The main equipmets of the HL-2A LHCD power supply are based on the old one, but the logical control protective system is a new part. Considering the output voltage is very high(up to 60 kV), so the logical control p...The main equipmets of the HL-2A LHCD power supply are based on the old one, but the logical control protective system is a new part. Considering the output voltage is very high(up to 60 kV), so the logical control protective system is very important. The system is implemented based on PLC and the SIEMENS STEP7 software.展开更多
Herein,a ternary supramolecular assembly(BPP-BQ?CB[8]-SCD)is successfully constructed by a bromophenylpyridine-tethered-bromoisoquinoline(BPP-BQ),cucurbit[8]uril(CB[8])and sulfonatedβ-cyclodextrin(SCD)via successive ...Herein,a ternary supramolecular assembly(BPP-BQ?CB[8]-SCD)is successfully constructed by a bromophenylpyridine-tethered-bromoisoquinoline(BPP-BQ),cucurbit[8]uril(CB[8])and sulfonatedβ-cyclodextrin(SCD)via successive assembling way,exhibiting progressively enhanced green roomtemperature phosphorescence(RTP).The self-aggregates of BPP-BQ?CB[8]-SCD accommodate an energy acceptor rhodamine B(Rh B)to form a light-harvesting system(BPP-BQ?CB[8]-SCD@Rh B)with further enhanced yellow long-lifetime luminescence with large Stokes shift based on triplet-singlet F?rster resonance energy transfer(TS-FRET).Crucially,the introduction of a photoactive diarylethene achieves the long-lived photoluminescence of BPP-BQ?CB[8]-SCD@Rh B to be switched with the efficiency of up to98%through logically ordered lowering/enhancing RTP performance of the energy donor and intercepting/restoring TS-FRET pathway,when stimulated by host-vip competition and light illumination in sequence.Moreover,BPP-BQ?CB[8]-SCD@Rh B is evenly doped into polyvinyl alcohol or polyacrylamide to obtain high-performance luminescent films with long afterglow.The abovementioned logically ordered stimulus-switched long-lived emission enables the light-harvesting system in both solution and solid state to be applied in high-security-level information encryption and transformation,and anticounterfeiting.展开更多
This study investigates finite-time observability of probabilistic logical control systems(PLCSs)under three definitions(i.e.,finite-time observability with probability one,finite-time singleinput sequence observabili...This study investigates finite-time observability of probabilistic logical control systems(PLCSs)under three definitions(i.e.,finite-time observability with probability one,finite-time singleinput sequence observability with probability one,and finite-time arbitrary-input observability with probability one).The authors adopt a parallel extension technique to recast the finite-time observability problem of a PLCS as a finite-time set reachability problem.Then,the finite-time set reachability problem can be transferred to stabilization problem of a logic dynamical system by using the state transfer graph reconstruction method.Necessary and sufficient conditions for finite-time observability under the three definitions are derived respectively.Finally,the proposed methods are illustrated by numerical examples.展开更多
Making full use of wind power is one of the main purposes of the wind turbine generator control. Conventional hill climbing search (HCS) method can realize the maximum power point tracking (MPPT). However, the ste...Making full use of wind power is one of the main purposes of the wind turbine generator control. Conventional hill climbing search (HCS) method can realize the maximum power point tracking (MPPT). However, the step size of HCS method is constant so that it cannot consider both steady-state response and dynamic response. A fuzzy logical control (FLC) algorithm is proposed to solve this problem in this paper, which can track the maximum power point (MPP) quickly and smoothly. To evaluate MPPT algorithms, four performance indices are also proposed in this paper. They are the energy captured by wind turbine, the maximum power-point tracking time when wind speed changes slowly, the fluctuation magnitude of real power during steady state, and the energy captured by wind turbine when wind speed changes fast. Three cases are designed and simulated in MATLAB/Simulink respectively. The comparison of the three MPPT strategies concludes that the proposed fuzzy logical control algorithm is more superior to the conventional HCS algorithms.展开更多
The timing and master control logic (MCL) units are the most important function units of the diagnostic neutral beam (DNB) power supply control system. The units control the operation of nine power supply subsyste...The timing and master control logic (MCL) units are the most important function units of the diagnostic neutral beam (DNB) power supply control system. The units control the operation of nine power supply subsystems of the DNB system, and provide protection for the DNB system from faults such as beam source arc down. Based on the characteristics of the DNB power supply system, the timing and MCL units have been designed, fabricated and tested. Experiments prove that the timing unit is convenient, flexible and reliable, and the MCL is functional.展开更多
