BACKGROUND Proximal humerus fractures(PHFs)are common,especially in the elderly,and optimal surgical management remains debated.This study compares clinical,functional,and radiographic outcomes of deltoid split(DS)vs ...BACKGROUND Proximal humerus fractures(PHFs)are common,especially in the elderly,and optimal surgical management remains debated.This study compares clinical,functional,and radiographic outcomes of deltoid split(DS)vs deltopectoral(DP)approaches in PHFs treated with locking plates.AIM To evaluate and compare the clinical,functional,and radiographic outcomes-as well as postoperative complication rates-associated with the DS vs the DP surgical approach in the open reduction and internal fixation(ORIF)of PHFs using locking plate constructs.METHODS A multicenter retrospective study of 120 patients undergoing ORIF for closed Neer type II-IV PHFs between January 2023 and December 2023.Patients were grouped by surgical approach[DS(n=70),DP(n=50)].Outcome measures included Numeric Rating Scale(NRS)for pain,Quick-Disabilities in Arm,Shoulder,and Hand questionnaire(QuickDASH),Constant-Murley score,Short Form Health Survey-12v2,and radiographic alignment.Complication rates were recorded.Statistical significance was defined as P<0.05.RESULTS Early outcomes favored the DS group:(1)Lower NRS(3.1 vs 5.9);(2)Higher Constant-Murley(68.2 vs 50.5);and(3)Better QuickDASH(25.4 vs 37.1).Complication rate was lower in the DS group(1.66%vs 5.81%).Radiographic outcomes were comparable.Long-term results were similar between groups.CONCLUSION While both approaches yield satisfactory long-term outcomes,the DS approach is associated with faster early recovery and fewer complications,supporting its use in selected cases.展开更多
Fiber optic sensing technology,with its low transmission loss,wide bandwidth,and broad dynamic range,offers significant advantages for high-sensitivity measurements.In this study,a multi-band soliton modulation system...Fiber optic sensing technology,with its low transmission loss,wide bandwidth,and broad dynamic range,offers significant advantages for high-sensitivity measurements.In this study,a multi-band soliton modulation system for stress sensing is proposed,utilizing Ti_(3)C_(2)T_(x)to generate ultrashort pulses.By applying stress to microfibers,dichromatic periodic multisoliton mode-locking at 1530 nm and 1555.2 nm is achieved.Vibrational mechanical stress further modulates cross-phase interactions between solitons,inducing higher-order bound solitons with small-amplitude oscillations.These dynamic processes reveal complex nonlinear optical behaviors and enhance sensing capabilities.Additionally,the feasibility of stable mode-locking of Ti_(3)C_(2)T_(x)in a 1µm multimode cavity is analyzed using the multimode nonlinear Schrodinger equation,and multisoliton states are experimentally demonstrated by integrating a 1µm narrow-linewidth ultrafast multimode laser with a stressed microfiber.展开更多
Spin-momentum locking is widely regarded as an inherent property of evanescent waves,where the transverse spin angular momentum is intrinsically tied to the wave's polarization.This principle is well established i...Spin-momentum locking is widely regarded as an inherent property of evanescent waves,where the transverse spin angular momentum is intrinsically tied to the wave's polarization.This principle is well established in systems such as surface plasmon polaritons,surface elastic waves,and other evanescent modes.Here,we theoretically unveil an anomalous breakdown of spin-momentum locking in evanescent electromagnetic waves at a metalgyromagnetic interface.We show that the hybrid polarization of the field induces two successive reversals of transverse spin near the interface—directly violating the conventional locking between spin and momentum.As a result,identical chiral sources placed at different heights above the interface excite evanescent waves propagating in opposite directions,defying standard expectations.This discovery challenges the presumed universality of spin-momentum locking and opens new degrees of freedom for controlling wave propagation in photonic and plasmonic systems.展开更多
As a major fault in the northeastern Qinghai-Xizang Plateau,the Haiyuan fault zone is important for understanding the regional deformation.Aiming at the differences in the slip rate and locking degree obtained from di...As a major fault in the northeastern Qinghai-Xizang Plateau,the Haiyuan fault zone is important for understanding the regional deformation.Aiming at the differences in the slip rate and locking degree obtained from different studies,this study constructs a refined block model(including Qilian,Alxa,Ordos,Xining,Haiyuan,and Lanzhou blocks)and uses the grid search and simulated annealing methods to invert GPS data for slip rate and locking degree of the Haiyuan fault zone.The results are as follows:(1)The sinistral slip rates in the western,middle,and eastern segments are 4.93-5.22 mm/a,1.52-4.94 mm/a,and 0.43-1.18 mm/a,decreasing eastward on the whole,while the compression rates are 0.45-1.26 mm/a,0.58-2.62 mm/a,and3.52-4.48 mm/a,increasing eastward on the whole.