Cluster tools have advantages of shorter cycle times,faster process development,and better yield for less contamination.The sequence of dual-arm cluster tools is a complex logistics process during the semiconductor pr...Cluster tools have advantages of shorter cycle times,faster process development,and better yield for less contamination.The sequence of dual-arm cluster tools is a complex logistics process during the semiconductor production.Efficient use of cluster tools is naturally very significant to competitive fab operations.Generating an optimized sequence in a computationally efficient manner and assessing the quality of the requirements to improve the fab production are the key factors for semiconductor manufacturing productivity.The Petri net modeling is introduced to minimize the makespan of the process for the three different logical modes and select a better mode after comparing the makespan among the three logical modes.The tool sequence optimization problem is formulated as optimization firing transition sequences based on the Petri net and then the formulation is converted to be linearly solved by the branch-and-cut method in the standard commercial solver CPLEX.Special methods for the linear conversion are highlighted.Due to the limited calculation time requirement for the real production and the large scale of the problem,special methods for the efficiency tuning are applied according to the characteristics of the problem.Numerical testing is supported by one of the most advanced semiconductor enterprises and the computational results show significant improvement compared with the traditional manual sequence results.展开更多
In this study an indirect adaptive sliding mode control (SMC) based on a fuzzy logic scheme is proposed to strengthen the tracking control performance of a general class of multi-input multi-output (MIMO) nonlinear un...In this study an indirect adaptive sliding mode control (SMC) based on a fuzzy logic scheme is proposed to strengthen the tracking control performance of a general class of multi-input multi-output (MIMO) nonlinear uncertain systems. Combining reaching law approach and fuzzy universal approximation theorem, the proposed design procedure combines the advantages of fuzzy logic control, adaptive control and sliding mode control. The stability of the control systems is proved in the sense of the Lyapunov second stability theorem. Two simulation studies are presented to demonstrate the effectiveness of our new hybrid control algorithm.展开更多
Now a days,MOS Current Mode Logic(MCML)has emerged as a better alternative to Complementary Metal Oxide Semiconductor(CMOS)logic in digital circuits.Recent works have only traditional logic gates that have issues with...Now a days,MOS Current Mode Logic(MCML)has emerged as a better alternative to Complementary Metal Oxide Semiconductor(CMOS)logic in digital circuits.Recent works have only traditional logic gates that have issues with information loss.Reversible logic is incorporated with MOS Current Mode Logic(MCML)in this proposed work to solve this problem,which is used for multiplier design,D Flip-Flop(DFF)and register.The minimization of power and area is the main aim of the work.In reversible logic,the count of outputs and inputs is retained as the same value for creating one-to-one mapping.A unique output vector set can be generated for each input vector set and information loss is also prevented.In reversible MCML based multiplier,reversible logic full adder is utilized to minimize the area and power.D flip-flops based on reversible MCML are often designed to store information that is then combined to form a reversible MCML based register.The proposed reversible MCML multiplier attains average power of 0.683 mW,Reversible MCML based DFF achieves 0.56μW and Reversible MCML based 8-bit register attains 04.04μW.The result shows that the proposed Reversible MCML based multiplier,Reversible MCML based D flip-flop and ReversibleMCML based register achieves better performance in terms of current,power dissipation,average power and area.展开更多
Dipole coupled nanomagnets controlled by the static Zeeman field can form various magnetic logic interconnects.However, the corner wire interconnect is often unreliable and error-prone at room temperature. In this stu...Dipole coupled nanomagnets controlled by the static Zeeman field can form various magnetic logic interconnects.However, the corner wire interconnect is often unreliable and error-prone at room temperature. In this study, we address this problem by making it into a reliable type with trapezoid-shaped nanomagnets, the shape anisotropy of which helps to offer the robustness. The building method of the proposed corner wire interconnect is discussed,and both its static and dynamic magnetization properties are investigated. Static micromagnetic simulation demonstrates that it can work correctly and reliably. Dynamic response results are reached by imposing an ac microwave field on the proposed corner wire. It is found that strong ferromagnetic resonance absorption appears at a low frequency. With the help of a very small ac field with the peak resonance frequency, the required static Zeeman field to switch the corner wire is significantly decreased by ~21 m T. This novel interconnect would pave the way for the realization of reliable and low power nanomagnetic logic circuits.展开更多