This paper introduces the Integrated Security Embedded Resilience Architecture (ISERA) as an advanced resilience mechanism for Industrial Control Systems (ICS) and Operational Technology (OT) environments. The ISERA f...This paper introduces the Integrated Security Embedded Resilience Architecture (ISERA) as an advanced resilience mechanism for Industrial Control Systems (ICS) and Operational Technology (OT) environments. The ISERA framework integrates security by design principles, micro-segmentation, and Island Mode Operation (IMO) to enhance cyber resilience and ensure continuous, secure operations. The methodology deploys a Forward-Thinking Architecture Strategy (FTAS) algorithm, which utilises an industrial Intrusion Detection System (IDS) implemented with Python’s Network Intrusion Detection System (NIDS) library. The FTAS algorithm successfully identified and responded to cyber-attacks, ensuring minimal system disruption. ISERA has been validated through comprehensive testing scenarios simulating Denial of Service (DoS) attacks and malware intrusions, at both the IT and OT layers where it successfully mitigates the impact of malicious activity. Results demonstrate ISERA’s efficacy in real-time threat detection, containment, and incident response, thus ensuring the integrity and reliability of critical infrastructure systems. ISERA’s decentralised approach contributes to global net zero goals by optimising resource use and minimising environmental impact. By adopting a decentralised control architecture and leveraging virtualisation, ISERA significantly enhances the cyber resilience and sustainability of critical infrastructure systems. This approach not only strengthens defences against evolving cyber threats but also optimises resource allocation, reducing the system’s carbon footprint. As a result, ISERA ensures the uninterrupted operation of essential services while contributing to broader net zero goals.展开更多
As Model-Based Systems Engineering(MBSE)was applied to the Electric Multiple Unit(EMU)braking system control logic,a preliminary exploration was conducted for bullet train braking system control logic research using a...As Model-Based Systems Engineering(MBSE)was applied to the Electric Multiple Unit(EMU)braking system control logic,a preliminary exploration was conducted for bullet train braking system control logic research using an MBSE practice framework.The framework mainly includes the requirement analysis phase,functional analysis phase,and design phase.Systems Modeling Language(SysML)was used as the modeling language,and Cameo Systems Modeler(CSM)was employed as the modeling tool.By integrating the EMU braking system control logic and utilizing a top-down design approach,the implementation of MBSE in the bullet train braking system was analyzed and studied.The results show that,according to the MBSE practice framework,a unified description of the requirement analysis,functional analysis,and design synthesis of the EMU braking system control logic can be achieved.Additionally,the correlation and traceability between models can be established.展开更多
The control method of rubber tyre gantry (RTG) spreader in Qingdao Port Container Terminal is logic board control,which has many shortcomings such as expensive spare parts and high faults.This paper designs a new co...The control method of rubber tyre gantry (RTG) spreader in Qingdao Port Container Terminal is logic board control,which has many shortcomings such as expensive spare parts and high faults.This paper designs a new control system using programmable logic controller (PLC) centralized control to replace the original logic board control.The new system mainly contains complete ELME spreader control scheme design,hardware selection and PLC control program development.Its field application shows that the system has characteristics of high efficiency,low running cost,easy maintenance.展开更多
In order to analyze and evaluate the performance of the air suspension system of heavy trucks with semi-active fuzzy control, a three-dimensional nonlinear dynamical model of a typical heavy truck with 16-DOF(degree ...In order to analyze and evaluate the performance of the air suspension system of heavy trucks with semi-active fuzzy control, a three-dimensional nonlinear dynamical model of a typical heavy truck with 16-DOF(degree of freedom) is established based on Matlab/Simulink software. The weighted root-mean-square(RMS) acceleration responses of the vertical driver 's seat, the pitch and roll angle of the cab, and the dynamic load coefficient(DLC) are chosen as objective functions, and the air suspension system is optimized and analyzed by the semi-active fuzzy control algorithm when vehicles operate under different operation conditions. The results show that the influence of the roll angle of the cab on the heavy truck ride comfort is clear when vehicles move on the road surface conditions of the ISO level D and ISO level E at a velocity over 27.5 m/s. The weighted RMS acceleration responses of vertical driver' s seat, the pitch and roll angle of the cab are decreased by 24%, 30% and 25%, respectively,when vehicles move on the road surface condition of the ISO level B at a velocity of 20 m/s. The value of the DLC also significantly decreases when vehicles operate under different operation conditions. Particularly, the DLC value of the tractor driver axle is greatly reduced by 27.4% when the vehicle operates under a vehicle fully-loaded condition on the road surface condition of ISO level B at a velocity of 27.5 m/s.展开更多
The position control system of an electro-hydraulic actuator system (EHAS) is investigated in this paper. The EHAS is developed by taking into consideration the nonlinearities of the system: the friction and the in...The position control system of an electro-hydraulic actuator system (EHAS) is investigated in this paper. The EHAS is developed by taking into consideration the nonlinearities of the system: the friction and the internal leakage. A variable load that simulates a realistic load in robotic excavator is taken as the trajectory reference. A method of control strategy that is implemented by employing a fuzzy logic controller (FLC) whose parameters are optimized using particle swarm optimization (PSO) is proposed. The scaling factors of the fuzzy inference system are tuned to obtain the optimal values which yield the best system performance. The simulation results show that the FLC is able to track the trajectory reference accurately for a range of values of orifice opening. Beyond that range, the orifice opening may introduce chattering, which the FLC alone is not sufficient to overcome. The PSO optimized FLC can reduce the chattering significantly. This result justifies the implementation of the proposed method in position control of EHAS.展开更多
