A soitable data model and data structure make underground survey objects maintained and operated easier. This paper gives a formal definition for underground survey objects. By making use of the quotient topological s...A soitable data model and data structure make underground survey objects maintained and operated easier. This paper gives a formal definition for underground survey objects. By making use of the quotient topological space, the author studies the logical relations among underground survey objects, a partiallyordered space uuder some conditions. An example is given to show the data model’s possible applications.展开更多
Three dimensional object extraction and recognition (OER) from geographic data has been definitely one of more important topic in photogrammetry for quite a long time. Today, the capability of rapid generating high-de...Three dimensional object extraction and recognition (OER) from geographic data has been definitely one of more important topic in photogrammetry for quite a long time. Today, the capability of rapid generating high-density DSM increases the supply of geographic information but the discrete nature of the measuring makes more difficult to recognize correctly and to extract 3D objects from these surface. The proposed methodology wants to semi-automate some geographic objects clustering operations, in order to perform the recognition process. The clustering is a subjective process;the same set of data items often needs to be partitioned differently based on the application. Fuzzy logic gives the possibility to use in a mathematical process the uncertain information typical of human reasoning. The concept at the base of our proposal is to use the information contained in Image Matching or LiDAR DSM, and typically understood by the human operator, in a fuzzy recognition process able to combine the different input in order to perform the classification. So the object recognition approach proposed in our workflow integrates 3D structural descriptive components of objects, extracted from DSM, into a fuzzy reasoning process in order to exploit more fully all available information, which can contribute to the extraction and recognition process and, to handling the object’s vagueness. The recognition algorithm has been tested with to different data set and different objectives. An important issue is to apply the typical human process which allows to recognize objects in a range image in a fuzzy reasoning process. The investigations presented here have given a first demonstration of the capability of this approach.展开更多
Submerged arc welding(SAW)is one of the main welding processes with high deposition rate and high welding quality.This welding method is extensively used in welding large-diameter gas transmission pipelines and high...Submerged arc welding(SAW)is one of the main welding processes with high deposition rate and high welding quality.This welding method is extensively used in welding large-diameter gas transmission pipelines and high-pressure vessels.In welding of such structures,the selection process parameters has great influence on the weld bead geometry and consequently affects the weld quality.Based on Fuzzy logic and NSGA-II(Non-dominated Sorting Genetic Algorithm-II)algorithm,a new approach was proposed for weld bead geometry prediction and for process parameters optimization.First,different welding parameters including welding voltage,current and speed were set to perform SAW under different conditions on API X65 steel plates.Next,the designed Fuzzy model was used for predicting the weld bead geometry and modeling of the process.The obtained mean percentage error of penetration depth,weld bead width and height from the proposed Fuzzy model was 6.06%,6.40% and 5.82%,respectively.The process parameters were then optimized to achieve the desired values of convexity and penetration indexes simultaneously using NSGA-II algorithm.As a result,a set of optimum vectors(each vector contains current,voltage and speed within their selected experimental domains)was presented for desirable values of convexity and penetration indexes in the ranges of(0.106,0.168)and(0.354,0.561)respectively,which was more applicable in real conditions.展开更多
Efficiently querying Description Logic (DL) ontologies is becoming a vital task in various data-intensive DL applications. Considered as a basic service for answering object queries over DL ontologies, instance checki...Efficiently querying Description Logic (DL) ontologies is becoming a vital task in various data-intensive DL applications. Considered as a basic service for answering object queries over DL ontologies, instance checking can be realized by using the most specific concept (MSC) method, which converts instance checking into subsumption problems. This method, however, loses its simplicity and efficiency when applied to large and complex ontologies, as it tends to generate very large MSCs that could lead to intractable reasoning. In this paper, we propose a revision to this MSC method for DL SHI , allowing it to generate much simpler and smaller concepts that are specific enough to answer a given query. With independence between computed MSCs, scalability for query answering can also be achieved by distributing and parallelizing the computations. An empirical evaluation shows the efficacy of our revised MSC method and the significant efficiency achieved when using it for answering object queries.展开更多
文摘A soitable data model and data structure make underground survey objects maintained and operated easier. This paper gives a formal definition for underground survey objects. By making use of the quotient topological space, the author studies the logical relations among underground survey objects, a partiallyordered space uuder some conditions. An example is given to show the data model’s possible applications.
文摘Three dimensional object extraction and recognition (OER) from geographic data has been definitely one of more important topic in photogrammetry for quite a long time. Today, the capability of rapid generating high-density DSM increases the supply of geographic information but the discrete nature of the measuring makes more difficult to recognize correctly and to extract 3D objects from these surface. The proposed methodology wants to semi-automate some geographic objects clustering operations, in order to perform the recognition process. The clustering is a subjective process;the same set of data items often needs to be partitioned differently based on the application. Fuzzy logic gives the possibility to use in a mathematical process the uncertain information typical of human reasoning. The concept at the base of our proposal is to use the information contained in Image Matching or LiDAR DSM, and typically understood by the human operator, in a fuzzy recognition process able to combine the different input in order to perform the classification. So the object recognition approach proposed in our workflow integrates 3D structural descriptive components of objects, extracted from DSM, into a fuzzy reasoning process in order to exploit more fully all available information, which can contribute to the extraction and recognition process and, to handling the object’s vagueness. The recognition algorithm has been tested with to different data set and different objectives. An important issue is to apply the typical human process which allows to recognize objects in a range image in a fuzzy reasoning process. The investigations presented here have given a first demonstration of the capability of this approach.
文摘Submerged arc welding(SAW)is one of the main welding processes with high deposition rate and high welding quality.This welding method is extensively used in welding large-diameter gas transmission pipelines and high-pressure vessels.In welding of such structures,the selection process parameters has great influence on the weld bead geometry and consequently affects the weld quality.Based on Fuzzy logic and NSGA-II(Non-dominated Sorting Genetic Algorithm-II)algorithm,a new approach was proposed for weld bead geometry prediction and for process parameters optimization.First,different welding parameters including welding voltage,current and speed were set to perform SAW under different conditions on API X65 steel plates.Next,the designed Fuzzy model was used for predicting the weld bead geometry and modeling of the process.The obtained mean percentage error of penetration depth,weld bead width and height from the proposed Fuzzy model was 6.06%,6.40% and 5.82%,respectively.The process parameters were then optimized to achieve the desired values of convexity and penetration indexes simultaneously using NSGA-II algorithm.As a result,a set of optimum vectors(each vector contains current,voltage and speed within their selected experimental domains)was presented for desirable values of convexity and penetration indexes in the ranges of(0.106,0.168)and(0.354,0.561)respectively,which was more applicable in real conditions.
文摘Efficiently querying Description Logic (DL) ontologies is becoming a vital task in various data-intensive DL applications. Considered as a basic service for answering object queries over DL ontologies, instance checking can be realized by using the most specific concept (MSC) method, which converts instance checking into subsumption problems. This method, however, loses its simplicity and efficiency when applied to large and complex ontologies, as it tends to generate very large MSCs that could lead to intractable reasoning. In this paper, we propose a revision to this MSC method for DL SHI , allowing it to generate much simpler and smaller concepts that are specific enough to answer a given query. With independence between computed MSCs, scalability for query answering can also be achieved by distributing and parallelizing the computations. An empirical evaluation shows the efficacy of our revised MSC method and the significant efficiency achieved when using it for answering object queries.