This paper investigates the issue of testing Current Mode Logic (CML) gates. A three-bit parity checker is used as a case study. It is first shown that, as expected, the stuck-at fault model is not appropriate for tes...This paper investigates the issue of testing Current Mode Logic (CML) gates. A three-bit parity checker is used as a case study. It is first shown that, as expected, the stuck-at fault model is not appropriate for testing CML gates. It is then proved that switching the order in which inputs are applied to a gate will affect the minimum test set;this is not the case in conventional voltage mode gates. Both the circuit output and its inverse have to be monitored to reduce the size of the test set.展开更多
In the context of induction motor control, there are various control strategies used to separately control torque and flux. One common approach is known as Field-Oriented Control (FOC). This technique involves transfo...In the context of induction motor control, there are various control strategies used to separately control torque and flux. One common approach is known as Field-Oriented Control (FOC). This technique involves transforming the three-phase currents and voltages into a rotating reference frame, commonly referred to as the “dq” frame. In this frame, the torque/speed and flux components are decoupled, allowing for independent control, by doing so, the motor’s speed can be regulated accurately and maintain a constant flux which is crucial to ensure optimal motor performance and efficiency. The research focused on studying and simulating a field-oriented control system using fuzzy control techniques for an induction motor. The aim was to address the issue of parameter variations, particularly the change in rotor resistance during motor operation, which causes the control system to deviate from the desired direction. This deviation implies to an increase in the magnetic flux value, specifically the flux component on the q-axis. By employing fuzzy logic techniques to regulate flux vector’s components in the dq frame, this problem was successfully resolved, ensuring that the magnetic flux value remains within the nominal limits. To enhance the control system’s performance, response speed, and efficiency of the motor, sliding mode controllers were implemented to regulate the current in the inner loop. The simulation results demonstrated the proficiency of the proposed methodology.展开更多
This research presents a methodology,to calculate the amount of physical activity during the transportation.It contains the following steps:(1)trip and activity detection(2)speed calculation(3)splitting trips into tri...This research presents a methodology,to calculate the amount of physical activity during the transportation.It contains the following steps:(1)trip and activity detection(2)speed calculation(3)splitting trips into trip-leg(4)transportation mode detection and(5)physical activity calculation.The Global Positioning System is used to record the transport activities,either single mode or multimode.During the trip execution,the travel behaviour and the travel mode are also observed to obtain the physical activity levels.The physical activity levels are calculated by taking the ratio of the Total Energy Expenditure and the Basal Metabolic Rate.To obtain the results,an automated system is presented which calculates the speed and also detects the mode of each trip-leg.It also calculates the amount of physical activity.The obtained physical activity levels for the recorded 1750 trips are unit less and range from 1.10 to 2.00.By using the motorized transportation mode,the physical activity levels stay low and the subject failed to achieve the recommended health guideline.The minimum value for the moderate level of physical activity is 1.6.The requirement can be fully achieved when the transportation mode is active i.e.walking,cycling,and performed at moderate intensity level for at least 30 min a day.展开更多
