Objective To correct the nonlinear error of sensor output,a new approach to sensor inverse modeling based on Back-Propagation Fuzzy Logical System(BP FS) is presented.Methods The BP FS is a computationally efficient n...Objective To correct the nonlinear error of sensor output,a new approach to sensor inverse modeling based on Back-Propagation Fuzzy Logical System(BP FS) is presented.Methods The BP FS is a computationally efficient nonlinear universal approximator,which is capable of implementing complex nonlinear mapping from its input pattern space to the output with fast convergence speed.Results The neuro-fuzzy hybrid system,i.e.BP FS,is then applied to construct nonlinear inverse model of pressure sensor.The experimental results show that the proposed inverse modeling method automatically compensates the associated nonlinear error in pressure estimation,and thus the performance of pressure sensor is significantly improved.Conclusion The proposed method can be widely used in nonlinearity correction of various kinds of sensors to compensate the effects of nonlinearity and temperature on sensor output.展开更多
The paper consists in the use of some logical functions decomposition algorithms with application in the implementation of classical circuits like SSI, MSI and PLD. The decomposition methods use the Boolean matrix cal...The paper consists in the use of some logical functions decomposition algorithms with application in the implementation of classical circuits like SSI, MSI and PLD. The decomposition methods use the Boolean matrix calculation. It is calculated the implementation costs emphasizing the most economical solutions. One important aspect of serial decomposition is the task of selecting “best candidate” variables for the G function. Decomposition is essentially a process of substituting two or more input variables with a lesser number of new variables. This substitutes results in the reduction of the number of rows in the truth table. Hence, we look for variables which are most likely to reduce the number of rows in the truth table as a result of decomposition. Let us consider an input variable purposely avoiding all inter-relationships among the input variables. The only available parameter to evaluate its activity is the number of “l”s or “O”s that it has in the truth table. If the variable has only “1” s or “0” s, it is the “best candidate” for decomposition, as it is practically redundant.展开更多
This paper investigates logical stochastic resonance(LSR)in a cross-bifurcation non-smooth system driven by Gaussian colored noise.In this system,a bifurcation parameter triggers a transition between monostability,bis...This paper investigates logical stochastic resonance(LSR)in a cross-bifurcation non-smooth system driven by Gaussian colored noise.In this system,a bifurcation parameter triggers a transition between monostability,bistability and tristability.By using Novikov's theorem and the unified colored noise approximation method,the approximate Fokker-Planck equation is obtained.Then we derive the generalized potential function and the transition rates to analyze the LSR phenomenon using numerical simulations.We simulate the logic operation of the system in the bistable and tristable regions respectively.We assess the impact of Gaussian colored noise on the LSR and discover that the reliability of the logic response depends on the noise strength and the bifurcation parameter.Furthermore,it is found that the bistable region has a more extensive parameter range to produce reliable logic operation compared with the tristable region,since the tristable region is more sensitive to noise than the bistable one.展开更多
This paper introduces the Integrated Security Embedded Resilience Architecture (ISERA) as an advanced resilience mechanism for Industrial Control Systems (ICS) and Operational Technology (OT) environments. The ISERA f...This paper introduces the Integrated Security Embedded Resilience Architecture (ISERA) as an advanced resilience mechanism for Industrial Control Systems (ICS) and Operational Technology (OT) environments. The ISERA framework integrates security by design principles, micro-segmentation, and Island Mode Operation (IMO) to enhance cyber resilience and ensure continuous, secure operations. The methodology deploys a Forward-Thinking Architecture Strategy (FTAS) algorithm, which utilises an industrial Intrusion Detection System (IDS) implemented with Python’s Network Intrusion Detection System (NIDS) library. The FTAS algorithm successfully identified and responded to cyber-attacks, ensuring minimal system disruption. ISERA has been validated through comprehensive testing scenarios simulating Denial of Service (DoS) attacks and malware intrusions, at both the IT and OT layers where it successfully mitigates the impact of malicious activity. Results demonstrate ISERA’s efficacy in real-time threat detection, containment, and incident response, thus ensuring the integrity and reliability of critical infrastructure systems. ISERA’s decentralised approach contributes to global net zero goals by optimising resource use and minimising environmental impact. By adopting a decentralised control architecture and leveraging virtualisation, ISERA significantly enhances the cyber resilience and sustainability of critical infrastructure systems. This approach not only strengthens defences against evolving cyber threats but also optimises resource allocation, reducing the system’s carbon footprint. As a result, ISERA ensures the uninterrupted operation of essential services while contributing to broader net zero goals.展开更多