This study presents analysis, control and comparison of three hybrid approaches for the direct torque control (DTC) of the dual star induction motor (DSIM) drive. Its objective consists of combining three different he...This study presents analysis, control and comparison of three hybrid approaches for the direct torque control (DTC) of the dual star induction motor (DSIM) drive. Its objective consists of combining three different heuristic optimization techniques including PID-PSO, Fuzzy-PSO and GA-PSO to improve the DSIM speed controlled loop behavior. The GA and PSO algorithms are developed and implemented into MATLAB. As a result, fuzzy-PSO is the most appropriate scheme. The main performance of fuzzy-PSO is reducing high torque ripples, improving rise time and avoiding disturbances that affect the drive performance.展开更多
Energy regeneration during braking is an important technique for hybrid electric vehicle (HEV) to improve their fuel economy and extend their driving range. Due to the effect of regenerative braking torque which is ad...Energy regeneration during braking is an important technique for hybrid electric vehicle (HEV) to improve their fuel economy and extend their driving range. Due to the effect of regenerative braking torque which is added by electric motor, the braking torque distribution between front and rear axles should be changed and the control logic of anti-lock braking system (ABS) ought to be adjusted according to the regenerative braking torque. This paper put forward a braking control strategy for hybrid electric vehicle; the control strategy is implemented with eight DOFs (Degree-of-Freedom) nonlinear vehicle forward simulation model which is built under the environment of Matlab/Simulink. Based on target wheel slip ratio, a fuzzy logic approach was applied to maintain the optimal target slip ratio so that best compromise between hydraulic torque and regenerative torque can be obtained for the vehicle.展开更多
As wind energy is becoming one of the fastestgrowing renewable energy resources,controlling large-scale wind turbines remains a challenging task due to its system model nonlinearities and high external uncertainties.T...As wind energy is becoming one of the fastestgrowing renewable energy resources,controlling large-scale wind turbines remains a challenging task due to its system model nonlinearities and high external uncertainties.The main goal of the current work is to propose an intelligent control of the wind turbine system without the need for model identification.For this purpose,a novel model-independent nonsingular terminal slidingmode control(MINTSMC)using the basic principles of the ultralocal model(ULM)and combined with the single input interval type-2 fuzzy logic control(SIT2-FLC)is developed for non-linear wind turbine pitch angle control.In the suggested control framework,the MINTSMC scheme is designed to regulate the wind turbine speed rotor,and a sliding-mode(SM)observer is adopted to estimate the unknown phenomena of the ULM.The auxiliary SIT2-FLC is added in the model-independent control structure to improve the rotor speed regulation and compensate for the SM observation estimation error.Extensive examinations and comparative analyses were made using a real-time softwarein-the-loop(RT-SiL)based on the dSPACE 1202 board to appraise the efficiency and applicability of the suggested modelindependent scheme in a real-time testbed.展开更多
In this paper, a fuzzy sliding mode active disturbance rejection control(FSMADRC) scheme is proposed for an autonomous underwater vehicle-manipulator system(AUVMS) with a two-link and three-joint manipulator. First, t...In this paper, a fuzzy sliding mode active disturbance rejection control(FSMADRC) scheme is proposed for an autonomous underwater vehicle-manipulator system(AUVMS) with a two-link and three-joint manipulator. First, the AUVMS is separated into nine subsystems, and the combined effects of dynamic uncertainties, hydrodynamic force, unknown disturbances, and nonlinear coupling terms on each subsystem are lumped into a single total disturbance. Next, a linear extended state observer(LESO) is presented to estimate the total disturbance. Then, a sliding mode active disturbance rejection control(SMADRC) scheme is proposed to enhance the robustness of the control system. The stability of the SMADRC and the estimation errors of the LESO are analyzed. Because it is difficult to simultaneously adjust several parameters for a LESO-based SMADRC scheme, a fuzzy logic control(FLC) scheme is used to formulate the FSMADRC to determine the appropriate parameters adaptively for practical applications. Finally, two AUVMS tasks are illustrated to test the trajectory tracking performance of the closed-loop system and its ability to reject and attenuate the total disturbance. The simulation results show that the proposed FSMADRC scheme achieves better performance and consume less energy than conventional PID and FLC techniques.展开更多
Servo pressure pulse testing equipment uses servo-hydraulic technology to build the model of hydraulic system. By improving measurement and control system, the equipment accomplishes signal acquisition, data processin...Servo pressure pulse testing equipment uses servo-hydraulic technology to build the model of hydraulic system. By improving measurement and control system, the equipment accomplishes signal acquisition, data processing and process con- trol. LabVIEW and programmable logic controller (PLC) are used to carry out the hardware configuration and software de- velopment. The system can communicate between LabVIEW and PLC by virtual instrumentation software architecture (VI- SA) and run automatically in accordance with setting commands. Therefore, accuracy and performance of the equipment are improved.展开更多