The aim of this paper is to develop a neuro-fuzzy-sliding mode controller (NFSMC) with a nonlinear sliding surface for a coupled tank system. The main purpose is to eliminate the chattering phenomenon and to overcom...The aim of this paper is to develop a neuro-fuzzy-sliding mode controller (NFSMC) with a nonlinear sliding surface for a coupled tank system. The main purpose is to eliminate the chattering phenomenon and to overcome the problem of the equivalent control computation. A first-order nonlinear sliding surface is presented, on which the developed sliding mode controller (SMC) is based. Mathematical proof for the stability and convergence of the system is presented. In order to reduce the chattering in SMC, a fixed boundary layer around the switch surface is used. Within the boundary layer, where the fuzzy logic control is applied, the chattering phenomenon, which is inherent in a sliding mode control, is avoided by smoothing the switch signal. Outside the boundary, the sliding mode control is applied to drive the system states into the boundary layer. Moreover, to compute the equivalent controller, a feed-forward neural network (NN) is used. The weights of the net are updated such that the corrective control term of the NFSMC goes to zero. Then, this NN also alleviates the chattering phenomenon because a big gain in the corrective control term produces a more serious chattering than a small gain. Experimental studies carried out on a coupled tank system indicate that the proposed approach is good for control applications.展开更多
For enhancing the control effectiveness,we firstly design a fuzzy logic based sliding mode controller(FSMC)for nonlinear crane systems.On basis of overhead crane dynamic characteristic,the sliding mode function with r...For enhancing the control effectiveness,we firstly design a fuzzy logic based sliding mode controller(FSMC)for nonlinear crane systems.On basis of overhead crane dynamic characteristic,the sliding mode function with regard to trolley position and payload angle.Additionally,in order to eliminate the chattering problem of sliding mode control,the fuzzy logic theory is adopted to soften the control performance.Moreover,aiming at the FSMC parameter setting problem,a DE algorithm based optimization scheme is proposed for enhancing the control performance.Finally,by implementing the computer simulation,the DE based FSMC can effectively tackle the overhead crane sway problem and avoid unexpected accident greatly.展开更多
In this paper, a novel fuzzy sliding mode control(FSMC) guidance law with terminal constraints of miss distance, impact angle and acceleration is presented for a constant speed missile against the stationary or slow...In this paper, a novel fuzzy sliding mode control(FSMC) guidance law with terminal constraints of miss distance, impact angle and acceleration is presented for a constant speed missile against the stationary or slowly moving target. The proposed guidance law combines the sliding mode control algorithm with a fuzzy logic control scheme for the lag-free system and the first-order lag system. Through using Lyapunov stability theory, we prove the sliding surface converges to zero in finite time. Furthermore, considering the uncertain information and system disturbances, the guidance gains are on-line optimized by fuzzy logic technique. Numerical simulations are performed to demonstrate the performance of the FSMC guidance law and the results illustrate the validity and effectiveness of the proposed guidance law.展开更多
In this paper, a fuzzy sliding mode active disturbance rejection control(FSMADRC) scheme is proposed for an autonomous underwater vehicle-manipulator system(AUVMS) with a two-link and three-joint manipulator. First, t...In this paper, a fuzzy sliding mode active disturbance rejection control(FSMADRC) scheme is proposed for an autonomous underwater vehicle-manipulator system(AUVMS) with a two-link and three-joint manipulator. First, the AUVMS is separated into nine subsystems, and the combined effects of dynamic uncertainties, hydrodynamic force, unknown disturbances, and nonlinear coupling terms on each subsystem are lumped into a single total disturbance. Next, a linear extended state observer(LESO) is presented to estimate the total disturbance. Then, a sliding mode active disturbance rejection control(SMADRC) scheme is proposed to enhance the robustness of the control system. The stability of the SMADRC and the estimation errors of the LESO are analyzed. Because it is difficult to simultaneously adjust several parameters for a LESO-based SMADRC scheme, a fuzzy logic control(FLC) scheme is used to formulate the FSMADRC to determine the appropriate parameters adaptively for practical applications. Finally, two AUVMS tasks are illustrated to test the trajectory tracking performance of the closed-loop system and its ability to reject and attenuate the total disturbance. The simulation results show that the proposed FSMADRC scheme achieves better performance and consume less energy than conventional PID and FLC techniques.展开更多
