In this study, a modified logarithmic spiral method is proposed to determine the passive earth pressure and failure surface of cohesionless sloping backfill, with presence of wallesoil interface friction. The proposed...In this study, a modified logarithmic spiral method is proposed to determine the passive earth pressure and failure surface of cohesionless sloping backfill, with presence of wallesoil interface friction. The proposed method is based on a limit equilibrium analysis wherein the assumed profile of the backfill failure surface is a composite of logarithmic spiral and its tangent. If the wallesoil interface is smooth, a straight line does not need to be assumed for the failure surface. The geometry of the failure surface is determined using the Mohr circle analysis of the soil. The resultant passive earth thrust is computed considering equilibrium of moments. The passive earth pressure coefficients are calculated with varied values of soil internal friction angle and cohesion, wall friction angle and inclination angle, and sloping backfill angle. This method is verified with the finite element method(FEM) by comparing the horizontal passive earth pressure and failure surface. The results agree well with other solutions, particularly with those obtained by the FEM. The implementation of the present method is efficient. The logarithmic spiral theory is rigorous and self-explanatory for the geotechnical engineer.展开更多
The aim of this paper is to derive a numerical scheme for Troesch’s problem and to overcome the difficulty which faces the existing numerical methods when considering the Troesch’s problem with large values of λ. A...The aim of this paper is to derive a numerical scheme for Troesch’s problem and to overcome the difficulty which faces the existing numerical methods when considering the Troesch’s problem with large values of λ. A logarithmic finite difference method is derived for solving the Troesch’s problem. The method is very simple and works well for arbitrarily large values of the Troesch’s parameter. To test the proposed method, we have used a wide range of the Troesch’s parameter λ. A comparison with some existing methods is given. The numerical results show the robustness and the superiority of the proposed scheme over most of the existing numerical methods for the Troesch’s problem.展开更多
This paper is devoted to studying the existence of solutions for the following logarithmic Schrödinger problem: −div(a(x)∇u)+V(x)u=ulogu2+k(x)| u |q1−2u+h(x)| u |q2−2u, x∈ℝN.(1)We first prove that the correspon...This paper is devoted to studying the existence of solutions for the following logarithmic Schrödinger problem: −div(a(x)∇u)+V(x)u=ulogu2+k(x)| u |q1−2u+h(x)| u |q2−2u, x∈ℝN.(1)We first prove that the corresponding functional I belongs to C1(HV1(ℝN),ℝ). Furthermore, by using the variational method, we prove the existence of a sigh-changing solution to problem (1).展开更多
With the rapid integration of renewable energy,wide-band oscillations caused by interactions between power electronic equipment and grids have emerged as one of the most critical stability issues.Existing methods are ...With the rapid integration of renewable energy,wide-band oscillations caused by interactions between power electronic equipment and grids have emerged as one of the most critical stability issues.Existing methods are usually studied for local power systems with around one hundred nodes.However,for a large-scale power system with tens of thousands of nodes,the dimension of transfer function matrix or the order of characteristic equation is much higher.In this case,the existing methods such as eigenvalue analysis method and impedance-based method have difficulty in computation and are thus hard to utilize in practice.To fill this gap,this paper proposes a novel method named the smallest eigenvalues based logarithmic derivative(SELD)method.It obtains the dominant oscillation modes by the logarithmic derivative of the k-smallest eigenvalue curves of the sparse extended nodal admittance matrix(NAM).An oscillatory stability analysis tool is further developed based on this method.The effectiveness of the method and the tool is validated through a local power system as well as a large-scale power system.展开更多
The accuracy of background clutter model is a key factor which determines the performance of a constant false alarm rate(CFAR) target detection method. G0 distribution is one of the optimal statistic models in the syn...The accuracy of background clutter model is a key factor which determines the performance of a constant false alarm rate(CFAR) target detection method. G0 distribution is one of the optimal statistic models in the synthetic aperture radar(SAR) image background clutter modeling and can accurately model various complex background clutters in the SAR images. But the application of the distribution is greatly limited by its disadvantages that the parameter estimation is complex and the local detection threshold is difficult to be obtained. In order to solve the above-mentioned problems, an synthetic aperture radar CFAR target detection method using the logarithmic cumulant(Mo LC) + method of moment(Mo M)-based G0 distribution clutter model is proposed. In the method, G0 distribution is used for modeling the background clutters, a new Mo LC+Mo M-based parameter estimation method coupled with a fast iterative algorithm is used for estimating the parameters of G0 distribution and an exquisite dichotomy method is used for obtaining the local detection threshold of CFAR detection, which greatly improves the computational efficiency, detection performance and environmental adaptability of CFAR detection. Experimental results show that the proposed SAR CFAR target detection method has good target detection performance in various complex background clutter environments.展开更多
In this paper the existence and uniqueness of the solution of implicit hybrid methods(IHMs)for solving the initial value problems(IVPs)of stiff ordinary differential equations(ODEs)is considered.We provide the coeffic...In this paper the existence and uniqueness of the solution of implicit hybrid methods(IHMs)for solving the initial value problems(IVPs)of stiff ordinary differential equations(ODEs)is considered.We provide the coefficient condition and its judging criterion as well as the righthand condition to ensure the existing solution uniquely.展开更多
基金funded by the Doctoral Scientific Research Foundation of Liaoning Province(Grant No.20170520341)the Fundamental Research Funds for the Central Universities(Grant No.N170103015)
文摘In this study, a modified logarithmic spiral method is proposed to determine the passive earth pressure and failure surface of cohesionless sloping backfill, with presence of wallesoil interface friction. The proposed method is based on a limit equilibrium analysis wherein the assumed profile of the backfill failure surface is a composite of logarithmic spiral and its tangent. If the wallesoil interface is smooth, a straight line does not need to be assumed for the failure surface. The geometry of the failure surface is determined using the Mohr circle analysis of the soil. The resultant passive earth thrust is computed considering equilibrium of moments. The passive earth pressure coefficients are calculated with varied values of soil internal friction angle and cohesion, wall friction angle and inclination angle, and sloping backfill angle. This method is verified with the finite element method(FEM) by comparing the horizontal passive earth pressure and failure surface. The results agree well with other solutions, particularly with those obtained by the FEM. The implementation of the present method is efficient. The logarithmic spiral theory is rigorous and self-explanatory for the geotechnical engineer.
