Heading date is one of the most important agronomic traits that directly affect rice yield and determines the regional adaptability in specific growing environments.As a short-day plant,rice can grow under long-day(LD...Heading date is one of the most important agronomic traits that directly affect rice yield and determines the regional adaptability in specific growing environments.As a short-day plant,rice can grow under long-day(LD)conditions due to the synergistic regulation of many photosensitive genes.Using a set of chromosome segment substitution lines(CSSLs)with the indica cultivar Huanghuazhan(HHZ)as the recipient parent and Basmati Surkh 89-15(BAS)as the donor parent,we identified a QTL locus.展开更多
Objective: Genome-wide association studies(GWAS) have identified over 150 risk loci linked to colorectal cancer(CRC), including the 17p13.3 locus with the tag single nucleotide polymorphism(SNP) rs12603526 in the Asia...Objective: Genome-wide association studies(GWAS) have identified over 150 risk loci linked to colorectal cancer(CRC), including the 17p13.3 locus with the tag single nucleotide polymorphism(SNP) rs12603526 in the Asian population. However, the specific causal gene and the functional regulatory mechanisms in this region remain unresolved, necessitating further investigation to elucidate the underlying mechanisms of CRC.Methods: We employed an RNA interference-based functional approach to identify genes critical for CRC cell proliferation at the GWAS locus 17p13.3. Bioinformatic fine-mapping analysis was conducted to prioritize causal variants. A large-scale study involving 7,013 cases and 7,329 controls from a Chinese population, along with another cohort of 5,158 cases and 20,632 controls from the UK Biobank, was performed to validate the association between the candidate variant and the gene. A series of biological experiments was conducted to explore the function of the candidate gene and its regulatory mechanisms.Results: We identified FAM57A as a key oncogene that promotes CRC cell proliferation, and confirmed its carcinogenic role through in vitro proliferation assays. The variant rs526835 was prioritized as a causal candidate for CRC risk, located in a functional region with enhancer properties, and showed a significant quantitative association with FAM57A expression. The rs526835 [T] variant was associated with a 1.17-fold increase in CRC risk [95%confidence interval(95% CI): 1.11-1.23, P=1.23×10^(−9)] in the large-scale Chinese cohort, which was further corroborated in the UK Biobank cohort. Mechanistically, we demonstrated that rs526835 enhances a promoterenhancer interaction mediated by the transcription factor JUN, leading to increased expression of FAM57A.Conclusions: We reveal the underlying mechanisms of CRC predisposition at the GWAS locus 17p13.3.Additionally, our findings highlight the critical role of FAM57A in CRC pathogenesis and introduce a novel enhancer-promoter interaction between FAM57A and rs526835, which could inform future precision prevention and personalized cancer therapies.展开更多
Objective To investigate the changes in the firing activity of noradrenergic neurons in the locus coeruleus (LC) in a rat model of Parkinson disease (PD). Methods 2 and 4 weeks after unilateral lesion of the nigrostri...Objective To investigate the changes in the firing activity of noradrenergic neurons in the locus coeruleus (LC) in a rat model of Parkinson disease (PD). Methods 2 and 4 weeks after unilateral lesion of the nigrostriatal pathway in the rat by local injection of 6-hydroxydopamine (6-OHDA) into the right substantia nigra pars compacta (SNc), the firing activity of noradrenergic neurons in LC was recorded by extracellular single unit recording. Results The firing rate of LC noradrenergic neurons increased sig...展开更多
Background:To investigate SCL/TAL 1 interrupting locus(STIL)’s role and prognostic significance in lung adenocarcinoma(LUAD)progression,we examined STIL and E2 promoter binding factor 1(E2F1)expression and their impa...Background:To investigate SCL/TAL 1 interrupting locus(STIL)’s role and prognostic significance in lung adenocarcinoma(LUAD)progression,we examined STIL and E2 promoter binding factor 1(E2F1)expression and their impacts on LUAD prognosis using Gene Expression Profiling Interactive Analysis(GEPIA).Methods:Functional assays including CCK-8,wound-healing,5-ethynyl-2-deoxyuridine(EdU),Transwell assays,and flow cytometry,elucidated STIL and E2F1’s effects on cell viability,proliferation,apoptosis,and migration.Gene set enrichment analysis(GSEA)identified potential pathways,while metabolic assays assessed glucose metabolism.Results:Our findings reveal that STIL and E2F1 are overexpressed in LUAD,correlating with adverse outcomes.It enhances cell proliferation,migration,and invasion,and suppresses apoptosis,activating downstream of E2F1.Silencing E2F1 reversed the promotion effect of the STIL overexpression on cell viability and invasiveness.Importantly,STIL modulates glycolysis,influencing glucose consumption,lactate production,and energy balance in LUAD cells.Conclusion:Our model,incorporating STIL,age,and disease stage,robustly predicts patient prognosis,underscored STIL’s pivotal role in LUAD pathogenesis through metabolic reprogramming.This comprehensive approach not only confirms STIL’s prognostic value but also highlights its potential as a therapeutic target in LUAD.展开更多
植物经历生殖生长与营养生长阶段来确保生命周期的顺利完成,适当的开花时机对生长转变至关重要,开花的机制在植物中高度保守,这一机制的核心在于环境和内源性信号对成花素基因FLOWERING LOCUS T(FT)的转录调控。FT蛋白属于一类保守的蛋...植物经历生殖生长与营养生长阶段来确保生命周期的顺利完成,适当的开花时机对生长转变至关重要,开花的机制在植物中高度保守,这一机制的核心在于环境和内源性信号对成花素基因FLOWERING LOCUS T(FT)的转录调控。FT蛋白属于一类保守的蛋白家族,是营养生长和生殖生长转变过程的重要遗传因子,在两个生长阶段中都发挥着重要作用,从不同物种的生殖生长和营养生长两个方面综述FT基因的功能、作用机制和调控网络,为理解植物通过整合多种信号产生对环境变化的适应性和精确性,也为围绕植物生殖调控育种目标进行分子遗传改良提供参考。展开更多