A skyhook surface sliding mode control method was proposed and applied to the control on the semi-active vehicle suspension system for its ride comfort enhancement. A two degree of freedom dynamic model of a vehicle s...A skyhook surface sliding mode control method was proposed and applied to the control on the semi-active vehicle suspension system for its ride comfort enhancement. A two degree of freedom dynamic model of a vehicle semi-active suspension system was given, which focused on the passenger’s ride comfort perform-ance. A simulation with the given initial conditions has been devised in MATLAB/SIMULINK. The simula-tion results were showing that there was an enhanced level of ride comfort for the vehicle semi-active sus-pension system with the skyhook surface sliding mode controller.展开更多
In this article, an adaptive fuzzy sliding mode control (AFSMC) scheme is derived for robotic systems. In the AFSMC design, the sliding mode control (SMC) concept is combined with fuzzy control strategy to obtain a mo...In this article, an adaptive fuzzy sliding mode control (AFSMC) scheme is derived for robotic systems. In the AFSMC design, the sliding mode control (SMC) concept is combined with fuzzy control strategy to obtain a model-free fuzzy sliding mode control. The equivalent controller has been substituted for by a fuzzy system and the uncertainties are estimated on-line. The approach of the AFSMC has the learning ability to generate the fuzzy control actions and adaptively compensates for the uncertainties. Despite the high nonlinearity and coupling effects, the control input of the proposed control algorithm has been decoupled leading to a simplified control mechanism for robotic systems. Simulations have been carried out on a two link planar robot. Results show the effectiveness of the proposed control system.展开更多
Taking autonomous driving and driverless as the research object,we discuss and define intelligent high-precision map.Intelligent high-precision map is considered as a key link of future travel,a carrier of real-time p...Taking autonomous driving and driverless as the research object,we discuss and define intelligent high-precision map.Intelligent high-precision map is considered as a key link of future travel,a carrier of real-time perception of traffic resources in the entire space-time range,and the criterion for the operation and control of the whole process of the vehicle.As a new form of map,it has distinctive features in terms of cartography theory and application requirements compared with traditional navigation electronic maps.Thus,it is necessary to analyze and discuss its key features and problems to promote the development of research and application of intelligent high-precision map.Accordingly,we propose an information transmission model based on the cartography theory and combine the wheeled robot’s control flow in practical application.Next,we put forward the data logic structure of intelligent high-precision map,and analyze its application in autonomous driving.Then,we summarize the computing mode of“Crowdsourcing+Edge-Cloud Collaborative Computing”,and carry out key technical analysis on how to improve the quality of crowdsourced data.We also analyze the effective application scenarios of intelligent high-precision map in the future.Finally,we present some thoughts and suggestions for the future development of this field.展开更多
By applying switch-signal theory, the interaction between MOS transmission switch-ing transistor and current signal in current-mode CMOS circuits is analyzed, and the theory oftransmission current-switches which is su...By applying switch-signal theory, the interaction between MOS transmission switch-ing transistor and current signal in current-mode CMOS circuits is analyzed, and the theory oftransmission current-switches which is suitable to current-mode CMOS circuits is proposed. Thecircuits, such as ternary full-adder etc., designed by using this theory have simpler circuit struc-tures and correct logic functions. It is confirmed that this theory is efficient in guiding the logicdesign of current-mode CMOS circuits at switch level.展开更多
Fuzzy Logic System (FLS) can be utilized to approxi-mate complex uncertain nonlinear dynamic systems. Inthis paper, an adaptive fuzzy Sliding Mode Control(SMC) scheme is proposed where FLS is used as an ap-proximation...Fuzzy Logic System (FLS) can be utilized to approxi-mate complex uncertain nonlinear dynamic systems. Inthis paper, an adaptive fuzzy Sliding Mode Control(SMC) scheme is proposed where FLS is used as an ap-proximation of the unknown systems. In order to reducethe approximation errors between the true nonlinearmodel and FLS, an adaptive law is presented. The sta-bility of the controlled system is proved by using Lya-punov stability theory. The proposed control scheme isapplied to an inverted pendulum system to show its effec-tiveness.展开更多