Graduate students universally struggle with vague topics,insufficient innovation,and logical gaps in research proposals,highlighting the need for structured scientific training.This study presents an innovative pedago...Graduate students universally struggle with vague topics,insufficient innovation,and logical gaps in research proposals,highlighting the need for structured scientific training.This study presents an innovative pedagogical model embedding scholarly literature’s logical architecture into LBL-RBL hybrid teaching,implemented in Kunming Medical University’s Neuropathophysiology course.Targeting the complexity of neurological disease mechanisms,the course integrates lecture-based learning(LBL)and research-based learning(RBL)through a small-cohort framework featuring personalized literature-logic embedding→targeted lecture reinforcement→multi-round proposal iteration.Faculty deconstructed domain literature to establish a three-phase training system(“Logic Demonstration-Methodology Mapping-Proposal Embedding”),systematically merging academic logic with research methodology over 9 weeks.Results demonstrate that this problem-driven approach creates authentic scientific inquiry scenarios,activating student knowledge co-construction and collaborative exploration.It successfully enables dynamic competency progression through“cognitive deconstruction→methodological practice→proposal refinement,”significantly enhancing proposal rigor and innovation.This study offers a scalable dual-track solution for cultivating advanced scientific capabilities in medical graduate education.展开更多
In the present paper,we give a systematic study of the discrete correspondence the-ory and topological correspondence theory of modal meet-implication logic and moda1 meet-semilattice logic,in the semantics provided i...In the present paper,we give a systematic study of the discrete correspondence the-ory and topological correspondence theory of modal meet-implication logic and moda1 meet-semilattice logic,in the semantics provided in[21].The special features of the present paper include the following three points:the first one is that the semantic structure used is based on a semilattice rather than an ordinary partial order,the second one is that the propositional vari-ables are interpreted as filters rather than upsets,and the nominals,which are the“first-order counterparts of propositional variables,are interpreted as principal filters rather than principal upsets;the third one is that in topological correspondence theory,the collection of admissi-ble valuations is not closed under taking disjunction,which makes the proof of the topological Ackermann 1emma different from existing settings.展开更多
As a fundamental course in science and engineering education at universities,advanced mathematics plays an irreplaceable role in cultivating students’logical thinking,scientific spirit,and comprehensive qualities.Int...As a fundamental course in science and engineering education at universities,advanced mathematics plays an irreplaceable role in cultivating students’logical thinking,scientific spirit,and comprehensive qualities.Integrating ideological and political education into advanced mathematics teaching is not only an inevitable requirement for achieving the goal of“three-dimensional and holistic education”but also a crucial path for promoting students’comprehensive development.This article delves into the necessary logic,practical possibilities,and real-world challenges of ideological and political education in advanced mathematics courses,systematically analyzing the implementation pathways and illustrating practical approaches through specific cases.Meanwhile,to address issues such as insufficient teacher capability,lagging resource development,disconnected instructional design,and inadequate evaluation mechanisms encountered during implementation,this article proposes practical improvement strategies.It aims to provide theoretical insights and practical guidance for the further advancement of ideological and political education in advanced mathematics courses.展开更多
This study investigated the relationship between parental cognitive ability and child logical reasoning ability,and the role of academic expectation and family environment in that relationship.Based on the 2020 China ...This study investigated the relationship between parental cognitive ability and child logical reasoning ability,and the role of academic expectation and family environment in that relationship.Based on the 2020 China Family Panel Studies(CFPS)data,1491 children(girls ratio=53.78%;average grade=6.023 years,school grade standard deviation=1.825 years).Results following multiple regression model(OLS)show that the higher the parental cognitive ability,the higher the children’s logical reasoning ability.Secondly,parental academic expectation serves as a mediator between their cognitive ability and children’s logical reasoning ability for higher logical reasoning by children.Third,a possible family environment acts as a mediator in the relationship between parents’cognitive ability and children’s logical reasoning ability to be higher.We conclude from thesefindings that parents with high cognitive abilities can enhance their children’s logical reasoning skills not only by setting higher academic expectations,but also by cultivating a supportive family environment.Thesefindings imply a need for intervention to improve family quality of life to enhance children’s thinking abilities to optimize their academic learning.展开更多
As Model-Based Systems Engineering(MBSE)was applied to the Electric Multiple Unit(EMU)braking system control logic,a preliminary exploration was conducted for bullet train braking system control logic research using a...As Model-Based Systems Engineering(MBSE)was applied to the Electric Multiple Unit(EMU)braking system control logic,a preliminary exploration was conducted for bullet train braking system control logic research using an MBSE practice framework.The framework mainly includes the requirement analysis phase,functional analysis phase,and design phase.Systems Modeling Language(SysML)was used as the modeling language,and Cameo Systems Modeler(CSM)was employed as the modeling tool.By integrating the EMU braking system control logic and utilizing a top-down design approach,the implementation of MBSE in the bullet train braking system was analyzed and studied.The results show that,according to the MBSE practice framework,a unified description of the requirement analysis,functional analysis,and design synthesis of the EMU braking system control logic can be achieved.Additionally,the correlation and traceability between models can be established.展开更多