The self-incompatibility ( S) loci from the Solanaceae, Rosaceae and Scrophulariaceae encode a class of ribonucleases, known as S RNases, which have been shown to control the pistil expression of self-incompatible rea...The self-incompatibility ( S) loci from the Solanaceae, Rosaceae and Scrophulariaceae encode a class of ribonucleases, known as S RNases, which have been shown to control the pistil expression of self-incompatible reaction. In the former two families, the S loci have been shown to be located near centromere. However, the chromosomal location of the S locus in Antirrhinum, a species of the Scrophulariaceae, is not known. To determine its chromosomal location and genomic organization, an S-2 RNase gene and its corresponding 63 kb BAC clone were separately used for fluorescence in situ hybridization (FISH) of mitotic metaphase chromosomes of a self-incompatible Antirrhinum line Of S2S5. The results showed that the S-2 RNase detected a doublet signal near the centromere of the smallest chromosome (2n = 16). Two separate doublet signals of the tested BAC sequence were shown on both sides of the centromeres of all eight pairs of the chromosomes, suggesting that the Antirrhinum S locus is located in a pericentromeric region. Furthermore, a retrotransposon, named RIS1 (retrotransposon in the S locus), which has not been identified yet in. Antirrhinum, was found next to S-2 RNase. Taken together, the centromeric location of the S locus from the three S-RNase-based self-incompatible families provides a further support on a common origin of their evolution as well as suppressed recombination.展开更多
Creutzfeldt-Jakob disease(CJD)is a rare neurodegenerative disorder characterized by abnormalities in the prion protein(PrP),the most common form of human prion disease.Although Genome-Wide Association Studies(GWAS)hav...Creutzfeldt-Jakob disease(CJD)is a rare neurodegenerative disorder characterized by abnormalities in the prion protein(PrP),the most common form of human prion disease.Although Genome-Wide Association Studies(GWAS)have identified numerous risk genes for CJD,the mechanisms underlying these risk loci remain poorly understood.This study aims to elucidate novel genetically prioritized candidate proteins associated with CJD in the human brain through an integrative analytical pipeline.Utilizing datasets from Protein Quantitative Trait Loci(pQTL)(NpQTL1=152,NpQTL2=376),expression QTL(eQTL)(N=452),and the CJD GWAS(NCJD=4110,NControls=13569),we implemented a systematic analytical pipeline.This pipeline included Proteome-Wide Association Study(PWAS),Mendelian randomization(MR),Bayesian colocalization,and Transcriptome-Wide Association Study(TWAS)to identify novel genetically prioritized candidate proteins implicated in CJD pathogenesis within the brain.Through PWAS,we identified that the altered abundance of six brain proteins was significantly associated with CJD.Two genes,STX6 and PDIA4,were established as lead causal genes for CJD,supported by robust evidence(False Discovery Rate<0.05 in MR analysis;PP4/(PP3+PP4)≥0.75 in Bayesian colocalization).Specifically,elevated levels of STX6 and PDIA4 were associated with an increased risk of CJD.Additionally,TWAS demonstrated that STX6 and PDIA4 were associated with CJD at the transcriptional level.展开更多
Gossypium raimondii(2n=2x=26,D_(5)),an untapped wild species,is the putative progenitor of the D-subgenome of G.hirsutum(2n=4x=52,AD_(1)),an extensively cultivated species.Here,we developed a G.hirsutum(recipient)–G....Gossypium raimondii(2n=2x=26,D_(5)),an untapped wild species,is the putative progenitor of the D-subgenome of G.hirsutum(2n=4x=52,AD_(1)),an extensively cultivated species.Here,we developed a G.hirsutum(recipient)–G.raimondii(donor)introgression population to exploit the favorable QTLs/genes and mapped potential quantitative trait loci(QTLs)from wild cotton species.The introgression population consisted of 256 lines with an introgression rate of 52.33%for the G.raimondii genome.The introgression segment length range was 0.03–19.12 Mb,with an average of 1.22 Mb.The coverage of total introgression fragments from G.raimondii was 386.98 Mb.Further genome-wide association analysis(Q+K+MLM)and QTL mapping(RSTEP-LRT)identified 59 common QTLs,including 14 stable QTLs and six common QTL(co-QTL)clusters,and one hotspot of micronaire(MIC).The common QTLs for seed index all showed positive additive effects,while the common QTLs for boll weight all had negative additive effects,indicating that the linkage between seed index and boll weight could be broken.QTLs for lint percentage showed positive effects and could be beneficial for improving cotton yield.Most QTLs for fiber quality had negative additive effects,implying these QTLs were domesticated/improved in G.hirsutum.A few fiber quality QTLs showed positive additive effects,so they could be used to improve cotton fiber quality.The introgression lines developed could be useful for molecular marker-assisted breeding and mapping QTLs precisely for mining desirable genes from the wild species G.raimondii.Such genes can improve cultivated cotton in the future through a designbreeding approach.展开更多