In order to improve the performance of arithmetic very large-scale integration (VLSI) sys- tem, a novel structure of quaternary logic gates is proposed based on multiple-valued current mode (MVCM) by using dynamic...In order to improve the performance of arithmetic very large-scale integration (VLSI) sys- tem, a novel structure of quaternary logic gates is proposed based on multiple-valued current mode (MVCM) by using dynamic source-coupled logic (SCL). Its key components, the comparator and the output generator are both based on differential-pair circuit (DPC), and the latter is constructed by using the structure of DPC trees. The pre-charge evaluates logic style makes a steady current flow cut off, thereby greatly saving the power dissipation. The combination of multiple-valued source- coupled logic and differential-pair circuit makes it lower power consumption and more compact. The performance is evaluated by HSPICE simulation with 0.18 ~m CMOS technology. The power dissipa- tion, transistor numbers and delay are superior to corresponding binary CMOS implementation. Mul- tiple-valued logic will be the potential solution for the high performance arithmetic VLSI system in the future.展开更多
基金the National Natural Science Foundation of China(No.60534010)the 111 Project (No.B08015)the Project of Ministry of Education (No.NCET-05-0294)
文摘Cluster tools have advantages of shorter cycle times,faster process development,and better yield for less contamination.The sequence of dual-arm cluster tools is a complex logistics process during the semiconductor production.Efficient use of cluster tools is naturally very significant to competitive fab operations.Generating an optimized sequence in a computationally efficient manner and assessing the quality of the requirements to improve the fab production are the key factors for semiconductor manufacturing productivity.The Petri net modeling is introduced to minimize the makespan of the process for the three different logical modes and select a better mode after comparing the makespan among the three logical modes.The tool sequence optimization problem is formulated as optimization firing transition sequences based on the Petri net and then the formulation is converted to be linearly solved by the branch-and-cut method in the standard commercial solver CPLEX.Special methods for the linear conversion are highlighted.Due to the limited calculation time requirement for the real production and the large scale of the problem,special methods for the efficiency tuning are applied according to the characteristics of the problem.Numerical testing is supported by one of the most advanced semiconductor enterprises and the computational results show significant improvement compared with the traditional manual sequence results.
文摘In this study an indirect adaptive sliding mode control (SMC) based on a fuzzy logic scheme is proposed to strengthen the tracking control performance of a general class of multi-input multi-output (MIMO) nonlinear uncertain systems. Combining reaching law approach and fuzzy universal approximation theorem, the proposed design procedure combines the advantages of fuzzy logic control, adaptive control and sliding mode control. The stability of the control systems is proved in the sense of the Lyapunov second stability theorem. Two simulation studies are presented to demonstrate the effectiveness of our new hybrid control algorithm.
文摘Now a days,MOS Current Mode Logic(MCML)has emerged as a better alternative to Complementary Metal Oxide Semiconductor(CMOS)logic in digital circuits.Recent works have only traditional logic gates that have issues with information loss.Reversible logic is incorporated with MOS Current Mode Logic(MCML)in this proposed work to solve this problem,which is used for multiplier design,D Flip-Flop(DFF)and register.The minimization of power and area is the main aim of the work.In reversible logic,the count of outputs and inputs is retained as the same value for creating one-to-one mapping.A unique output vector set can be generated for each input vector set and information loss is also prevented.In reversible MCML based multiplier,reversible logic full adder is utilized to minimize the area and power.D flip-flops based on reversible MCML are often designed to store information that is then combined to form a reversible MCML based register.The proposed reversible MCML multiplier attains average power of 0.683 mW,Reversible MCML based DFF achieves 0.56μW and Reversible MCML based 8-bit register attains 04.04μW.The result shows that the proposed Reversible MCML based multiplier,Reversible MCML based D flip-flop and ReversibleMCML based register achieves better performance in terms of current,power dissipation,average power and area.