The development of multi-stimuli-responsive luminescent system to address emerging demands is essential in anti-counterfeiting field.Herein,a photoswitchable system was reported,which was constructed from photoacid su...The development of multi-stimuli-responsive luminescent system to address emerging demands is essential in anti-counterfeiting field.Herein,a photoswitchable system was reported,which was constructed from photoacid sulfonato-merocyanine(MEH-D)serving as H+donor and diarylethene derivative(DAEA1)as acceptor.After capturing 2 equiv.HCl,the obtained fluorescent molecule DAE-A1-H showed solvatochromic property.Further on,benefiting from that MEH-D released protons and became a ring-closed isomer spiropyran(SP-D)under 440 nm irradiation,DAE-A1 was protonated,turning on fluorescence effect was realized in DAE-A1/MEH-D.In dark,a photo-activated reversible process was realized with SPD changed to MEH-D in situ system.In addition,the OF-DAE-A1-H/SP-D could efficiently and reversibly switch on/off its luminescence upon irradiation by UV–vis light.Significantly,the multi-stimuli-responsive system was successfully applied in logic gate and fluorescence ink,making it an efficient strategy for information encryption and decryption with higher security requirements.展开更多
Herein,a ternary supramolecular assembly(BPP-BQ?CB[8]-SCD)is successfully constructed by a bromophenylpyridine-tethered-bromoisoquinoline(BPP-BQ),cucurbit[8]uril(CB[8])and sulfonatedβ-cyclodextrin(SCD)via successive ...Herein,a ternary supramolecular assembly(BPP-BQ?CB[8]-SCD)is successfully constructed by a bromophenylpyridine-tethered-bromoisoquinoline(BPP-BQ),cucurbit[8]uril(CB[8])and sulfonatedβ-cyclodextrin(SCD)via successive assembling way,exhibiting progressively enhanced green roomtemperature phosphorescence(RTP).The self-aggregates of BPP-BQ?CB[8]-SCD accommodate an energy acceptor rhodamine B(Rh B)to form a light-harvesting system(BPP-BQ?CB[8]-SCD@Rh B)with further enhanced yellow long-lifetime luminescence with large Stokes shift based on triplet-singlet F?rster resonance energy transfer(TS-FRET).Crucially,the introduction of a photoactive diarylethene achieves the long-lived photoluminescence of BPP-BQ?CB[8]-SCD@Rh B to be switched with the efficiency of up to98%through logically ordered lowering/enhancing RTP performance of the energy donor and intercepting/restoring TS-FRET pathway,when stimulated by host-vip competition and light illumination in sequence.Moreover,BPP-BQ?CB[8]-SCD@Rh B is evenly doped into polyvinyl alcohol or polyacrylamide to obtain high-performance luminescent films with long afterglow.The abovementioned logically ordered stimulus-switched long-lived emission enables the light-harvesting system in both solution and solid state to be applied in high-security-level information encryption and transformation,and anticounterfeiting.展开更多
The ancient tacit knowledge behind the logic system permeated the culture and promoted numerous impactful inventions throughout the history. Traditional Chinese medicine with its effectiveness should also have stemmed...The ancient tacit knowledge behind the logic system permeated the culture and promoted numerous impactful inventions throughout the history. Traditional Chinese medicine with its effectiveness should also have stemmed out from such logic system. This article aims to rearticulate the underlying lucid multi-dimensional logic system, which faded in obscurity only because of time-out loss of the mid-right concept. Retracing this past tacit but important concept could uncover a multi-dimensional system over a point relating to all matters while capturing the central core of the matter. The seemingly unmanageable multidimensional logic was strengthened by verification processes which affirmed its further extensions, and made up the language of the people, the concepts of yin-yang(阴阳), and the development of extensions of Ba Gua(八卦) derivatives, which furthered the interpretation of the space-time properties and Chinese medicine.展开更多
This article presents views on the future development of data science,with a particular focus on its importance to artificial intel-ligence(AI).After discussing the challenges of data science,it elu-cidates a possible...This article presents views on the future development of data science,with a particular focus on its importance to artificial intel-ligence(AI).After discussing the challenges of data science,it elu-cidates a possible approach to tackle these challenges by clarifying the logic and principles of data related to the multi-level complex-ity of the world.Finally,urgently required actions are briefly outlined.展开更多
This research paper tackles the complexities of achieving global fuzzy consensus in leader-follower systems in robotic systems,focusing on robust control systems against an advanced signal attack that integrates senso...This research paper tackles the complexities of achieving global fuzzy consensus in leader-follower systems in robotic systems,focusing on robust control systems against an advanced signal attack that integrates sensor and actuator disturbances within the dynamics of follower robots.Each follower robot has unknown dynamics and control inputs,which expose it to the risks of both sensor and actuator attacks.The leader robot,described by a secondorder,time-varying nonlinear model,transmits its position,velocity,and acceleration information to follower robots through a wireless connection.To handle the complex setup and communication among robots in the network,we design a robust hybrid distributed adaptive control strategy combining the effect of sensor and actuator attack,which ensures asymptotic consensus,extending beyond conventional bounded consensus results.The proposed framework employs fuzzy logic systems(FLSs)as proactive controllers to estimate unknown nonlinear behaviors,while also effectively managing sensor and actuator attacks,ensuring stable consensus among all agents.To counter the impact of the combined signal attack on follower dynamics,a specialized robust control mechanism is designed,sustaining system stability and performance under adversarial conditions.The efficiency of this control strategy is demonstrated through simulations conducted across two different directed communication topologies,underscoring the protocol’s adaptability,resilience,and effectiveness in maintaining global consensus under complex attack scenarios.展开更多