Programmed silencing ofγ-globin genes in adult erythropoiesis is mediated by several chromatin remodeling complexes,which determine the stage-specific genome architecture in this region.Identification of cis-or trans...Programmed silencing ofγ-globin genes in adult erythropoiesis is mediated by several chromatin remodeling complexes,which determine the stage-specific genome architecture in this region.Identification of cis-or trans-acting mutations contributing to the diverse extent of fetal hemoglobin(Hb F)might illustrate the underlying mechanism ofγ-β-globin switching.Here,we recruit a cohort of 1142β-thalassemia patients and dissect the natural variants in the wholeβ-globin gene cluster through a targeted next-generation sequencing panel.A previously unreported SNP rs7948668,predicted to disrupt the binding motif of IKAROS as a key component of chromatin remodeling complexes,is identified to be significantly associated with higher levels of Hb F and age at onset.Gene-editing on this SNP leads to the elevation of Hb F in both HUDEP-2 and primary CD34+cells while the extent of elevation is amplified in the context ofβ-thalassemia mutations,indicating epistasis effects of the SNP in the regulation of Hb F.Finally,we perform ChIP-qPCR and 4C assays to prove that this variant disrupts the binding motif of IKAROS,leading to enhanced competitiveness of HBG promoters to locus control regions.This study highlights the significance of common regulatory SNPs and provides potential targets for treatingβ-hemoglobinopathy.展开更多
Soybean seed oil has always been the primary focus of researches on improving the quality of soybean.Triacylglycerol,which is composed of fatty acids and glycerol,serves as the main storage form of soybean seed oil.Th...Soybean seed oil has always been the primary focus of researches on improving the quality of soybean.Triacylglycerol,which is composed of fatty acids and glycerol,serves as the main storage form of soybean seed oil.Therefore,the biosynthesis of fatty acids and the assembly of triacylglycerol significantly affect the quality of soybean seed oil.The process of soybean seed oil synthesis was comprehensively analyzed by examining the synthesis and activation of acetyl-CoA,fatty acid biosynthesis and desaturation,triacylglycerol assembly,and other related processes,additionally,this analysis identified the key enzymes and transcription factors involved in each link of the oil synthesis process.It was found that the researches on the key enzymes of carbon source regulation,pyruvate dehydrogenase complex and acetyl-CoA carboxylase,in the genetic network of soybean seed oil synthesis,were somewhat limited.Analyzing their structures and functions would aid in further understanding the molecular mechanism of soybean fatty acid synthesis,which would be beneficial for enhancing soybean oil content and synthesis efficiency.Based on summarizing the results of genetic analysis of soybean oil and fatty acids,the prospects for mechanism analysis and advancements in biological breeding techniques for improving soybean oil quality at the molecular level were discussed.展开更多
Late leaf spot disease(LLS)is one of the most important diseases that cause severe yield losses in peanut.Peanut has various sources of resistance to LLS,so the identification of resistant quantitative trait loci(QTLs...Late leaf spot disease(LLS)is one of the most important diseases that cause severe yield losses in peanut.Peanut has various sources of resistance to LLS,so the identification of resistant quantitative trait loci(QTLs)and the development of related molecular markers are of great importance for the breeding of LLS-resistant peanut.In this study,173 individual lines of a recombinant inbred line(RIL)population and the 48K SNP array for genotyping were used to construct a high-density genetic map with 1,475 bin markers and 20 linkage groups.A total of 11 QTLs were obtained through QTL analysis using the constructed genetic map.Among them,the stable major QTL qLLS.LG02 was identified on linkage group 2 in all six environments,with the phenotypic variation explained(PVE)ranging from 15.57 to 31.09%.QTL-seq technology was also employed for a QTL analysis of LLS resistance.As a result,14 QTL loci related to LLS resistance were identified using the G prime algorithm.Notably,the physical positions of qLLS02 and qLLS03 coincided with those of qLLS.LG02 and qLLS.LG03,respectively.Gene annotation analysis within the 14 QTL intervals from QTL-seq revealed a total of 163 nucleotide-binding site-leucine-rich repeat(NBS-LRR)disease resistance genes,accounting for 22.86%of all resistance(R)genes in the peanut genome and showing a 4.26-fold enrichment with a P-value of 5.19e-57.Within the QTL region qLLS02 of the resistant parent Mi-2,there was a 5 Mb structural variation(SV)interval containing 81 NBS-LRR genes.A PCR diagnostic marker was developed,and validation data suggested that this SV might lead to gene deletion or replacement with other genes.This SV has the potential to enhance peanut resistance to LLS.The results of this study have significant implications for improving peanut breeding for LLS resistance through the development of associated molecular markers.展开更多
Black point is a black discoloration of the grain embryo that reduces the grain quality and commodity grade.Identifying the underlying genetic loci can facilitate the improvement of black point resistance in wheat.Her...Black point is a black discoloration of the grain embryo that reduces the grain quality and commodity grade.Identifying the underlying genetic loci can facilitate the improvement of black point resistance in wheat.Here,262 recombinant inbred lines(RILs)from the cross of Zhongmai 578/Jimai 22 were evaluated for their black point reactions in fve environments.A high-density genetic linkage map of the RIL population was constructed with the wheat 50K single nucleotide polymorphism(SNP)array.Six stable QTLs for black point resistance were detected,QBp.caas-2A,QBp.caas-2B1,QBp.caas-2B2,QBp.caas-2D,QBp.caas-3A,and QBp.caas-5B,which explained 2.1-28.8%of the phenotypic variances.The resistance alleles of QBp.caas-2B1 and QBp.caas-2B2 were contributed by Zhongmai 578 while the others were from Jimai 22.QBp.caas-2B2,QBp.caas-2D and QBp.caas-3A overlapped with previously reported loci,whereas QBp.caas-2A,QBp.caas-2B1 and QBp.caas-5B are likely to be new.Five kompetitive allele-specifc PCR(KASP)markers,Kasp_2A_BP,Kasp_2B1_BP,Kasp_2B2_BP,Kasp_3A_BP,and Kasp_5B_BP,were validated in a natural population of 165 cultivars.The fndings of this study provide useful QTLs and molecular markers for the improvement of black point resistance in wheat through marker-assisted breeding.展开更多