An artificial neural network(ANN) and a self-adjusting fuzzy logiccontroller(FLC) for modeling and control of gas tungsten arc welding(GTAW) process are presented.The discussion is mainly focused on the modeling and c...An artificial neural network(ANN) and a self-adjusting fuzzy logiccontroller(FLC) for modeling and control of gas tungsten arc welding(GTAW) process are presented.The discussion is mainly focused on the modeling and control of the weld pool depth with ANN and theintelligent control for weld seam tracking with FLC. The proposed neural network can produce highlycomplex nonlinear multi-variable model of the GTAW process that offers the accurate prediction ofwelding penetration depth. A self-adjusting fuzzy controller used for seam tracking adjusts thecontrol parameters on-line automatically according to the tracking errors so that the torch positioncan be controlled accurately.展开更多
In the field of industrial process control,a fast-development platform for programmable logic controller(PLC)systems is designed in order to solve two main problems of rapid development of PLC control system and progr...In the field of industrial process control,a fast-development platform for programmable logic controller(PLC)systems is designed in order to solve two main problems of rapid development of PLC control system and programmability of controlling software.In the aspect of design,the platform is composed of hardware controlling and software monitoring and is taking industrial computer as the core.Under the Windows environment,the platform establishes the control instruction set,develops the configuration function and visual programming function of the monitoring software and it integrates PLC controller based on Visual Basic software.In order to achieve the function of data monitoring,it has realized the serial communication between computer and PLC by using RS-485 and RS-232 serial ports line communication.The platform designs the intelligent instruction scheduling strategy by studying the encoding and decoding rules of the communication instruction set.It proposes a method for rapidly developing control programs by adopting the expert control mode,which enables clients to develop and modify programs conveniently by importing instructions in a non-coded manner.After experimental testing,the platform is proved successful achieving both the rapid development of PLC control system and the rapid modification of monitoring software.展开更多
The Hierarchical Structure Fuzzy Logic Control (HSFLC) strategies of torque distribute for Parallel Hybrid Electric Vehicle (PHEV) in the mode of operation of the vehicle i. e. , acceleration, cruise, deceleration etc...The Hierarchical Structure Fuzzy Logic Control (HSFLC) strategies of torque distribute for Parallel Hybrid Electric Vehicle (PHEV) in the mode of operation of the vehicle i. e. , acceleration, cruise, deceleration etc. have been studied. Using secondly developed the hybrid vehicle simulation tool ADVISOR, the dynamic model of PHEV has been set up by MATLAB/SIMULINK. The engine, motor as well as the battery characteristics have been studied. Simulation results show that the proposed hierarchical structured fuzzy logic control strategy is effective over the entire operating range of the vehicle in terms of fuel economy. Based on the analyses of the simulation results and driver’s experiences, a fuzzy controller is designed and developed to control the torque distribution. The controller is evaluated via hardware-in-the-loop simulator (HILS). The results show that controller verify its value.展开更多
Fuzzy logic controller adopting unevenly-distributed membership function was presented with the purpose of enhancing performance of the temperature control precision and robustness for the chamber cooling system.Histo...Fuzzy logic controller adopting unevenly-distributed membership function was presented with the purpose of enhancing performance of the temperature control precision and robustness for the chamber cooling system.Histogram equalization and noise detection were performed to modify the evenly-distributed membership functions of error and error change rate into unevenly-distributed membership functions.Then,the experimental results with evenly and unevenly distributed membership functions were compared under the same outside environment conditions.The experimental results show that the steady-state error is reduced around 40% and the noise disturbance is rejected successfully even though noise range is 60% of the control precision range.The control precision is improved by reducing the steady-state error and the robustness is enhanced by rejecting noise disturbance through the fuzzy logic controller with unevenly-distributed membership function.Moreover,the system energy efficiency and lifetime of electronic expansion valve(EEV) installed in chamber cooling system are improved by adopting the unevenly-distributed membership function.展开更多
The multisensor information fusion technology is adopted for real time measuring the four parameters which are connected closely with the weld nugget size(welding current, electrode displacement, dynamic resistance, ...The multisensor information fusion technology is adopted for real time measuring the four parameters which are connected closely with the weld nugget size(welding current, electrode displacement, dynamic resistance, welding time), thus much more original information is obtained. In this way, the difficulty caused by measuring indirectly weld nugget size can be decreased in spot welding quality control, and the stability of spot welding quality can be improved. According to this method, two-dimensional fuzzy controllers are designed with the information fusion result as input and the thyristor control signal as output. The spot welding experimental results indicate that the spot welding quality intelligent control method based on multiscnsor information fusion technology can compensate the influence caused by variable factors in welding process and ensure the stability of welding quality.展开更多
文摘The main equipmets of the HL-2A LHCD power supply are based on the old one, but the logical control protective system is a new part. Considering the output voltage is very high(up to 60 kV), so the logical control protective system is very important. The system is implemented based on PLC and the SIEMENS STEP7 software.