基金Supported by the National Natural Science Foundation of China under Grant No 61302022
文摘Dipole coupled nanomagnets controlled by the static Zeeman field can form various magnetic logic interconnects.However, the corner wire interconnect is often unreliable and error-prone at room temperature. In this study, we address this problem by making it into a reliable type with trapezoid-shaped nanomagnets, the shape anisotropy of which helps to offer the robustness. The building method of the proposed corner wire interconnect is discussed,and both its static and dynamic magnetization properties are investigated. Static micromagnetic simulation demonstrates that it can work correctly and reliably. Dynamic response results are reached by imposing an ac microwave field on the proposed corner wire. It is found that strong ferromagnetic resonance absorption appears at a low frequency. With the help of a very small ac field with the peak resonance frequency, the required static Zeeman field to switch the corner wire is significantly decreased by ~21 m T. This novel interconnect would pave the way for the realization of reliable and low power nanomagnetic logic circuits.
文摘This paper investigates the issue of testing Current Mode Logic (CML) gates. A three-bit parity checker is used as a case study. It is first shown that, as expected, the stuck-at fault model is not appropriate for testing CML gates. It is then proved that switching the order in which inputs are applied to a gate will affect the minimum test set;this is not the case in conventional voltage mode gates. Both the circuit output and its inverse have to be monitored to reduce the size of the test set.
文摘In the context of induction motor control, there are various control strategies used to separately control torque and flux. One common approach is known as Field-Oriented Control (FOC). This technique involves transforming the three-phase currents and voltages into a rotating reference frame, commonly referred to as the “dq” frame. In this frame, the torque/speed and flux components are decoupled, allowing for independent control, by doing so, the motor’s speed can be regulated accurately and maintain a constant flux which is crucial to ensure optimal motor performance and efficiency. The research focused on studying and simulating a field-oriented control system using fuzzy control techniques for an induction motor. The aim was to address the issue of parameter variations, particularly the change in rotor resistance during motor operation, which causes the control system to deviate from the desired direction. This deviation implies to an increase in the magnetic flux value, specifically the flux component on the q-axis. By employing fuzzy logic techniques to regulate flux vector’s components in the dq frame, this problem was successfully resolved, ensuring that the magnetic flux value remains within the nominal limits. To enhance the control system’s performance, response speed, and efficiency of the motor, sliding mode controllers were implemented to regulate the current in the inner loop. The simulation results demonstrated the proficiency of the proposed methodology.
文摘This research presents a methodology,to calculate the amount of physical activity during the transportation.It contains the following steps:(1)trip and activity detection(2)speed calculation(3)splitting trips into trip-leg(4)transportation mode detection and(5)physical activity calculation.The Global Positioning System is used to record the transport activities,either single mode or multimode.During the trip execution,the travel behaviour and the travel mode are also observed to obtain the physical activity levels.The physical activity levels are calculated by taking the ratio of the Total Energy Expenditure and the Basal Metabolic Rate.To obtain the results,an automated system is presented which calculates the speed and also detects the mode of each trip-leg.It also calculates the amount of physical activity.The obtained physical activity levels for the recorded 1750 trips are unit less and range from 1.10 to 2.00.By using the motorized transportation mode,the physical activity levels stay low and the subject failed to achieve the recommended health guideline.The minimum value for the moderate level of physical activity is 1.6.The requirement can be fully achieved when the transportation mode is active i.e.walking,cycling,and performed at moderate intensity level for at least 30 min a day.
文摘The aim of this paper is to develop a neuro-fuzzy-sliding mode controller (NFSMC) with a nonlinear sliding surface for a coupled tank system. The main purpose is to eliminate the chattering phenomenon and to overcome the problem of the equivalent control computation. A first-order nonlinear sliding surface is presented, on which the developed sliding mode controller (SMC) is based. Mathematical proof for the stability and convergence of the system is presented. In order to reduce the chattering in SMC, a fixed boundary layer around the switch surface is used. Within the boundary layer, where the fuzzy logic control is applied, the chattering phenomenon, which is inherent in a sliding mode control, is avoided by smoothing the switch signal. Outside the boundary, the sliding mode control is applied to drive the system states into the boundary layer. Moreover, to compute the equivalent controller, a feed-forward neural network (NN) is used. The weights of the net are updated such that the corrective control term of the NFSMC goes to zero. Then, this NN also alleviates the chattering phenomenon because a big gain in the corrective control term produces a more serious chattering than a small gain. Experimental studies carried out on a coupled tank system indicate that the proposed approach is good for control applications.