There are many kinds of swimming mode in the fish world, and we investigated two of them, used by cyprinids and bulltrout. In this paper we track the locomotion locus by marks in different flow velocity from 0.2 m...There are many kinds of swimming mode in the fish world, and we investigated two of them, used by cyprinids and bulltrout. In this paper we track the locomotion locus by marks in different flow velocity from 0.2 m·s^-1 to 0.8 m·s^-1. By fit the data above we could find out the locomotion mechanism of the two kinds of fish and generate a mathematical model of fish kine- matics. The cyprinid fish has a greater oscillation period and amplitude compared with the bulltrout, and the bulltrout changes velocity mainly by controlling frequency of oscillation.展开更多
The direct use of the determinant of Jacobian matrix being equal to zero for the singularity analysis is generally difficult which is due to complexity of the Jacobian matrix of 6-DOF parallel manipulators,especially ...The direct use of the determinant of Jacobian matrix being equal to zero for the singularity analysis is generally difficult which is due to complexity of the Jacobian matrix of 6-DOF parallel manipulators,especially for Stewart platform.Recently,several scholars make their great contribution to the effective solution of this problem,but neither of them find the right answer.This paper gives a brief analysis of the kinematics of the Stewart platform and derives the Jacobian matrices of the system through the velocity equation.On the basis of the traditional classification of singularities,the second type of singularity is investigated.An assumption of any three of the six variables of the Stewart platform as constant is made,then the analytical expression of singularity locus equation of the second type singularity which contains another three pose variables is obtained.The singularity locus is represented in the three-dimensional space through the derived equation.The correctness and validity of the proposed method are verified through examples.Finally,the singularity analysis of an electric Stewart platform in its desired workspace and reachable workspace is implemented.Thus,one can easily identify whether singularity exists in a given workspace of a Stewart platform and determine whether the existed singularity can be avoided through the proposed method.The proposed method also provides theoretical principle for the design and application of the Stewart platform and has great significance for the trajectory planning and control.展开更多
Thousand-grain weight (TGW) is a key component of grain yield in rice. This study was conducted to validate and fine-map qTGW1.2a, a quantitative trait locus for grain weight and grain size previously located in a 933...Thousand-grain weight (TGW) is a key component of grain yield in rice. This study was conducted to validate and fine-map qTGW1.2a, a quantitative trait locus for grain weight and grain size previously located in a 933.6-kb region on the long arm of rice chromosome 1. Firstly, three residual heterozygotes (RHs) were selected from a BC2F11 population of the indica rice cross Zhenshan 97 (ZS97)///ZS97//ZS97/Milyang 46. The heterozygous segments in these RHs were arranged successively in physical positions, forming one set of sequential residual heterozygotes (SeqRHs). In each of the populations derived, non-recombinant homozygotes were identified to produce near isogenic lines (NILs) comprising the two homozygous genotypes. The NILs were tested for grain weight, grain length and grain width. QTL analyses for the three traits were performed. Then, the updated QTL location was followed for a new run of SeqRHs identification-NIL development-QTL mapping. Altogether, 11 NIL populations derived from four sets of SeqRHs were developed and used. qTGW1.2a was finally delimitated into a 77.5-kb region containing 13 annotated genes. In the six populations segregating this QTL, which were in four generations and were tested across four years, the allelic direction of qTGW1.2a remained consistent and the genetic effects were stable. For TGW, the additive effects ranged from 0.23 to 0.38 g and the proportions of phenotypic variance explained ranged from 26.15% to 41.65%. These results provide a good foundation for the cloning and functional analysis of qTGW1.2a.展开更多
基金supported by the Zhejiang Provincial Natural Science Foundation of China(Grant Nos.LZ24C130004 and LQ24C130008)。
文摘Heading date is one of the most important agronomic traits that directly affect rice yield and determines the regional adaptability in specific growing environments.As a short-day plant,rice can grow under long-day(LD)conditions due to the synergistic regulation of many photosensitive genes.Using a set of chromosome segment substitution lines(CSSLs)with the indica cultivar Huanghuazhan(HHZ)as the recipient parent and Basmati Surkh 89-15(BAS)as the donor parent,we identified a QTL locus.