We investigate the impact of coupling on the reliability of the logic system as well as the logical stochastic resonance (LSR) phenomenon in the coupled logic gates system. It is found that compared with single logi...We investigate the impact of coupling on the reliability of the logic system as well as the logical stochastic resonance (LSR) phenomenon in the coupled logic gates system. It is found that compared with single logic gate, the coupled system could yield reliable logic outputs in a much wider noise region, which means coupling can obviously improve the reliability of the logic system and thus enhance the LSR effect. Moreover, we find that the enhancement is larger for larger system size, whereas for large enough size the enhancement seems to be saturated. Finally, we also examine the effect of coupling strength, it can be observed that the noise region where reliable logic outputs can be obtained evolves non-monotonically as the coupling strength increases, displaying a resonance-like effect.展开更多
The phenomenon of logical stochastic resonance (LSR) in a nonlinear bistable system is demonstrated by numerical simulations and experiments. However, the bit rates of the logical signals are relatively low and not ...The phenomenon of logical stochastic resonance (LSR) in a nonlinear bistable system is demonstrated by numerical simulations and experiments. However, the bit rates of the logical signals are relatively low and not suitable for practical applications. First, we examine the responses of the bistable system with fixed parameters to different bit rate logic input signals, showing that an arbitrary high bit rate LSR in a bistable system cannot be achieved. Then, a normalized transform of the LSR bistable system is introduced through a kind of variable substitution. Based on the transform, it is found that LSR for arbitrary high bit rate logic signals in a bistable system can be achieved by adjusting the parameters of the system, setting bias value and amplifying the amplitudes of logic input signals and noise properly. Finally, the desired OR and AND logic outputs to high bit rate logic inputs in a bistable system are obtained by numerical simulations. The study might provide higher feasibility of LSR in practical engineering applications.展开更多
This paper considers fuzzifying topologies, a special case of I-fuzzy topologies (bifuzzy topologies), introduced by Ying. It investigates topological notions defined by means of -open sets when these are planted into...This paper considers fuzzifying topologies, a special case of I-fuzzy topologies (bifuzzy topologies), introduced by Ying. It investigates topological notions defined by means of -open sets when these are planted into the frame-work of Ying’s fuzzifying topological spaces (by Lukasiewicz logic in [0, 1]). In this paper we introduce some sorts of operations, called general fuzzifying operations from P(X) to , where (X, τ) is a fuzzifying topological space. By making use of them we contract neighborhood structures, derived sets, closure operations and interior operations.展开更多
A digital data-acquisition system based on XIA LLC products was used in a complex nuclear reaction experiment using radioactive ion beams.A flexible trigger system based on a field-programmable gate array(FPGA)paramet...A digital data-acquisition system based on XIA LLC products was used in a complex nuclear reaction experiment using radioactive ion beams.A flexible trigger system based on a field-programmable gate array(FPGA)parametrization was developed to adapt to different experimental sizes.A user-friendly interface was implemented,which allows converting script language expressions into FPGA internal control parameters.The proposed digital system can be combined with a conventional analog data acquisition system to provide more flexibility.The performance of the combined system was veri-fied using experimental data.展开更多
There exists an optimal range of intensity of a chaotic force in which the behavior of a chaos-driven bistable system with two weak inputs can be consistently mapped to a specific logic output. This phenomenon is call...There exists an optimal range of intensity of a chaotic force in which the behavior of a chaos-driven bistable system with two weak inputs can be consistently mapped to a specific logic output. This phenomenon is called logical chaotic resonance(LCR). However, realization of a reliable exclusive disjunction(XOR) through LCR has not been reported.Here, we explore the possibility of using chaos to enhance the reliability of XOR logic operation in a triple-well potential system via LCR. The success probability P of obtaining XOR logic operation can take the maximum value of 1 in an optimal window of intensity D of a chaotic force. Namely, success probability P displays characteristic bell-shaped behavior by altering the intensity of the chaotic driving force, indicating the occurrence of LCR. Further, the effects of periodic force on LCR have been investigated. For a subthreshold chaotic force, a periodic force with appropriate amplitude and frequency can help enhance the reliability of XOR logic operation. Thus, LCR can be effectively regulated by changing the amplitude and frequency of the periodic force.展开更多
Coupling-induced logical stochastic resonance(LSR) can be observed in a noise-driven coupled bistable system where the behaviors of system can be interpreted consistently as a specific logic gate in an appropriate noi...Coupling-induced logical stochastic resonance(LSR) can be observed in a noise-driven coupled bistable system where the behaviors of system can be interpreted consistently as a specific logic gate in an appropriate noise level. Here constant coupling is extended to time-varying coupling, and then we investigate the effect of time-varying coupling on LSR in a periodically driven coupled bistable system. When coupling intensity oscillates periodically with the same frequency with periodic force or relatively high frequency, the system successfully yields the desired logic output. When coupling intensity oscillates irregularly with phase disturbance, large phase disturbance reduces the area of optimal parameter region of coupling intensity and response speed of logic devices. Although the system behaves as a desired logic gate when the frequency of time-periodic coupling intensity is precisely equal to that of periodic force, the desired logic gate is not robust against tiny frequency difference and phase disturbance. Therefore, periodic coupling intensity with high frequency ratio is an optimal option to obtain a reliable and robust logic operation.展开更多
基金This work was supported by National Natural Science Foundation of China(No.60276037).