基金This work is supported by the Natural Science Foundation of Jiangsu Province(No.BK20160913)the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(No.18KJB520035)+4 种基金the High Level Teacher Research Foundation of Nanjing University of Posts and Telecommunications(No.NY2016021)the Incubation Foundation of Nanjing University of Posts and Telecommunications(No.NY217055)Postdoctoral Foundation of Jiangsu Province(No.1701016A)Natural Science Foundation of China(No.61602259,No.61373135 and No.61672299)National Engineering Laboratory for Logistics Information Technology,YuanTong Express Co.LTD.
文摘For enhancing the control effectiveness,we firstly design a fuzzy logic based sliding mode controller(FSMC)for nonlinear crane systems.On basis of overhead crane dynamic characteristic,the sliding mode function with regard to trolley position and payload angle.Additionally,in order to eliminate the chattering problem of sliding mode control,the fuzzy logic theory is adopted to soften the control performance.Moreover,aiming at the FSMC parameter setting problem,a DE algorithm based optimization scheme is proposed for enhancing the control performance.Finally,by implementing the computer simulation,the DE based FSMC can effectively tackle the overhead crane sway problem and avoid unexpected accident greatly.
基金supported by the National Natural Science Foundation of China(6130422461305018+1 种基金61472423)the National Advanced Research Project of China(51301010206)
文摘In this paper, a novel fuzzy sliding mode control(FSMC) guidance law with terminal constraints of miss distance, impact angle and acceleration is presented for a constant speed missile against the stationary or slowly moving target. The proposed guidance law combines the sliding mode control algorithm with a fuzzy logic control scheme for the lag-free system and the first-order lag system. Through using Lyapunov stability theory, we prove the sliding surface converges to zero in finite time. Furthermore, considering the uncertain information and system disturbances, the guidance gains are on-line optimized by fuzzy logic technique. Numerical simulations are performed to demonstrate the performance of the FSMC guidance law and the results illustrate the validity and effectiveness of the proposed guidance law.
基金supported in part by the Fundamental Research Funds for the Central Universities (No. 201964012)the Open Foundation of Henan Key Laboratory of Underwater Intelligent Equipment (No. KL02A1802)+1 种基金the National Natural Science Foundations of China (Nos. 61603361 and 51979256)the Shandong Provincial Natural Science Foundation (No. ZR2017MEE015)。
文摘In this paper, a fuzzy sliding mode active disturbance rejection control(FSMADRC) scheme is proposed for an autonomous underwater vehicle-manipulator system(AUVMS) with a two-link and three-joint manipulator. First, the AUVMS is separated into nine subsystems, and the combined effects of dynamic uncertainties, hydrodynamic force, unknown disturbances, and nonlinear coupling terms on each subsystem are lumped into a single total disturbance. Next, a linear extended state observer(LESO) is presented to estimate the total disturbance. Then, a sliding mode active disturbance rejection control(SMADRC) scheme is proposed to enhance the robustness of the control system. The stability of the SMADRC and the estimation errors of the LESO are analyzed. Because it is difficult to simultaneously adjust several parameters for a LESO-based SMADRC scheme, a fuzzy logic control(FLC) scheme is used to formulate the FSMADRC to determine the appropriate parameters adaptively for practical applications. Finally, two AUVMS tasks are illustrated to test the trajectory tracking performance of the closed-loop system and its ability to reject and attenuate the total disturbance. The simulation results show that the proposed FSMADRC scheme achieves better performance and consume less energy than conventional PID and FLC techniques.
文摘A skyhook surface sliding mode control method was proposed and applied to the control on the semi-active vehicle suspension system for its ride comfort enhancement. A two degree of freedom dynamic model of a vehicle semi-active suspension system was given, which focused on the passenger’s ride comfort perform-ance. A simulation with the given initial conditions has been devised in MATLAB/SIMULINK. The simula-tion results were showing that there was an enhanced level of ride comfort for the vehicle semi-active sus-pension system with the skyhook surface sliding mode controller.