基金supported by the Program of National Science Fund for Distinguished Young Scholars of China(No.81925032)Key Program of National Natural Science Foundation of China(No.82130098)National Natural Science Foundation of China(No.82304232)。
文摘Objective: Genome-wide association studies(GWAS) have identified over 150 risk loci linked to colorectal cancer(CRC), including the 17p13.3 locus with the tag single nucleotide polymorphism(SNP) rs12603526 in the Asian population. However, the specific causal gene and the functional regulatory mechanisms in this region remain unresolved, necessitating further investigation to elucidate the underlying mechanisms of CRC.Methods: We employed an RNA interference-based functional approach to identify genes critical for CRC cell proliferation at the GWAS locus 17p13.3. Bioinformatic fine-mapping analysis was conducted to prioritize causal variants. A large-scale study involving 7,013 cases and 7,329 controls from a Chinese population, along with another cohort of 5,158 cases and 20,632 controls from the UK Biobank, was performed to validate the association between the candidate variant and the gene. A series of biological experiments was conducted to explore the function of the candidate gene and its regulatory mechanisms.Results: We identified FAM57A as a key oncogene that promotes CRC cell proliferation, and confirmed its carcinogenic role through in vitro proliferation assays. The variant rs526835 was prioritized as a causal candidate for CRC risk, located in a functional region with enhancer properties, and showed a significant quantitative association with FAM57A expression. The rs526835 [T] variant was associated with a 1.17-fold increase in CRC risk [95%confidence interval(95% CI): 1.11-1.23, P=1.23×10^(−9)] in the large-scale Chinese cohort, which was further corroborated in the UK Biobank cohort. Mechanistically, we demonstrated that rs526835 enhances a promoterenhancer interaction mediated by the transcription factor JUN, leading to increased expression of FAM57A.Conclusions: We reveal the underlying mechanisms of CRC predisposition at the GWAS locus 17p13.3.Additionally, our findings highlight the critical role of FAM57A in CRC pathogenesis and introduce a novel enhancer-promoter interaction between FAM57A and rs526835, which could inform future precision prevention and personalized cancer therapies.
基金supported by the Foundation of Science and Technological Program of Shaanxi Province,China (No. 2007K15-G1).
文摘Objective To investigate the changes in the firing activity of noradrenergic neurons in the locus coeruleus (LC) in a rat model of Parkinson disease (PD). Methods 2 and 4 weeks after unilateral lesion of the nigrostriatal pathway in the rat by local injection of 6-hydroxydopamine (6-OHDA) into the right substantia nigra pars compacta (SNc), the firing activity of noradrenergic neurons in LC was recorded by extracellular single unit recording. Results The firing rate of LC noradrenergic neurons increased sig...
文摘Background:To investigate SCL/TAL 1 interrupting locus(STIL)’s role and prognostic significance in lung adenocarcinoma(LUAD)progression,we examined STIL and E2 promoter binding factor 1(E2F1)expression and their impacts on LUAD prognosis using Gene Expression Profiling Interactive Analysis(GEPIA).Methods:Functional assays including CCK-8,wound-healing,5-ethynyl-2-deoxyuridine(EdU),Transwell assays,and flow cytometry,elucidated STIL and E2F1’s effects on cell viability,proliferation,apoptosis,and migration.Gene set enrichment analysis(GSEA)identified potential pathways,while metabolic assays assessed glucose metabolism.Results:Our findings reveal that STIL and E2F1 are overexpressed in LUAD,correlating with adverse outcomes.It enhances cell proliferation,migration,and invasion,and suppresses apoptosis,activating downstream of E2F1.Silencing E2F1 reversed the promotion effect of the STIL overexpression on cell viability and invasiveness.Importantly,STIL modulates glycolysis,influencing glucose consumption,lactate production,and energy balance in LUAD cells.Conclusion:Our model,incorporating STIL,age,and disease stage,robustly predicts patient prognosis,underscored STIL’s pivotal role in LUAD pathogenesis through metabolic reprogramming.This comprehensive approach not only confirms STIL’s prognostic value but also highlights its potential as a therapeutic target in LUAD.
