王雷 张煜 +3 位作者 赵艺琨 刘明勇 刘子航 李杰 《中国农村水利水电》 北大核心 2025年第2期17-24,共8页
出水氨氮作为衡量污水处理厂水质处理工艺的重要指标之一,准确预测污水处理厂出水水质中的氨氮含量对于及时调整处理工艺,保障水环境安全有着重要的作用。提出了一种基于联合多空间维度(Multi-spatial Dimensional Cooperative Attenti... 出水氨氮作为衡量污水处理厂水质处理工艺的重要指标之一,准确预测污水处理厂出水水质中的氨氮含量对于及时调整处理工艺,保障水环境安全有着重要的作用。提出了一种基于联合多空间维度(Multi-spatial Dimensional Cooperative Attention)改进的双向长短期记忆网络(Bi-directional Long Short-Term Memory,BiLSTM)的水质预测模型,首先通过皮尔逊(Pearson)系数法筛选出与出水氨氮相关性较强的总氮、污泥沉降比和温度3个指标作为模型输入,联合3个维度的强相关信息对未来6 h的出水氨氮进行预测。结果表明,MDCA-BiLSTM模型在融合残差序列后对出水氨氮的预测准确率R2为0.979,并在太平污水处理厂和文昌污水处理厂两个站点收集到的数据集上总氮、总磷和溶解氧的均方根误差分别为0.002、0.003、0.001和0.004、0.003、0.002;预测精度分别为0.959、0.947、0.971和0.962、0.951、0.983;与BiLSTM相比,均方根误差分别降低了0.007、0.007、0.007和0.017、0.006、0.005;预测精度分别提高了0.176、0.183、0.258和0.098、0.109、0.11。同时,该模型在面对未来6、12和24 h的预测步长时,仍能够达到0.956、0.933和0.917的预测精度,说明改进后的模型在预测准确性和鲁棒性方面表现出显著优势。该方法能够有效提高污水处理厂出水氨氮的及其他指标的预测准确性,可作为水资源循环和管理决策的一种有效参考手段,具有较强的实际应用价值。 展开更多
关键词 水质参数 时序预测 时序卷积网络 双向长短期记忆循环神经网络 注意力机制
在线阅读 下载PDF
基于AI的噪声环境下远距离高清音频采集研究 被引量:1
14
作者 黄丽娜 《现代电子技术》 北大核心 2025年第4期130-134,共5页
为提升远距离采集音频信号的强度,深度滤除音频信号噪声以提取有用音频部分,提出一种基于AI的噪声环境下远距离高清音频采集方法。构建远距离高清音频采集结构,分别通过模拟增益和数字增益技术进行音频信号增益处理,以提升音频信号强度... 为提升远距离采集音频信号的强度,深度滤除音频信号噪声以提取有用音频部分,提出一种基于AI的噪声环境下远距离高清音频采集方法。构建远距离高清音频采集结构,分别通过模拟增益和数字增益技术进行音频信号增益处理,以提升音频信号强度。依据短时傅里叶变换提取音频增益信号频域特征,输入到长短期记忆网络中,实现音频信号深度噪声去除,得到高清音频频域信息;再通过短时傅里叶逆变换处理该信号,实现音频信号重构,最终达到噪声环境下远距离高清音频采集的目的。实验验证结果表明:依据音频信号增益能够有效提升采集音频信号的强度,并避免信号受距离、噪声影响而逐渐衰减,继而有效滤除音频信号噪声数据,提取其中有用的音频信号,确保音频信号高清度;且最终采集音频信号信噪比均高于18 dB,可懂度均高于97%,有效验证了所提方法的有效性和准确性。 展开更多
关键词 高清音频采集 AI 噪声环境 信号强度 远距离 长短期记忆网络 短时傅里叶变换
在线阅读 下载PDF
时间序列雷达数据识别耕地种粮类型的研究
15
作者 武晓天 欧正蜂 +3 位作者 王晓蕾 孙汉英 王长委 黄永奇 《中国农村水利水电》 北大核心 2025年第1期124-128,135,共6页