文摘In this article, an adaptive fuzzy sliding mode control (AFSMC) scheme is derived for robotic systems. In the AFSMC design, the sliding mode control (SMC) concept is combined with fuzzy control strategy to obtain a model-free fuzzy sliding mode control. The equivalent controller has been substituted for by a fuzzy system and the uncertainties are estimated on-line. The approach of the AFSMC has the learning ability to generate the fuzzy control actions and adaptively compensates for the uncertainties. Despite the high nonlinearity and coupling effects, the control input of the proposed control algorithm has been decoupled leading to a simplified control mechanism for robotic systems. Simulations have been carried out on a two link planar robot. Results show the effectiveness of the proposed control system.
基金National Key Research and Development Program(No.2018YFB1305001)Major Consulting and Research Project of Chinese Academy of Engineering(No.2018-ZD-02-07)。
文摘Taking autonomous driving and driverless as the research object,we discuss and define intelligent high-precision map.Intelligent high-precision map is considered as a key link of future travel,a carrier of real-time perception of traffic resources in the entire space-time range,and the criterion for the operation and control of the whole process of the vehicle.As a new form of map,it has distinctive features in terms of cartography theory and application requirements compared with traditional navigation electronic maps.Thus,it is necessary to analyze and discuss its key features and problems to promote the development of research and application of intelligent high-precision map.Accordingly,we propose an information transmission model based on the cartography theory and combine the wheeled robot’s control flow in practical application.Next,we put forward the data logic structure of intelligent high-precision map,and analyze its application in autonomous driving.Then,we summarize the computing mode of“Crowdsourcing+Edge-Cloud Collaborative Computing”,and carry out key technical analysis on how to improve the quality of crowdsourced data.We also analyze the effective application scenarios of intelligent high-precision map in the future.Finally,we present some thoughts and suggestions for the future development of this field.
基金Supported by National Natural Science Foundation of China
文摘By applying switch-signal theory, the interaction between MOS transmission switch-ing transistor and current signal in current-mode CMOS circuits is analyzed, and the theory oftransmission current-switches which is suitable to current-mode CMOS circuits is proposed. Thecircuits, such as ternary full-adder etc., designed by using this theory have simpler circuit struc-tures and correct logic functions. It is confirmed that this theory is efficient in guiding the logicdesign of current-mode CMOS circuits at switch level.
基金This work was supported by China Postdoctoral Science Foundation and Hebei Provincial Natural Science Foundation(698004).
文摘Fuzzy Logic System (FLS) can be utilized to approxi-mate complex uncertain nonlinear dynamic systems. Inthis paper, an adaptive fuzzy Sliding Mode Control(SMC) scheme is proposed where FLS is used as an ap-proximation of the unknown systems. In order to reducethe approximation errors between the true nonlinearmodel and FLS, an adaptive law is presented. The sta-bility of the controlled system is proved by using Lya-punov stability theory. The proposed control scheme isapplied to an inverted pendulum system to show its effec-tiveness.
基金Supported by Beijing Institute of Technology Science Foundation(3050012211106)
文摘In order to improve the performance of arithmetic very large-scale integration (VLSI) sys- tem, a novel structure of quaternary logic gates is proposed based on multiple-valued current mode (MVCM) by using dynamic source-coupled logic (SCL). Its key components, the comparator and the output generator are both based on differential-pair circuit (DPC), and the latter is constructed by using the structure of DPC trees. The pre-charge evaluates logic style makes a steady current flow cut off, thereby greatly saving the power dissipation. The combination of multiple-valued source- coupled logic and differential-pair circuit makes it lower power consumption and more compact. The performance is evaluated by HSPICE simulation with 0.18 ~m CMOS technology. The power dissipa- tion, transistor numbers and delay are superior to corresponding binary CMOS implementation. Mul- tiple-valued logic will be the potential solution for the high performance arithmetic VLSI system in the future.