(2)The locking depth of the western segment increases from about 5 km to about 20 km eastward;the middle segment decreases and then increases eastward;the eastern segment concentrates at about 20 km(PHI is about 0.86).(3)The slip deficit is relatively higher in the Lenglongling,Jinqianghe,Maomaoshan,and Liupanshan faults(averaging about 3.42 mm/a,4.16 mm/a,4.23 mm/a,and 3.43 mm/a within 20 km).(4)The Qilian,Alxa,Xining,Lanzhou,and Haiyuan blocks rotate clockwise,while the Ordos block rotates counterclockwise.Additionally,by comparing different block models,the Haiyuan block should be considered independently.The Haiyuan fault zone adjusts surrounding block movements and uplifts Liupanshan mountain tectonically.The results can provide important references for understanding the regional earthquake risk and deformation mechanism.展开更多
A cavity magnonic oscillator uses the coupling of a planar transmission line oscillator(cavity) and spin excitations(magnons) in a ferrimagnetic material to achieve superior frequency stability and reduced phase noise...A cavity magnonic oscillator uses the coupling of a planar transmission line oscillator(cavity) and spin excitations(magnons) in a ferrimagnetic material to achieve superior frequency stability and reduced phase noise. Like many low phase noise oscillators, a cavity magnonic oscillator faces the challenge that its narrow resonance profile is not well suited for injection locking amplification. This work presents an improved design for such an oscillator configured as an injection locking amplifier(ILA) with an extended lock range. The proposed design features a two-stage architecture, consisting of a pre-amplification oscillator and a cavity magnonic oscillator, separated by an isolator to prevent backward locking.By optimizing the circuit parameters of each stage, the proposed design achieved an order of magnitude increase in lock range, when compared to its predecessors, all while preserving the phase noise quality of the input, making it well-suited for narrowband, sensitive signal amplification. Furthermore, this work provides a method for using oscillators with high spectral purity as injection locking amplifiers.展开更多
In 2018,Baige,Xizang,witnessed two consecutive large-scale landslides,causing significant damage and drawing widespread attention.From March 2011 to February 2018,the Baige landslide exhibited a 50-m displacement with...In 2018,Baige,Xizang,witnessed two consecutive large-scale landslides,causing significant damage and drawing widespread attention.From March 2011 to February 2018,the Baige landslide exhibited a 50-m displacement without complete failure,culminating in a collapse in October 2018.The mechanisms behind its resistance to failure despite substantial deformation and the influence of the complex geo-structure within the tectonic mélange belt remain unclear.To address these questions,this study utilized a multidisciplinary approach,integrating on-site geological field mapping,surface deformation monitoring,multielectrode resistivity method,and deep displacement analysis.The aim was to evaluate the impact of the intricate geo-structure within the tectonic mélange belt on the Baige landslide events.Findings reveal that the landslide's geo-structure consists of structurally fractured,mesh-like rock masses,including heterogeneous lenticular rock masses and intermittent brittle shear zones distributed around the lens-shaped rock masses.The study underscores that the inhomogeneous and weakly deformed lenticular rock masses function as natural locked segments,governing the stability of the Baige landslide.Specifically,the relatively intact and hard granodiorite porphyry play a crucial role in locking the landslide's deformation.Deep displacement analysis indicates that the brittle shear zones act as the sliding surfaces.The progressive destruction of the locked segments and the gradual penetration of brittle shear zones,driven by gravitational potential energy,contribute to the landslide occurrence.This research provides critical insights into the formation mechanisms of large-scale landslides within tectonic mélange belts.展开更多
AIM To compare the outcomes of displaced distal radius fractures treated with volar locking plates and with immediate postoperative mobilisation with the outcomes of these fractures treated with modalities that necess...AIM To compare the outcomes of displaced distal radius fractures treated with volar locking plates and with immediate postoperative mobilisation with the outcomes of these fractures treated with modalities that necessitate 6 wk wrist immobilisation.METHODS A prospective,randomised controlled single-centre trial was conducted with 56 patients who had a displaced radius fracture were randomised to treatment either with a volar locking plate(n=29),or another treatment modality(n=27;cast immobilisation with or without wires or external fixator).Outcomes were measured at 12 wk.Functional outcome scores measured were the Patient-Rated Wrist Evaluation(PRWE)Score;Disabilities of the Arm,Shoulder and Hand and activities of daily living(ADLs).Clinical outcomes were wrist range of motion and grip strength.Radiographic parameters were volar inclination and ulnar variance.RESULTS Patients in the volar locking plate group had significantly better PRWE scores,ADL scores,grip strength and range of extension at three months compared with the control group.All radiological parameters were significantly better in the volar locking plate group at 3 mo.CONCLUSION The present study suggests that volar locking plates produced significantly better functional and clinical outcomes at 3 mo compared with other treatment modalities.Anatomical reduction was significantly more likely to be preserved in the plating group.Level of evidence:Ⅱ.展开更多