基金the National Natural Science Foundation of China(Nos.21801063,22305070 and U20041101)the Top-Notch Talents Program of Henan Agricultural University(Nos.30501049 and 30501032)for financial support。
文摘Herein,a ternary supramolecular assembly(BPP-BQ?CB[8]-SCD)is successfully constructed by a bromophenylpyridine-tethered-bromoisoquinoline(BPP-BQ),cucurbit[8]uril(CB[8])and sulfonatedβ-cyclodextrin(SCD)via successive assembling way,exhibiting progressively enhanced green roomtemperature phosphorescence(RTP).The self-aggregates of BPP-BQ?CB[8]-SCD accommodate an energy acceptor rhodamine B(Rh B)to form a light-harvesting system(BPP-BQ?CB[8]-SCD@Rh B)with further enhanced yellow long-lifetime luminescence with large Stokes shift based on triplet-singlet F?rster resonance energy transfer(TS-FRET).Crucially,the introduction of a photoactive diarylethene achieves the long-lived photoluminescence of BPP-BQ?CB[8]-SCD@Rh B to be switched with the efficiency of up to98%through logically ordered lowering/enhancing RTP performance of the energy donor and intercepting/restoring TS-FRET pathway,when stimulated by host-vip competition and light illumination in sequence.Moreover,BPP-BQ?CB[8]-SCD@Rh B is evenly doped into polyvinyl alcohol or polyacrylamide to obtain high-performance luminescent films with long afterglow.The abovementioned logically ordered stimulus-switched long-lived emission enables the light-harvesting system in both solution and solid state to be applied in high-security-level information encryption and transformation,and anticounterfeiting.
基金jointly supported by the National Natural Science Foundation of China under Grant Nos.62103178,61873284 and 61321003NSERC Canada。
文摘This study investigates finite-time observability of probabilistic logical control systems(PLCSs)under three definitions(i.e.,finite-time observability with probability one,finite-time singleinput sequence observability with probability one,and finite-time arbitrary-input observability with probability one).The authors adopt a parallel extension technique to recast the finite-time observability problem of a PLCS as a finite-time set reachability problem.Then,the finite-time set reachability problem can be transferred to stabilization problem of a logic dynamical system by using the state transfer graph reconstruction method.Necessary and sufficient conditions for finite-time observability under the three definitions are derived respectively.Finally,the proposed methods are illustrated by numerical examples.
基金supported by the National High Technology Research and Development Program of China under Grant No.2011AA05S113Major State Basic Research Development Program under Grant No.2012CB215106+1 种基金Science and Technology Plan Program in Zhejiang Province under Grant No.2009C34013National Science and Technology Supporting Plan Project under Grant No.2009BAG12A09
文摘Making full use of wind power is one of the main purposes of the wind turbine generator control. Conventional hill climbing search (HCS) method can realize the maximum power point tracking (MPPT). However, the step size of HCS method is constant so that it cannot consider both steady-state response and dynamic response. A fuzzy logical control (FLC) algorithm is proposed to solve this problem in this paper, which can track the maximum power point (MPP) quickly and smoothly. To evaluate MPPT algorithms, four performance indices are also proposed in this paper. They are the energy captured by wind turbine, the maximum power-point tracking time when wind speed changes slowly, the fluctuation magnitude of real power during steady state, and the energy captured by wind turbine when wind speed changes fast. Three cases are designed and simulated in MATLAB/Simulink respectively. The comparison of the three MPPT strategies concludes that the proposed fuzzy logical control algorithm is more superior to the conventional HCS algorithms.
基金Meg-science Engineering Project of the Chinese Academy of Sciences
文摘The timing and master control logic (MCL) units are the most important function units of the diagnostic neutral beam (DNB) power supply control system. The units control the operation of nine power supply subsystems of the DNB system, and provide protection for the DNB system from faults such as beam source arc down. Based on the characteristics of the DNB power supply system, the timing and MCL units have been designed, fabricated and tested. Experiments prove that the timing unit is convenient, flexible and reliable, and the MCL is functional.