文摘The aim of this paper is to derive a numerical scheme for Troesch’s problem and to overcome the difficulty which faces the existing numerical methods when considering the Troesch’s problem with large values of λ. A logarithmic finite difference method is derived for solving the Troesch’s problem. The method is very simple and works well for arbitrarily large values of the Troesch’s parameter. To test the proposed method, we have used a wide range of the Troesch’s parameter λ. A comparison with some existing methods is given. The numerical results show the robustness and the superiority of the proposed scheme over most of the existing numerical methods for the Troesch’s problem.
文摘This paper is devoted to studying the existence of solutions for the following logarithmic Schrödinger problem: −div(a(x)∇u)+V(x)u=ulogu2+k(x)| u |q1−2u+h(x)| u |q2−2u, x∈ℝN.(1)We first prove that the corresponding functional I belongs to C1(HV1(ℝN),ℝ). Furthermore, by using the variational method, we prove the existence of a sigh-changing solution to problem (1).
基金supported by the National Natural Science Foundation of China(No.52321004)the Delta Power Electronics Science and Education Development Program of Delta Group.
文摘With the rapid integration of renewable energy,wide-band oscillations caused by interactions between power electronic equipment and grids have emerged as one of the most critical stability issues.Existing methods are usually studied for local power systems with around one hundred nodes.However,for a large-scale power system with tens of thousands of nodes,the dimension of transfer function matrix or the order of characteristic equation is much higher.In this case,the existing methods such as eigenvalue analysis method and impedance-based method have difficulty in computation and are thus hard to utilize in practice.To fill this gap,this paper proposes a novel method named the smallest eigenvalues based logarithmic derivative(SELD)method.It obtains the dominant oscillation modes by the logarithmic derivative of the k-smallest eigenvalue curves of the sparse extended nodal admittance matrix(NAM).An oscillatory stability analysis tool is further developed based on this method.The effectiveness of the method and the tool is validated through a local power system as well as a large-scale power system.
基金Project(61105020)supported by the National Natural Science Foundation of ChinaProject(13zxtk08)supported by the Key Research Platform for Research Projects of Southwest University of Science and Technology,China
文摘The accuracy of background clutter model is a key factor which determines the performance of a constant false alarm rate(CFAR) target detection method. G0 distribution is one of the optimal statistic models in the synthetic aperture radar(SAR) image background clutter modeling and can accurately model various complex background clutters in the SAR images. But the application of the distribution is greatly limited by its disadvantages that the parameter estimation is complex and the local detection threshold is difficult to be obtained. In order to solve the above-mentioned problems, an synthetic aperture radar CFAR target detection method using the logarithmic cumulant(Mo LC) + method of moment(Mo M)-based G0 distribution clutter model is proposed. In the method, G0 distribution is used for modeling the background clutters, a new Mo LC+Mo M-based parameter estimation method coupled with a fast iterative algorithm is used for estimating the parameters of G0 distribution and an exquisite dichotomy method is used for obtaining the local detection threshold of CFAR detection, which greatly improves the computational efficiency, detection performance and environmental adaptability of CFAR detection. Experimental results show that the proposed SAR CFAR target detection method has good target detection performance in various complex background clutter environments.
基金Supported by the national natural science foundation.
文摘In this paper the existence and uniqueness of the solution of implicit hybrid methods(IHMs)for solving the initial value problems(IVPs)of stiff ordinary differential equations(ODEs)is considered.We provide the coefficient condition and its judging criterion as well as the righthand condition to ensure the existing solution uniquely.