Complex tibial plateau fractures can seriously affect quality of life and physical and mental health of patients.The anatomical relationship between the proximal tibial bone and soft tissue is complex,resulting in dif...Complex tibial plateau fractures can seriously affect quality of life and physical and mental health of patients.The anatomical relationship between the proximal tibial bone and soft tissue is complex,resulting in different types of tibial plateau fractures.Violent trauma can lead to displaced fracture,serious soft tissue injury,and potentially,dislocation of the knee joint.Therefore,tibial plateau fractures are extremely unstable.AIM To assess the use of locking compression plate(LCP)+T-type steel plate for postoperative weight bearing and functional recovery of complex tibial plateau fractures.METHODS Ninety-seven patients with complex tibial plateau fractures who underwent surgery at our hospital were selected for retrospective study.Forty-nine patients had been treated with LCP+T-type steel plate limited internal fixation(study group),and 48 patients with bilateral ordinary steel plate support(control group).The operation process index,postoperative rehabilitation related index,Rasmussen score of the knee joint,tibial plateau varus angle(TPA),tibial plateau retroversion angle(PA),and surgical complications of the two groups were compared.RESULTS The operation time and intraoperative bone graft volume in the study group were lower than those in the control group(P<0.05).There were no significant differences in surgical bleeding,anterior external incision length,postoperative drainage,hospital stay duration,and fracture healing time between the groups(P>0.05).There was no significant difference in the TPA and PA angle between the groups immediately and 18 mo after surgery(P>0.05).At 12 mo after surgery,the Rasmussen scale score was higher in the study group than in the control group(P<0.05).There was no significant difference in the Rasmussen scale score at 18 mo after surgery,and the radiology score at 12 and 18 mo after surgery,between the two groups(P>0.05).The postoperative complication rate in the study group(3.77%)was lower than that in the control group(15.09%;P<0.05).CONCLUSION LCP+T-type steel plate internal fixation has advantages in terms of minimizing trauma and enabling early postoperative functional exercise,promoting functional recovery and lower limb weight-bearing,and reducing postoperative complications.展开更多
Contact nonlinear theory was researched. Contact problem was transformed into optimization problem containing Lagrange multiplier, and unsymmetrical stiffness matrix was transformed into symmetrical stiffness matrix. ...Contact nonlinear theory was researched. Contact problem was transformed into optimization problem containing Lagrange multiplier, and unsymmetrical stiffness matrix was transformed into symmetrical stiffness matrix. A finite element analysis (FEA) model defining more than 300 contact pairs for long nut-short screw locking mechanism of a large-scale vertical gear-rack typed ship-lift was built. Using augmented Lagrange method and symmetry algorithm of contact element stiffness, the FEA model was analyzed, and the contact stress of contact interfaces and the von Mises stress of key parts were obtained. The results show that the design of the locking mechanism meets the requirement of engineering, and this method is effective for solving large stole nonlinear contact pairs.展开更多
To predict the attitude of satellite during the whole deployment process and evaluate the locking impact, a numerical flexible model of a certain satellite associated with four flexible honeycomb solar panels was esta...To predict the attitude of satellite during the whole deployment process and evaluate the locking impact, a numerical flexible model of a certain satellite associated with four flexible honeycomb solar panels was established. The flexible solar panel was modeled by the finite element analysis (FEA), and the motion equations were derived by Lagrangian formulation. The locking process was based on the method of Hertzian contact, which enables one to predict the locking impact on the satellite and the subsequent oscillation of solar panels. The results reveal that locking operation has great impact on the attitude of the satellite, and the angular acceleration of satellite reaches 22.03°/s2 at the locking moment; the flexible solar panels model is feasible to predict the accurate response of the satellite during deployment and the oscillation of solar panels; the instantly impulsive force occurred during locking process is about 1.5 kN and the changing time is nearly 0.32 s. It provides an effective approach to present the flexible solar panels' deployment process and evaluate the locking impact.展开更多