文摘植物经历生殖生长与营养生长阶段来确保生命周期的顺利完成,适当的开花时机对生长转变至关重要,开花的机制在植物中高度保守,这一机制的核心在于环境和内源性信号对成花素基因FLOWERING LOCUS T(FT)的转录调控。FT蛋白属于一类保守的蛋白家族,是营养生长和生殖生长转变过程的重要遗传因子,在两个生长阶段中都发挥着重要作用,从不同物种的生殖生长和营养生长两个方面综述FT基因的功能、作用机制和调控网络,为理解植物通过整合多种信号产生对环境变化的适应性和精确性,也为围绕植物生殖调控育种目标进行分子遗传改良提供参考。
文摘The self-incompatibility ( S) loci from the Solanaceae, Rosaceae and Scrophulariaceae encode a class of ribonucleases, known as S RNases, which have been shown to control the pistil expression of self-incompatible reaction. In the former two families, the S loci have been shown to be located near centromere. However, the chromosomal location of the S locus in Antirrhinum, a species of the Scrophulariaceae, is not known. To determine its chromosomal location and genomic organization, an S-2 RNase gene and its corresponding 63 kb BAC clone were separately used for fluorescence in situ hybridization (FISH) of mitotic metaphase chromosomes of a self-incompatible Antirrhinum line Of S2S5. The results showed that the S-2 RNase detected a doublet signal near the centromere of the smallest chromosome (2n = 16). Two separate doublet signals of the tested BAC sequence were shown on both sides of the centromeres of all eight pairs of the chromosomes, suggesting that the Antirrhinum S locus is located in a pericentromeric region. Furthermore, a retrotransposon, named RIS1 (retrotransposon in the S locus), which has not been identified yet in. Antirrhinum, was found next to S-2 RNase. Taken together, the centromeric location of the S locus from the three S-RNase-based self-incompatible families provides a further support on a common origin of their evolution as well as suppressed recombination.
文摘Creutzfeldt-Jakob disease(CJD)is a rare neurodegenerative disorder characterized by abnormalities in the prion protein(PrP),the most common form of human prion disease.Although Genome-Wide Association Studies(GWAS)have identified numerous risk genes for CJD,the mechanisms underlying these risk loci remain poorly understood.This study aims to elucidate novel genetically prioritized candidate proteins associated with CJD in the human brain through an integrative analytical pipeline.Utilizing datasets from Protein Quantitative Trait Loci(pQTL)(NpQTL1=152,NpQTL2=376),expression QTL(eQTL)(N=452),and the CJD GWAS(NCJD=4110,NControls=13569),we implemented a systematic analytical pipeline.This pipeline included Proteome-Wide Association Study(PWAS),Mendelian randomization(MR),Bayesian colocalization,and Transcriptome-Wide Association Study(TWAS)to identify novel genetically prioritized candidate proteins implicated in CJD pathogenesis within the brain.Through PWAS,we identified that the altered abundance of six brain proteins was significantly associated with CJD.Two genes,STX6 and PDIA4,were established as lead causal genes for CJD,supported by robust evidence(False Discovery Rate<0.05 in MR analysis;PP4/(PP3+PP4)≥0.75 in Bayesian colocalization).Specifically,elevated levels of STX6 and PDIA4 were associated with an increased risk of CJD.Additionally,TWAS demonstrated that STX6 and PDIA4 were associated with CJD at the transcriptional level.
基金funded by the National Key Research and Development Program of China(2016YFD0100203 and 2016YFD0102000)the Key Scientific and Technological Projects of the Eighth Division of the Xinjiang Production and Construction Corps(XPCC),China(2024NY01,2023 NY09,2023 NY10)+2 种基金the Key Scientific and Technological Project of XPCC,China(2021AB010)the Postgraduate Research&Practice Innovation Program of Jiangsu Province,China(KYCX22_0748)supported by the High-performance Computing Platform of the Bioinformatics Center,Nanjing Agricultural University,China。
文摘Gossypium raimondii(2n=2x=26,D_(5)),an untapped wild species,is the putative progenitor of the D-subgenome of G.hirsutum(2n=4x=52,AD_(1)),an extensively cultivated species.Here,we developed a G.hirsutum(recipient)–G.raimondii(donor)introgression population to exploit the favorable QTLs/genes and mapped potential quantitative trait loci(QTLs)from wild cotton species.The introgression population consisted of 256 lines with an introgression rate of 52.33%for the G.raimondii genome.The introgression segment length range was 0.03–19.12 Mb,with an average of 1.22 Mb.The coverage of total introgression fragments from G.raimondii was 386.98 Mb.Further genome-wide association analysis(Q+K+MLM)and QTL mapping(RSTEP-LRT)identified 59 common QTLs,including 14 stable QTLs and six common QTL(co-QTL)clusters,and one hotspot of micronaire(MIC).The common QTLs for seed index all showed positive additive effects,while the common QTLs for boll weight all had negative additive effects,indicating that the linkage between seed index and boll weight could be broken.QTLs for lint percentage showed positive effects and could be beneficial for improving cotton yield.Most QTLs for fiber quality had negative additive effects,implying these QTLs were domesticated/improved in G.hirsutum.A few fiber quality QTLs showed positive additive effects,so they could be used to improve cotton fiber quality.The introgression lines developed could be useful for molecular marker-assisted breeding and mapping QTLs precisely for mining desirable genes from the wild species G.raimondii.Such genes can improve cultivated cotton in the future through a designbreeding approach.
基金supported by the National Natural Science Foundation of China(U20A20353 to X.Xu and 81900185 to Y.Ye).