基金funded by the Office of Gas and Electricity Markets(Ofgem)and supported by De Montfort University(DMU)and Nottingham Trent University(NTU),UK.
文摘This paper introduces the Integrated Security Embedded Resilience Architecture (ISERA) as an advanced resilience mechanism for Industrial Control Systems (ICS) and Operational Technology (OT) environments. The ISERA framework integrates security by design principles, micro-segmentation, and Island Mode Operation (IMO) to enhance cyber resilience and ensure continuous, secure operations. The methodology deploys a Forward-Thinking Architecture Strategy (FTAS) algorithm, which utilises an industrial Intrusion Detection System (IDS) implemented with Python’s Network Intrusion Detection System (NIDS) library. The FTAS algorithm successfully identified and responded to cyber-attacks, ensuring minimal system disruption. ISERA has been validated through comprehensive testing scenarios simulating Denial of Service (DoS) attacks and malware intrusions, at both the IT and OT layers where it successfully mitigates the impact of malicious activity. Results demonstrate ISERA’s efficacy in real-time threat detection, containment, and incident response, thus ensuring the integrity and reliability of critical infrastructure systems. ISERA’s decentralised approach contributes to global net zero goals by optimising resource use and minimising environmental impact. By adopting a decentralised control architecture and leveraging virtualisation, ISERA significantly enhances the cyber resilience and sustainability of critical infrastructure systems. This approach not only strengthens defences against evolving cyber threats but also optimises resource allocation, reducing the system’s carbon footprint. As a result, ISERA ensures the uninterrupted operation of essential services while contributing to broader net zero goals.
文摘As Model-Based Systems Engineering(MBSE)was applied to the Electric Multiple Unit(EMU)braking system control logic,a preliminary exploration was conducted for bullet train braking system control logic research using an MBSE practice framework.The framework mainly includes the requirement analysis phase,functional analysis phase,and design phase.Systems Modeling Language(SysML)was used as the modeling language,and Cameo Systems Modeler(CSM)was employed as the modeling tool.By integrating the EMU braking system control logic and utilizing a top-down design approach,the implementation of MBSE in the bullet train braking system was analyzed and studied.The results show that,according to the MBSE practice framework,a unified description of the requirement analysis,functional analysis,and design synthesis of the EMU braking system control logic can be achieved.Additionally,the correlation and traceability between models can be established.
基金Shandong University of Science and Technology Spring Buds Program(No.2010AZZ170)
文摘The control method of rubber tyre gantry (RTG) spreader in Qingdao Port Container Terminal is logic board control,which has many shortcomings such as expensive spare parts and high faults.This paper designs a new control system using programmable logic controller (PLC) centralized control to replace the original logic board control.The new system mainly contains complete ELME spreader control scheme design,hardware selection and PLC control program development.Its field application shows that the system has characteristics of high efficiency,low running cost,easy maintenance.
基金The Science and Technology Support Program of Jiangsu Province(No.BE2014133)the Prospective Joint Research Program of Jiangsu Province(No.BY2014127-01)
文摘In order to analyze and evaluate the performance of the air suspension system of heavy trucks with semi-active fuzzy control, a three-dimensional nonlinear dynamical model of a typical heavy truck with 16-DOF(degree of freedom) is established based on Matlab/Simulink software. The weighted root-mean-square(RMS) acceleration responses of the vertical driver 's seat, the pitch and roll angle of the cab, and the dynamic load coefficient(DLC) are chosen as objective functions, and the air suspension system is optimized and analyzed by the semi-active fuzzy control algorithm when vehicles operate under different operation conditions. The results show that the influence of the roll angle of the cab on the heavy truck ride comfort is clear when vehicles move on the road surface conditions of the ISO level D and ISO level E at a velocity over 27.5 m/s. The weighted RMS acceleration responses of vertical driver' s seat, the pitch and roll angle of the cab are decreased by 24%, 30% and 25%, respectively,when vehicles move on the road surface condition of the ISO level B at a velocity of 20 m/s. The value of the DLC also significantly decreases when vehicles operate under different operation conditions. Particularly, the DLC value of the tractor driver axle is greatly reduced by 27.4% when the vehicle operates under a vehicle fully-loaded condition on the road surface condition of ISO level B at a velocity of 27.5 m/s.