以广东省揭阳市揭西县为研究对象,采用2021年下半年的时间序列哨兵一号数据,分析了实测样本的水稻、玉米、坑塘水面、未耕种、树林和蔬菜等耕地上不同覆盖物的时间序列后向散射系数特征和类间差异性,结果表明耕地种粮类型分类的最优极... 以广东省揭阳市揭西县为研究对象,采用2021年下半年的时间序列哨兵一号数据,分析了实测样本的水稻、玉米、坑塘水面、未耕种、树林和蔬菜等耕地上不同覆盖物的时间序列后向散射系数特征和类间差异性,结果表明耕地种粮类型分类的最优极化方式为VH极化,在此基础上构建了基于长短期记忆网络(Long Short-Term Memory networks,LSTM)的耕地种粮类型识别模型,模型精度达到90%。根据模型提取了研究区的水稻、玉米、坑塘水面、未耕种、树林和蔬菜的空间分布,为多云地区的耕地种类监测提供了新的遥感技术手段。 展开更多
关键词 耕地种粮监测 哨兵一号 时间序列 长短期记忆网络 揭西县
在线阅读 下载PDF
基于注意力机制的LSTNet日前电价预测
16
作者 李璐 阚小瑞 +3 位作者 毕贵红 范玉瑞 朱泽良 周旭龙 《电力科学与工程》 2025年第4期1-10,共10页
为了提高日前电价预测精度,提出了一种基于注意力机制的长期和短期时间序列网络日前电价预测模型。首先,通过相关性分析筛选出对日前电价预测影响较大的因素;然后,利用卷积神经网络初步提取电价数据和各个因素之间的局部依赖关系;进一步... 为了提高日前电价预测精度,提出了一种基于注意力机制的长期和短期时间序列网络日前电价预测模型。首先,通过相关性分析筛选出对日前电价预测影响较大的因素;然后,利用卷积神经网络初步提取电价数据和各个因素之间的局部依赖关系;进一步,运用循环神经网络和循环跳跃神经网络挖掘出当前数据与前后时刻数据之间的联系,再通过注意力机制进行权重自适应分配后,仿真非线性部分的预测值。采用自回归模型对线性部分的电价数据进行提取。最后,将线性和非线性部分的预测值进行融合,得到最终预测结果。经仿真验证,所提模型有效提高了日前电价预测的精度。 展开更多
关键词 注意力机制 电价预测 卷积神经网络 长期和短期时间序列网络 自回归模型
在线阅读 下载PDF
长短期记忆网络在隧道火灾实时致灾态势预测中应用研究 被引量:1
17
作者 贾进章 陈佳琦 陈怡诺 《安全与环境学报》 北大核心 2025年第4期1298-1309,共12页
针对隧道火灾过程中高温烟气对人员避灾的威胁,为实现隧道火灾有效控制,及时提供隧道火灾实时救援决策,提出了一种试验测量和人工智能相结合的方法,基于温度传感器和长短期记忆(Long Short-Term Memory,LSTM)网络对烟气温度进行实时预... 针对隧道火灾过程中高温烟气对人员避灾的威胁,为实现隧道火灾有效控制,及时提供隧道火灾实时救援决策,提出了一种试验测量和人工智能相结合的方法,基于温度传感器和长短期记忆(Long Short-Term Memory,LSTM)网络对烟气温度进行实时预测。首先,通过1∶20小面积火灾试验收集不同工况下的温度数据,然后,采用LSTM模型从试验火灾数据库中学习、训练,并进行不同火源类型测试,发现该算法模型可以很好地预测隧道内温度分布。对模型的预测能力进行测试,测试结果表明,预测结果精度高,相对误差在±10%内。与反向传播神经网络(Back Propagation Neural Network,BPNN)模型进行比较,测试误差均值降低3.85百分点,对比效果明显,满足隧道火灾实时态势检测需要,为隧道火灾事故的应急救援建立了较为新颖的智能预测方法。 展开更多
关键词 安全工程 隧道火灾 长短期记忆网络 烟气温度 实时预测
原文传递
基于IEGWO-VMD的滚动轴承故障诊断策略
18
作者 李国洪 李智 +2 位作者 王鹏 杨瑞 江超 《天津理工大学学报》 2025年第6期21-28,共8页