文摘Objective To correct the nonlinear error of sensor output,a new approach to sensor inverse modeling based on Back-Propagation Fuzzy Logical System(BP FS) is presented.Methods The BP FS is a computationally efficient nonlinear universal approximator,which is capable of implementing complex nonlinear mapping from its input pattern space to the output with fast convergence speed.Results The neuro-fuzzy hybrid system,i.e.BP FS,is then applied to construct nonlinear inverse model of pressure sensor.The experimental results show that the proposed inverse modeling method automatically compensates the associated nonlinear error in pressure estimation,and thus the performance of pressure sensor is significantly improved.Conclusion The proposed method can be widely used in nonlinearity correction of various kinds of sensors to compensate the effects of nonlinearity and temperature on sensor output.
文摘The paper consists in the use of some logical functions decomposition algorithms with application in the implementation of classical circuits like SSI, MSI and PLD. The decomposition methods use the Boolean matrix calculation. It is calculated the implementation costs emphasizing the most economical solutions. One important aspect of serial decomposition is the task of selecting “best candidate” variables for the G function. Decomposition is essentially a process of substituting two or more input variables with a lesser number of new variables. This substitutes results in the reduction of the number of rows in the truth table. Hence, we look for variables which are most likely to reduce the number of rows in the truth table as a result of decomposition. Let us consider an input variable purposely avoiding all inter-relationships among the input variables. The only available parameter to evaluate its activity is the number of “l”s or “O”s that it has in the truth table. If the variable has only “1” s or “0” s, it is the “best candidate” for decomposition, as it is practically redundant.
基金Project supported by the National Natural Science Foundation of China(Grant No.12072262)the Shaanxi Computer Society&Xiangteng Company Foundation.
文摘This paper investigates logical stochastic resonance(LSR)in a cross-bifurcation non-smooth system driven by Gaussian colored noise.In this system,a bifurcation parameter triggers a transition between monostability,bistability and tristability.By using Novikov's theorem and the unified colored noise approximation method,the approximate Fokker-Planck equation is obtained.Then we derive the generalized potential function and the transition rates to analyze the LSR phenomenon using numerical simulations.We simulate the logic operation of the system in the bistable and tristable regions respectively.We assess the impact of Gaussian colored noise on the LSR and discover that the reliability of the logic response depends on the noise strength and the bifurcation parameter.Furthermore,it is found that the bistable region has a more extensive parameter range to produce reliable logic operation compared with the tristable region,since the tristable region is more sensitive to noise than the bistable one.
基金funded by the Office of Gas and Electricity Markets(Ofgem)and supported by De Montfort University(DMU)and Nottingham Trent University(NTU),UK.
文摘This paper introduces the Integrated Security Embedded Resilience Architecture (ISERA) as an advanced resilience mechanism for Industrial Control Systems (ICS) and Operational Technology (OT) environments. The ISERA framework integrates security by design principles, micro-segmentation, and Island Mode Operation (IMO) to enhance cyber resilience and ensure continuous, secure operations. The methodology deploys a Forward-Thinking Architecture Strategy (FTAS) algorithm, which utilises an industrial Intrusion Detection System (IDS) implemented with Python’s Network Intrusion Detection System (NIDS) library. The FTAS algorithm successfully identified and responded to cyber-attacks, ensuring minimal system disruption. ISERA has been validated through comprehensive testing scenarios simulating Denial of Service (DoS) attacks and malware intrusions, at both the IT and OT layers where it successfully mitigates the impact of malicious activity. Results demonstrate ISERA’s efficacy in real-time threat detection, containment, and incident response, thus ensuring the integrity and reliability of critical infrastructure systems. ISERA’s decentralised approach contributes to global net zero goals by optimising resource use and minimising environmental impact. By adopting a decentralised control architecture and leveraging virtualisation, ISERA significantly enhances the cyber resilience and sustainability of critical infrastructure systems. This approach not only strengthens defences against evolving cyber threats but also optimises resource allocation, reducing the system’s carbon footprint. As a result, ISERA ensures the uninterrupted operation of essential services while contributing to broader net zero goals.