文摘Programmed silencing ofγ-globin genes in adult erythropoiesis is mediated by several chromatin remodeling complexes,which determine the stage-specific genome architecture in this region.Identification of cis-or trans-acting mutations contributing to the diverse extent of fetal hemoglobin(Hb F)might illustrate the underlying mechanism ofγ-β-globin switching.Here,we recruit a cohort of 1142β-thalassemia patients and dissect the natural variants in the wholeβ-globin gene cluster through a targeted next-generation sequencing panel.A previously unreported SNP rs7948668,predicted to disrupt the binding motif of IKAROS as a key component of chromatin remodeling complexes,is identified to be significantly associated with higher levels of Hb F and age at onset.Gene-editing on this SNP leads to the elevation of Hb F in both HUDEP-2 and primary CD34+cells while the extent of elevation is amplified in the context ofβ-thalassemia mutations,indicating epistasis effects of the SNP in the regulation of Hb F.Finally,we perform ChIP-qPCR and 4C assays to prove that this variant disrupts the binding motif of IKAROS,leading to enhanced competitiveness of HBG promoters to locus control regions.This study highlights the significance of common regulatory SNPs and provides potential targets for treatingβ-hemoglobinopathy.
基金Supported by the Heilongjiang Natural Science Foundation Joint Guidance Project(LH2021C028)。
文摘Soybean seed oil has always been the primary focus of researches on improving the quality of soybean.Triacylglycerol,which is composed of fatty acids and glycerol,serves as the main storage form of soybean seed oil.Therefore,the biosynthesis of fatty acids and the assembly of triacylglycerol significantly affect the quality of soybean seed oil.The process of soybean seed oil synthesis was comprehensively analyzed by examining the synthesis and activation of acetyl-CoA,fatty acid biosynthesis and desaturation,triacylglycerol assembly,and other related processes,additionally,this analysis identified the key enzymes and transcription factors involved in each link of the oil synthesis process.It was found that the researches on the key enzymes of carbon source regulation,pyruvate dehydrogenase complex and acetyl-CoA carboxylase,in the genetic network of soybean seed oil synthesis,were somewhat limited.Analyzing their structures and functions would aid in further understanding the molecular mechanism of soybean fatty acid synthesis,which would be beneficial for enhancing soybean oil content and synthesis efficiency.Based on summarizing the results of genetic analysis of soybean oil and fatty acids,the prospects for mechanism analysis and advancements in biological breeding techniques for improving soybean oil quality at the molecular level were discussed.
基金funded by the Key Research and Development Program of Shandong Province,China(2022LZGC007 and 2018GNC110036)the Natural Science Foundation of Shandong Province,China(ZR2024MC038 and ZR2020QC121)+5 种基金the Taishan Scholar Project Funding,China(tsqn201812121)the Agricultural Scientific and Technological Innovation Project of Shandong Academy of Agricultural Sciences,China(CXGC2024G20,CXGC2023A06,CXGC2022A03,and CXGC2022F33)the Science and Technology for People’s Livelihood Project of Qingdao,China(20-3-4-26-nsh)the China Agriculture Research System(CARS-13)the National Natural Science Foundation of China(32072107)the Major Scientific and Technological Project in Xinjiang,China(2022A02008-3).
文摘Late leaf spot disease(LLS)is one of the most important diseases that cause severe yield losses in peanut.Peanut has various sources of resistance to LLS,so the identification of resistant quantitative trait loci(QTLs)and the development of related molecular markers are of great importance for the breeding of LLS-resistant peanut.In this study,173 individual lines of a recombinant inbred line(RIL)population and the 48K SNP array for genotyping were used to construct a high-density genetic map with 1,475 bin markers and 20 linkage groups.A total of 11 QTLs were obtained through QTL analysis using the constructed genetic map.Among them,the stable major QTL qLLS.LG02 was identified on linkage group 2 in all six environments,with the phenotypic variation explained(PVE)ranging from 15.57 to 31.09%.QTL-seq technology was also employed for a QTL analysis of LLS resistance.As a result,14 QTL loci related to LLS resistance were identified using the G prime algorithm.Notably,the physical positions of qLLS02 and qLLS03 coincided with those of qLLS.LG02 and qLLS.LG03,respectively.Gene annotation analysis within the 14 QTL intervals from QTL-seq revealed a total of 163 nucleotide-binding site-leucine-rich repeat(NBS-LRR)disease resistance genes,accounting for 22.86%of all resistance(R)genes in the peanut genome and showing a 4.26-fold enrichment with a P-value of 5.19e-57.Within the QTL region qLLS02 of the resistant parent Mi-2,there was a 5 Mb structural variation(SV)interval containing 81 NBS-LRR genes.A PCR diagnostic marker was developed,and validation data suggested that this SV might lead to gene deletion or replacement with other genes.This SV has the potential to enhance peanut resistance to LLS.The results of this study have significant implications for improving peanut breeding for LLS resistance through the development of associated molecular markers.