针对滚动轴承故障诊断中故障特征提取困难及诊断准确率低的问题,提出了一种改进的灰狼优化算法(grey wolf optimizer,GWO)-变分模态分解(variational mode decomposition,VMD)的新诊断方法。首先将GWO改进为混沌增强灰狼优化算法(improv... 针对滚动轴承故障诊断中故障特征提取困难及诊断准确率低的问题,提出了一种改进的灰狼优化算法(grey wolf optimizer,GWO)-变分模态分解(variational mode decomposition,VMD)的新诊断方法。首先将GWO改进为混沌增强灰狼优化算法(improved enhancement grey wolf optimizer,IEGWO),随后基于改进后的算法优化VMD的关键参数后,对故障信号进行分解。最后将分解后的信号构造故障特征向量并输入到双向长短时神经网络(bi-directional long short-term memory,Bi-LSTM)中进行轴承故障诊断分类。将所提方法与其他故障提取模型进行对比分析实验,结果表明,该模型将故障诊断准确率提高到了99%。实验结果证明,所提方法能够更好地提取故障特征,提高故障诊断的准确率。 展开更多
关键词 故障特征提取 改进灰狼优化算法 变分模态分解 双向长短时神经网络 故障诊断
在线阅读 下载PDF
基于IEGWO-VMD的滚动轴承故障诊断策略
19
作者 李国洪 李智 +2 位作者 王鹏 杨瑞 江超 《天津理工大学学报》 2025年第5期11-18,共8页
针对滚动轴承故障诊断中故障特征提取困难及诊断准确率低的问题,提出了一种改进的灰狼优化算法(grey wolf optimizer,GWO)-变分模态分解(variational mode decomposition,VMD)的新诊断方法。首先将GWO改进为混沌增强灰狼优化算法(improv... 针对滚动轴承故障诊断中故障特征提取困难及诊断准确率低的问题,提出了一种改进的灰狼优化算法(grey wolf optimizer,GWO)-变分模态分解(variational mode decomposition,VMD)的新诊断方法。首先将GWO改进为混沌增强灰狼优化算法(improved enhancement grey wolf optimizer,IEGWO),随后基于改进后的算法优化VMD的关键参数后,对故障信号进行分解。最后将分解后的信号构造故障特征向量并输入到双向长短时神经网络(bi-directional long short-term memory,Bi-LSTM)中进行轴承故障诊断分类。将所提方法与其他故障提取模型进行对比分析实验,结果表明,该模型将故障诊断准确率提高到了99%。实验结果证明,所提方法能够更好地提取故障特征,提高故障诊断的准确率。 展开更多
关键词 故障特征提取 改进灰狼优化算法 变分模态分解 双向长短时神经网络 故障诊断
在线阅读 下载PDF
基于LSTM-AE的青霉素发酵工艺中残糖异常检测
20
作者 张秀清 王杰 +1 位作者 王晓君 赵春丽 《通信与信息技术》 2025年第6期22-25,共4页
青霉素的生产发酵过程呈现时变性强和非线性强的特征,针对药厂青霉素发酵工艺中残糖时序数据突然出现的异常行为,可以及时发现并以此来避免重大经济损失节约更多资源,提出将LSTM算法的特征嵌入到AE算法的结构中,并以发酵培养基中残糖浓... 青霉素的生产发酵过程呈现时变性强和非线性强的特征,针对药厂青霉素发酵工艺中残糖时序数据突然出现的异常行为,可以及时发现并以此来避免重大经济损失节约更多资源,提出将LSTM算法的特征嵌入到AE算法的结构中,并以发酵培养基中残糖浓度作为研究对象,可以很好的捕捉到残糖数据中的时变性和非线性特征,从而更好地进行异常检测功能。AE负责捕获变量的潜在空间,进一步提升LSTM的检测能力。结果表明,该算法对比一般的重构异常检测算法其准确率大于90%,具有良好的准确性和适应性。该算法能有效识别数据中的时变性和非线性特征,从而为药厂数据的异常检测部分提供理论参考与方法依据。 展开更多
关键词 异常检测 时间序列 长短期记忆网络 自编码网络 重构误差
在线阅读 下载PDF
上一页 1 2 27 下一页 到第
使用帮助 返回顶部