基金The Educational Research Project of Kunming Medical University(2023-JY-Y-024 and 2022-JY-Y-011)Special Research Project for Introduced Talent of Kunming Medical University(J13395001)。
文摘Graduate students universally struggle with vague topics,insufficient innovation,and logical gaps in research proposals,highlighting the need for structured scientific training.This study presents an innovative pedagogical model embedding scholarly literature’s logical architecture into LBL-RBL hybrid teaching,implemented in Kunming Medical University’s Neuropathophysiology course.Targeting the complexity of neurological disease mechanisms,the course integrates lecture-based learning(LBL)and research-based learning(RBL)through a small-cohort framework featuring personalized literature-logic embedding→targeted lecture reinforcement→multi-round proposal iteration.Faculty deconstructed domain literature to establish a three-phase training system(“Logic Demonstration-Methodology Mapping-Proposal Embedding”),systematically merging academic logic with research methodology over 9 weeks.Results demonstrate that this problem-driven approach creates authentic scientific inquiry scenarios,activating student knowledge co-construction and collaborative exploration.It successfully enables dynamic competency progression through“cognitive deconstruction→methodological practice→proposal refinement,”significantly enhancing proposal rigor and innovation.This study offers a scalable dual-track solution for cultivating advanced scientific capabilities in medical graduate education.
基金supported by the Chinese Ministry of Education of Humanities and Social Science Project(23YJC72040003)the Key Project of Chinese Ministry of Education(22JJD720021)supported by the Natural Science Foundation of Shandong Province,China(project number:ZR2023QF021)。
文摘In the present paper,we give a systematic study of the discrete correspondence the-ory and topological correspondence theory of modal meet-implication logic and moda1 meet-semilattice logic,in the semantics provided in[21].The special features of the present paper include the following three points:the first one is that the semantic structure used is based on a semilattice rather than an ordinary partial order,the second one is that the propositional vari-ables are interpreted as filters rather than upsets,and the nominals,which are the“first-order counterparts of propositional variables,are interpreted as principal filters rather than principal upsets;the third one is that in topological correspondence theory,the collection of admissi-ble valuations is not closed under taking disjunction,which makes the proof of the topological Ackermann 1emma different from existing settings.
文摘As a fundamental course in science and engineering education at universities,advanced mathematics plays an irreplaceable role in cultivating students’logical thinking,scientific spirit,and comprehensive qualities.Integrating ideological and political education into advanced mathematics teaching is not only an inevitable requirement for achieving the goal of“three-dimensional and holistic education”but also a crucial path for promoting students’comprehensive development.This article delves into the necessary logic,practical possibilities,and real-world challenges of ideological and political education in advanced mathematics courses,systematically analyzing the implementation pathways and illustrating practical approaches through specific cases.Meanwhile,to address issues such as insufficient teacher capability,lagging resource development,disconnected instructional design,and inadequate evaluation mechanisms encountered during implementation,this article proposes practical improvement strategies.It aims to provide theoretical insights and practical guidance for the further advancement of ideological and political education in advanced mathematics courses.
基金supported by scientific research fund of Jiangxi Provincial Social Sciences“14th Five-Year Plan”(No.23SH05).
文摘This study investigated the relationship between parental cognitive ability and child logical reasoning ability,and the role of academic expectation and family environment in that relationship.Based on the 2020 China Family Panel Studies(CFPS)data,1491 children(girls ratio=53.78%;average grade=6.023 years,school grade standard deviation=1.825 years).Results following multiple regression model(OLS)show that the higher the parental cognitive ability,the higher the children’s logical reasoning ability.Secondly,parental academic expectation serves as a mediator between their cognitive ability and children’s logical reasoning ability for higher logical reasoning by children.Third,a possible family environment acts as a mediator in the relationship between parents’cognitive ability and children’s logical reasoning ability to be higher.We conclude from thesefindings that parents with high cognitive abilities can enhance their children’s logical reasoning skills not only by setting higher academic expectations,but also by cultivating a supportive family environment.Thesefindings imply a need for intervention to improve family quality of life to enhance children’s thinking abilities to optimize their academic learning.
文摘As Model-Based Systems Engineering(MBSE)was applied to the Electric Multiple Unit(EMU)braking system control logic,a preliminary exploration was conducted for bullet train braking system control logic research using an MBSE practice framework.The framework mainly includes the requirement analysis phase,functional analysis phase,and design phase.Systems Modeling Language(SysML)was used as the modeling language,and Cameo Systems Modeler(CSM)was employed as the modeling tool.By integrating the EMU braking system control logic and utilizing a top-down design approach,the implementation of MBSE in the bullet train braking system was analyzed and studied.The results show that,according to the MBSE practice framework,a unified description of the requirement analysis,functional analysis,and design synthesis of the EMU braking system control logic can be achieved.Additionally,the correlation and traceability between models can be established.