基金funded by the National Natural Science Foundation of China(32272186)the Beijing Natural Science Foundation,China(6242031)+5 种基金the Basal Research Fund of the Chinese Academy of Agricultural Sciences(CAAS)(S2022QH04)the National Key R&D Program of China(2022YFD1201500)the Young Elite Scientists Sponsorship Program by China Association for Science and Technology(YESS,2020QNRC001)the Modern Cold and Drought Characteristic Agricultural Seed Industry Research Project-2025,Gansu Province,China(ZYGG-2025-8)the Nanfan Special Project,CAAS(YBXM2303)the Science and Technology Innovation Program of CAAS。
文摘Black point is a black discoloration of the grain embryo that reduces the grain quality and commodity grade.Identifying the underlying genetic loci can facilitate the improvement of black point resistance in wheat.Here,262 recombinant inbred lines(RILs)from the cross of Zhongmai 578/Jimai 22 were evaluated for their black point reactions in fve environments.A high-density genetic linkage map of the RIL population was constructed with the wheat 50K single nucleotide polymorphism(SNP)array.Six stable QTLs for black point resistance were detected,QBp.caas-2A,QBp.caas-2B1,QBp.caas-2B2,QBp.caas-2D,QBp.caas-3A,and QBp.caas-5B,which explained 2.1-28.8%of the phenotypic variances.The resistance alleles of QBp.caas-2B1 and QBp.caas-2B2 were contributed by Zhongmai 578 while the others were from Jimai 22.QBp.caas-2B2,QBp.caas-2D and QBp.caas-3A overlapped with previously reported loci,whereas QBp.caas-2A,QBp.caas-2B1 and QBp.caas-5B are likely to be new.Five kompetitive allele-specifc PCR(KASP)markers,Kasp_2A_BP,Kasp_2B1_BP,Kasp_2B2_BP,Kasp_3A_BP,and Kasp_5B_BP,were validated in a natural population of 165 cultivars.The fndings of this study provide useful QTLs and molecular markers for the improvement of black point resistance in wheat through marker-assisted breeding.
基金the National Natural Science Foundation of China (Grant No. 50579007)
文摘There are many kinds of swimming mode in the fish world, and we investigated two of them, used by cyprinids and bulltrout. In this paper we track the locomotion locus by marks in different flow velocity from 0.2 m·s^-1 to 0.8 m·s^-1. By fit the data above we could find out the locomotion mechanism of the two kinds of fish and generate a mathematical model of fish kine- matics. The cyprinid fish has a greater oscillation period and amplitude compared with the bulltrout, and the bulltrout changes velocity mainly by controlling frequency of oscillation.
基金supported by Program for New Century Excellent Talents in University of Ministry of Education of China(Grant No.NCET-04-0325)
文摘The direct use of the determinant of Jacobian matrix being equal to zero for the singularity analysis is generally difficult which is due to complexity of the Jacobian matrix of 6-DOF parallel manipulators,especially for Stewart platform.Recently,several scholars make their great contribution to the effective solution of this problem,but neither of them find the right answer.This paper gives a brief analysis of the kinematics of the Stewart platform and derives the Jacobian matrices of the system through the velocity equation.On the basis of the traditional classification of singularities,the second type of singularity is investigated.An assumption of any three of the six variables of the Stewart platform as constant is made,then the analytical expression of singularity locus equation of the second type singularity which contains another three pose variables is obtained.The singularity locus is represented in the three-dimensional space through the derived equation.The correctness and validity of the proposed method are verified through examples.Finally,the singularity analysis of an electric Stewart platform in its desired workspace and reachable workspace is implemented.Thus,one can easily identify whether singularity exists in a given workspace of a Stewart platform and determine whether the existed singularity can be avoided through the proposed method.The proposed method also provides theoretical principle for the design and application of the Stewart platform and has great significance for the trajectory planning and control.
基金funded by the National Key R&D Program of China (Grant No. 2017YFD0100305)the National Natural Science Foundation of China (Grant No. 31521064)a project of the China National Rice Research Institute (Grant No. 2017RG001-2)
文摘Thousand-grain weight (TGW) is a key component of grain yield in rice. This study was conducted to validate and fine-map qTGW1.2a, a quantitative trait locus for grain weight and grain size previously located in a 933.6-kb region on the long arm of rice chromosome 1. Firstly, three residual heterozygotes (RHs) were selected from a BC2F11 population of the indica rice cross Zhenshan 97 (ZS97)///ZS97//ZS97/Milyang 46. The heterozygous segments in these RHs were arranged successively in physical positions, forming one set of sequential residual heterozygotes (SeqRHs). In each of the populations derived, non-recombinant homozygotes were identified to produce near isogenic lines (NILs) comprising the two homozygous genotypes. The NILs were tested for grain weight, grain length and grain width. QTL analyses for the three traits were performed. Then, the updated QTL location was followed for a new run of SeqRHs identification-NIL development-QTL mapping. Altogether, 11 NIL populations derived from four sets of SeqRHs were developed and used. qTGW1.2a was finally delimitated into a 77.5-kb region containing 13 annotated genes. In the six populations segregating this QTL, which were in four generations and were tested across four years, the allelic direction of qTGW1.2a remained consistent and the genetic effects were stable. For TGW, the additive effects ranged from 0.23 to 0.38 g and the proportions of phenotypic variance explained ranged from 26.15% to 41.65%. These results provide a good foundation for the cloning and functional analysis of qTGW1.2a.