文摘The position control system of an electro-hydraulic actuator system (EHAS) is investigated in this paper. The EHAS is developed by taking into consideration the nonlinearities of the system: the friction and the internal leakage. A variable load that simulates a realistic load in robotic excavator is taken as the trajectory reference. A method of control strategy that is implemented by employing a fuzzy logic controller (FLC) whose parameters are optimized using particle swarm optimization (PSO) is proposed. The scaling factors of the fuzzy inference system are tuned to obtain the optimal values which yield the best system performance. The simulation results show that the FLC is able to track the trajectory reference accurately for a range of values of orifice opening. Beyond that range, the orifice opening may introduce chattering, which the FLC alone is not sufficient to overcome. The PSO optimized FLC can reduce the chattering significantly. This result justifies the implementation of the proposed method in position control of EHAS.
基金Project supported by Faculty of Technology,Department of Electrical Engineering,University of Batna,Algeria
文摘This study presents analysis, control and comparison of three hybrid approaches for the direct torque control (DTC) of the dual star induction motor (DSIM) drive. Its objective consists of combining three different heuristic optimization techniques including PID-PSO, Fuzzy-PSO and GA-PSO to improve the DSIM speed controlled loop behavior. The GA and PSO algorithms are developed and implemented into MATLAB. As a result, fuzzy-PSO is the most appropriate scheme. The main performance of fuzzy-PSO is reducing high torque ripples, improving rise time and avoiding disturbances that affect the drive performance.
基金863 National Project EQ7200HEV hybridelectric vehicle (2001AA501200,2003AA501200)
文摘Energy regeneration during braking is an important technique for hybrid electric vehicle (HEV) to improve their fuel economy and extend their driving range. Due to the effect of regenerative braking torque which is added by electric motor, the braking torque distribution between front and rear axles should be changed and the control logic of anti-lock braking system (ABS) ought to be adjusted according to the regenerative braking torque. This paper put forward a braking control strategy for hybrid electric vehicle; the control strategy is implemented with eight DOFs (Degree-of-Freedom) nonlinear vehicle forward simulation model which is built under the environment of Matlab/Simulink. Based on target wheel slip ratio, a fuzzy logic approach was applied to maintain the optimal target slip ratio so that best compromise between hydraulic torque and regenerative torque can be obtained for the vehicle.
文摘As wind energy is becoming one of the fastestgrowing renewable energy resources,controlling large-scale wind turbines remains a challenging task due to its system model nonlinearities and high external uncertainties.The main goal of the current work is to propose an intelligent control of the wind turbine system without the need for model identification.For this purpose,a novel model-independent nonsingular terminal slidingmode control(MINTSMC)using the basic principles of the ultralocal model(ULM)and combined with the single input interval type-2 fuzzy logic control(SIT2-FLC)is developed for non-linear wind turbine pitch angle control.In the suggested control framework,the MINTSMC scheme is designed to regulate the wind turbine speed rotor,and a sliding-mode(SM)observer is adopted to estimate the unknown phenomena of the ULM.The auxiliary SIT2-FLC is added in the model-independent control structure to improve the rotor speed regulation and compensate for the SM observation estimation error.Extensive examinations and comparative analyses were made using a real-time softwarein-the-loop(RT-SiL)based on the dSPACE 1202 board to appraise the efficiency and applicability of the suggested modelindependent scheme in a real-time testbed.
基金supported in part by the Fundamental Research Funds for the Central Universities (No. 201964012)the Open Foundation of Henan Key Laboratory of Underwater Intelligent Equipment (No. KL02A1802)+1 种基金the National Natural Science Foundations of China (Nos. 61603361 and 51979256)the Shandong Provincial Natural Science Foundation (No. ZR2017MEE015)。
文摘In this paper, a fuzzy sliding mode active disturbance rejection control(FSMADRC) scheme is proposed for an autonomous underwater vehicle-manipulator system(AUVMS) with a two-link and three-joint manipulator. First, the AUVMS is separated into nine subsystems, and the combined effects of dynamic uncertainties, hydrodynamic force, unknown disturbances, and nonlinear coupling terms on each subsystem are lumped into a single total disturbance. Next, a linear extended state observer(LESO) is presented to estimate the total disturbance. Then, a sliding mode active disturbance rejection control(SMADRC) scheme is proposed to enhance the robustness of the control system. The stability of the SMADRC and the estimation errors of the LESO are analyzed. Because it is difficult to simultaneously adjust several parameters for a LESO-based SMADRC scheme, a fuzzy logic control(FLC) scheme is used to formulate the FSMADRC to determine the appropriate parameters adaptively for practical applications. Finally, two AUVMS tasks are illustrated to test the trajectory tracking performance of the closed-loop system and its ability to reject and attenuate the total disturbance. The simulation results show that the proposed FSMADRC scheme achieves better performance and consume less energy than conventional PID and FLC techniques.