基金financially supported by Natural Science Foundation of Shandong Province(Nos.ZR2022QB061,2022KJ181)National Key R&D Program of China(No.2023YFD1700903)。
文摘The development of multi-stimuli-responsive luminescent system to address emerging demands is essential in anti-counterfeiting field.Herein,a photoswitchable system was reported,which was constructed from photoacid sulfonato-merocyanine(MEH-D)serving as H+donor and diarylethene derivative(DAEA1)as acceptor.After capturing 2 equiv.HCl,the obtained fluorescent molecule DAE-A1-H showed solvatochromic property.Further on,benefiting from that MEH-D released protons and became a ring-closed isomer spiropyran(SP-D)under 440 nm irradiation,DAE-A1 was protonated,turning on fluorescence effect was realized in DAE-A1/MEH-D.In dark,a photo-activated reversible process was realized with SPD changed to MEH-D in situ system.In addition,the OF-DAE-A1-H/SP-D could efficiently and reversibly switch on/off its luminescence upon irradiation by UV–vis light.Significantly,the multi-stimuli-responsive system was successfully applied in logic gate and fluorescence ink,making it an efficient strategy for information encryption and decryption with higher security requirements.
基金the National Natural Science Foundation of China(Nos.21801063,22305070 and U20041101)the Top-Notch Talents Program of Henan Agricultural University(Nos.30501049 and 30501032)for financial support。
文摘Herein,a ternary supramolecular assembly(BPP-BQ?CB[8]-SCD)is successfully constructed by a bromophenylpyridine-tethered-bromoisoquinoline(BPP-BQ),cucurbit[8]uril(CB[8])and sulfonatedβ-cyclodextrin(SCD)via successive assembling way,exhibiting progressively enhanced green roomtemperature phosphorescence(RTP).The self-aggregates of BPP-BQ?CB[8]-SCD accommodate an energy acceptor rhodamine B(Rh B)to form a light-harvesting system(BPP-BQ?CB[8]-SCD@Rh B)with further enhanced yellow long-lifetime luminescence with large Stokes shift based on triplet-singlet F?rster resonance energy transfer(TS-FRET).Crucially,the introduction of a photoactive diarylethene achieves the long-lived photoluminescence of BPP-BQ?CB[8]-SCD@Rh B to be switched with the efficiency of up to98%through logically ordered lowering/enhancing RTP performance of the energy donor and intercepting/restoring TS-FRET pathway,when stimulated by host-vip competition and light illumination in sequence.Moreover,BPP-BQ?CB[8]-SCD@Rh B is evenly doped into polyvinyl alcohol or polyacrylamide to obtain high-performance luminescent films with long afterglow.The abovementioned logically ordered stimulus-switched long-lived emission enables the light-harvesting system in both solution and solid state to be applied in high-security-level information encryption and transformation,and anticounterfeiting.
文摘The ancient tacit knowledge behind the logic system permeated the culture and promoted numerous impactful inventions throughout the history. Traditional Chinese medicine with its effectiveness should also have stemmed out from such logic system. This article aims to rearticulate the underlying lucid multi-dimensional logic system, which faded in obscurity only because of time-out loss of the mid-right concept. Retracing this past tacit but important concept could uncover a multi-dimensional system over a point relating to all matters while capturing the central core of the matter. The seemingly unmanageable multidimensional logic was strengthened by verification processes which affirmed its further extensions, and made up the language of the people, the concepts of yin-yang(阴阳), and the development of extensions of Ba Gua(八卦) derivatives, which furthered the interpretation of the space-time properties and Chinese medicine.
文摘This article presents views on the future development of data science,with a particular focus on its importance to artificial intel-ligence(AI).After discussing the challenges of data science,it elu-cidates a possible approach to tackle these challenges by clarifying the logic and principles of data related to the multi-level complex-ity of the world.Finally,urgently required actions are briefly outlined.
文摘This research paper tackles the complexities of achieving global fuzzy consensus in leader-follower systems in robotic systems,focusing on robust control systems against an advanced signal attack that integrates sensor and actuator disturbances within the dynamics of follower robots.Each follower robot has unknown dynamics and control inputs,which expose it to the risks of both sensor and actuator attacks.The leader robot,described by a secondorder,time-varying nonlinear model,transmits its position,velocity,and acceleration information to follower robots through a wireless connection.To handle the complex setup and communication among robots in the network,we design a robust hybrid distributed adaptive control strategy combining the effect of sensor and actuator attack,which ensures asymptotic consensus,extending beyond conventional bounded consensus results.The proposed framework employs fuzzy logic systems(FLSs)as proactive controllers to estimate unknown nonlinear behaviors,while also effectively managing sensor and actuator attacks,ensuring stable consensus among all agents.To counter the impact of the combined signal attack on follower dynamics,a specialized robust control mechanism is designed,sustaining system stability and performance under adversarial conditions.The efficiency of this control strategy is demonstrated through simulations conducted across two different directed communication topologies,underscoring the protocol’s adaptability,resilience,and effectiveness in maintaining global consensus under complex attack scenarios.
