期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Vehicle height and leveling control of electronically controlled air suspension using mixed logical dynamical approach 被引量:7
1
作者 SUN Xiao Qiang CAI Ying Feng +2 位作者 YUAN Chao Chun WANG Shao Hua CHEN Long 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2016年第12期1814-1824,共11页
Vehicle height and leveling control of electronically controlled air suspension(ECAS) still poses theoretical challenges for researchers that have not been adequately addressed in prior research. This paper investigat... Vehicle height and leveling control of electronically controlled air suspension(ECAS) still poses theoretical challenges for researchers that have not been adequately addressed in prior research. This paper investigates the design and verification of a new controller to adjust the vehicle height and to regulate the roll and pitch angles of the vehicle body(leveling control) during the height adjustment procedures. A nonlinear mechanism model of the vehicle height adjustment system is formulated to describe the dynamic behaviors of the system. By using mixed logical dynamical(MLD) approach, a novel control strategy is proposed to adjust the vehicle height by controlling the on-off statuses of the solenoid valves directly. On this basis, a correction algorithm is also designed to regulate the durations of the on-off statuses of the solenoid valves based on pulse width modulated(PWM) technology, thus the effective leveling control of the vehicle body can be guaranteed. Finally, simulations and vehicle tests results are presented to demonstrate the effectiveness and applicability of the proposed control methodology. 展开更多
关键词 electronically controlled air suspension vehicle height control leveling control hybrid system mixed logical dynamical approach
原文传递
Design of Low-Power Modern Radar SoC Based on ASIX 被引量:1
2
作者 Bing Yang Zongguang Yu Jinghe Wei 《Tsinghua Science and Technology》 SCIE EI CAS 2014年第2期168-173,共6页
With the rapid development in spaceflights and aeroplanes, the demand for low-power and miniaturization techniques has become insistent in modern radar systems. A new framework for low-power modern radar System on a C... With the rapid development in spaceflights and aeroplanes, the demand for low-power and miniaturization techniques has become insistent in modern radar systems. A new framework for low-power modern radar System on a Chip (SoC) based on ASIX core is presented. Pivotal modules and low-power design flows are described in detail. The dynamic clock-distribution mechanism of the power management module and the influence of the chip power are both stressed. This design adopts the SMIC 0.18-μm 1P6M Salicide CMOS process, the area is 7.825 mm x 7.820 mm, there are approximately 2 million gates and the frequency is 100 MHz. The results show that the modern radar SoC passes the test on modern radar application system and meets the design requirements. The chip incurs power savings of 42.79% during the fore-end phase and 12.77% during the back-end phase. The total power is less than 350 mW for a 100-MHz operating environment. 展开更多
关键词 ASIX core System on a Chip (SoC) low power system level circuit level logic level physical level modern radar
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部