基金High Level Talented Person Funded Project of Hebei Province(No.C2013005003)Excellent Experts for Going Abroad Training Program of Hebei Province(No.10215601D)
文摘Servo pressure pulse testing equipment uses servo-hydraulic technology to build the model of hydraulic system. By improving measurement and control system, the equipment accomplishes signal acquisition, data processing and process con- trol. LabVIEW and programmable logic controller (PLC) are used to carry out the hardware configuration and software de- velopment. The system can communicate between LabVIEW and PLC by virtual instrumentation software architecture (VI- SA) and run automatically in accordance with setting commands. Therefore, accuracy and performance of the equipment are improved.
基金National Natural Science Foundation of China and Provincial Natural Science Foundafion of Guangdong, China.
文摘An artificial neural network(ANN) and a self-adjusting fuzzy logiccontroller(FLC) for modeling and control of gas tungsten arc welding(GTAW) process are presented.The discussion is mainly focused on the modeling and control of the weld pool depth with ANN and theintelligent control for weld seam tracking with FLC. The proposed neural network can produce highlycomplex nonlinear multi-variable model of the GTAW process that offers the accurate prediction ofwelding penetration depth. A self-adjusting fuzzy controller used for seam tracking adjusts thecontrol parameters on-line automatically according to the tracking errors so that the torch positioncan be controlled accurately.
基金Supported by the International S&T Cooperation Program of China(No.2014DFR70280)Key Research and Development Project of Shanxi Province(No.201903D321012)+1 种基金Key Research and Development Project of Shanxi Province(No.201903D121023)Patent Promotion and Implementation Funding Research Project of Shanxi Province(No.20210521).
文摘In the field of industrial process control,a fast-development platform for programmable logic controller(PLC)systems is designed in order to solve two main problems of rapid development of PLC control system and programmability of controlling software.In the aspect of design,the platform is composed of hardware controlling and software monitoring and is taking industrial computer as the core.Under the Windows environment,the platform establishes the control instruction set,develops the configuration function and visual programming function of the monitoring software and it integrates PLC controller based on Visual Basic software.In order to achieve the function of data monitoring,it has realized the serial communication between computer and PLC by using RS-485 and RS-232 serial ports line communication.The platform designs the intelligent instruction scheduling strategy by studying the encoding and decoding rules of the communication instruction set.It proposes a method for rapidly developing control programs by adopting the expert control mode,which enables clients to develop and modify programs conveniently by importing instructions in a non-coded manner.After experimental testing,the platform is proved successful achieving both the rapid development of PLC control system and the rapid modification of monitoring software.
基金the National High Technology Development of China to R & D EV Project(863-2001AA501213)
文摘The Hierarchical Structure Fuzzy Logic Control (HSFLC) strategies of torque distribute for Parallel Hybrid Electric Vehicle (PHEV) in the mode of operation of the vehicle i. e. , acceleration, cruise, deceleration etc. have been studied. Using secondly developed the hybrid vehicle simulation tool ADVISOR, the dynamic model of PHEV has been set up by MATLAB/SIMULINK. The engine, motor as well as the battery characteristics have been studied. Simulation results show that the proposed hierarchical structured fuzzy logic control strategy is effective over the entire operating range of the vehicle in terms of fuel economy. Based on the analyses of the simulation results and driver’s experiences, a fuzzy controller is designed and developed to control the torque distribution. The controller is evaluated via hardware-in-the-loop simulator (HILS). The results show that controller verify its value.
文摘Fuzzy logic controller adopting unevenly-distributed membership function was presented with the purpose of enhancing performance of the temperature control precision and robustness for the chamber cooling system.Histogram equalization and noise detection were performed to modify the evenly-distributed membership functions of error and error change rate into unevenly-distributed membership functions.Then,the experimental results with evenly and unevenly distributed membership functions were compared under the same outside environment conditions.The experimental results show that the steady-state error is reduced around 40% and the noise disturbance is rejected successfully even though noise range is 60% of the control precision range.The control precision is improved by reducing the steady-state error and the robustness is enhanced by rejecting noise disturbance through the fuzzy logic controller with unevenly-distributed membership function.Moreover,the system energy efficiency and lifetime of electronic expansion valve(EEV) installed in chamber cooling system are improved by adopting the unevenly-distributed membership function.
基金This project is supported by Municipal Key Science Foundation of Shenyang,China(No.1041020-1-04)Provincial Natural Science Foundation of Liaoning,China(No.20031022).
文摘The multisensor information fusion technology is adopted for real time measuring the four parameters which are connected closely with the weld nugget size(welding current, electrode displacement, dynamic resistance, welding time), thus much more original information is obtained. In this way, the difficulty caused by measuring indirectly weld nugget size can be decreased in spot welding quality control, and the stability of spot welding quality can be improved. According to this method, two-dimensional fuzzy controllers are designed with the information fusion result as input and the thyristor control signal as output. The spot welding experimental results indicate that the spot welding quality intelligent control method based on multiscnsor information fusion technology can compensate the influence caused by variable factors in welding process and ensure the stability of welding quality.