文摘We investigate the impact of coupling on the reliability of the logic system as well as the logical stochastic resonance (LSR) phenomenon in the coupled logic gates system. It is found that compared with single logic gate, the coupled system could yield reliable logic outputs in a much wider noise region, which means coupling can obviously improve the reliability of the logic system and thus enhance the LSR effect. Moreover, we find that the enhancement is larger for larger system size, whereas for large enough size the enhancement seems to be saturated. Finally, we also examine the effect of coupling strength, it can be observed that the noise region where reliable logic outputs can be obtained evolves non-monotonically as the coupling strength increases, displaying a resonance-like effect.
基金supported by the National Natural Science Foundation of China(Grant No.51379526)
文摘The phenomenon of logical stochastic resonance (LSR) in a nonlinear bistable system is demonstrated by numerical simulations and experiments. However, the bit rates of the logical signals are relatively low and not suitable for practical applications. First, we examine the responses of the bistable system with fixed parameters to different bit rate logic input signals, showing that an arbitrary high bit rate LSR in a bistable system cannot be achieved. Then, a normalized transform of the LSR bistable system is introduced through a kind of variable substitution. Based on the transform, it is found that LSR for arbitrary high bit rate logic signals in a bistable system can be achieved by adjusting the parameters of the system, setting bias value and amplifying the amplitudes of logic input signals and noise properly. Finally, the desired OR and AND logic outputs to high bit rate logic inputs in a bistable system are obtained by numerical simulations. The study might provide higher feasibility of LSR in practical engineering applications.
文摘This paper considers fuzzifying topologies, a special case of I-fuzzy topologies (bifuzzy topologies), introduced by Ying. It investigates topological notions defined by means of -open sets when these are planted into the frame-work of Ying’s fuzzifying topological spaces (by Lukasiewicz logic in [0, 1]). In this paper we introduce some sorts of operations, called general fuzzifying operations from P(X) to , where (X, τ) is a fuzzifying topological space. By making use of them we contract neighborhood structures, derived sets, closure operations and interior operations.
基金This work was supported by the National Key R&D Program of China(Nos.2023YFA1606403 and 2023YFE0101600)the National Natural Science Foundation of China(Nos.12027809,11961141003,U1967201,11875073 and 11875074).
文摘A digital data-acquisition system based on XIA LLC products was used in a complex nuclear reaction experiment using radioactive ion beams.A flexible trigger system based on a field-programmable gate array(FPGA)parametrization was developed to adapt to different experimental sizes.A user-friendly interface was implemented,which allows converting script language expressions into FPGA internal control parameters.The proposed digital system can be combined with a conventional analog data acquisition system to provide more flexibility.The performance of the combined system was veri-fied using experimental data.
基金supported by the Technology Innovation Team Program in Higher Education Institutions in Hubei Province, China (Grant No. T2020039)。
文摘There exists an optimal range of intensity of a chaotic force in which the behavior of a chaos-driven bistable system with two weak inputs can be consistently mapped to a specific logic output. This phenomenon is called logical chaotic resonance(LCR). However, realization of a reliable exclusive disjunction(XOR) through LCR has not been reported.Here, we explore the possibility of using chaos to enhance the reliability of XOR logic operation in a triple-well potential system via LCR. The success probability P of obtaining XOR logic operation can take the maximum value of 1 in an optimal window of intensity D of a chaotic force. Namely, success probability P displays characteristic bell-shaped behavior by altering the intensity of the chaotic driving force, indicating the occurrence of LCR. Further, the effects of periodic force on LCR have been investigated. For a subthreshold chaotic force, a periodic force with appropriate amplitude and frequency can help enhance the reliability of XOR logic operation. Thus, LCR can be effectively regulated by changing the amplitude and frequency of the periodic force.
基金supported by the National Natural Science Foundation of China (Grant No. 31601071)。
文摘Coupling-induced logical stochastic resonance(LSR) can be observed in a noise-driven coupled bistable system where the behaviors of system can be interpreted consistently as a specific logic gate in an appropriate noise level. Here constant coupling is extended to time-varying coupling, and then we investigate the effect of time-varying coupling on LSR in a periodically driven coupled bistable system. When coupling intensity oscillates periodically with the same frequency with periodic force or relatively high frequency, the system successfully yields the desired logic output. When coupling intensity oscillates irregularly with phase disturbance, large phase disturbance reduces the area of optimal parameter region of coupling intensity and response speed of logic devices. Although the system behaves as a desired logic gate when the frequency of time-periodic coupling intensity is precisely equal to that of periodic force, the desired logic gate is not robust against tiny frequency difference and phase disturbance. Therefore, periodic coupling intensity with high frequency ratio is an optimal option to obtain a reliable and robust logic operation.