Sidestay lock mechanism is an important part of landing gear system,and the locking performance can be analyzed based on changes in its stability.However,during numerical continuation analysis of fully-rigid dual-side...Sidestay lock mechanism is an important part of landing gear system,and the locking performance can be analyzed based on changes in its stability.However,during numerical continuation analysis of fully-rigid dual-sidestay landing gear without clearance,it has been found that the appearance of bifurcation points does not necessarily imply that both sidestay links can be locked synchronously.This problem reveals the limitations of fully-rigid model with ideally-articulated in solving dual-sidestay mechanisms with extremely high motion sensitivity.Therefore,this study proposes a bifurcation analysis method for synchronous locking of dual-sidestay landing gears,which takes into consideration the joint clearance.For in-depth analysis of this problem,we initially build kinematic and mechanical models of a landing gear mechanism that consider joint clearance.Then,the models are solved based on continuation.The fundamental causes of synchronous locking are discussed in detail,and the number of bifurcation points is found to be closely related to whether the landing gear is completely locked.Finally,the effects of structural parameters on the synchronous locking are analyzed,and the feasible region of parameters satisfying synchronous locking condition is given,which agrees well with the test results.展开更多
Stimulus-responsive polymers containing dynamic bonds enable fascinating properties of self-healing,recycling and reprocessing due to enhanced relaxation of polymer chain/network with labile linkages.Here,we study the...Stimulus-responsive polymers containing dynamic bonds enable fascinating properties of self-healing,recycling and reprocessing due to enhanced relaxation of polymer chain/network with labile linkages.Here,we study the structure and properties of a new type of thermoplastic polyurethanes(TPUs)with trapped dynamic covalent bonds in the hard-phase domain and report the frustrated relaxation of TPUs containing weak dynamic bond andπ-πinteraction in hard segments.As detected by rheometry,the aromatic TPUs with alkyl disulfide in the hard segments possess the maximum network relaxation time in contrast to those without dynamic bonds and alicyclic TPUs.In situ FTIR and small-angle scattering results reveal that the alkyl disulfide facilitates stronger intermolecular interaction and more stable micro-phase morphology inπ-πinteraction based aromatic TPUs.Molecular dynamics simulation for pure hard segments of model molecules verify that the presence of disulfide bonds leads to strongerπ-πstacking of aromatic rings due to both enhanced assembling thermodynamics and kinetics.The enhancedπ-πpacking and micro-phase structure in TPUs further kinetically immobilize the dynamic bond.This kinetically interlocking between the weak dynamic bonds and strong molecular interaction in hard segments leads to much slower network relaxation of TPU.This work provides a new insight in tuning the network relaxation and heat resistance as well as molecular self-assembly in stimulus-responsive dynamic polymers by both molecular design and micro-phase control toward the functional applications of advanced materials.展开更多
Abstract We study dynamics in two mutually coupling multi-quantum-well lasers. We carry out theoretical and numerical analysis of synchronization, anti-synchronization, in-phase locking in the two identical lasers but...Abstract We study dynamics in two mutually coupling multi-quantum-well lasers. We carry out theoretical and numerical analysis of synchronization, anti-synchronization, in-phase locking in the two identical lasers but detuning, in detain. It is proved that the coupling level determines stability of the lasers by analyzing the eigenvalue equation. Critical case of locking is discussed via the phase difference equation. Quasi-period and stable states in the two lasers are investigated via varying the current, detuning and coupling level.展开更多
The transition state between the continuous wave region and the mode-locked region in a passively mode-locked erbium-doped fibre ring laser has been experimentally observed by utilizing the nonlinear polarization rota...The transition state between the continuous wave region and the mode-locked region in a passively mode-locked erbium-doped fibre ring laser has been experimentally observed by utilizing the nonlinear polarization rotation technique. When the pump power reaches the mode-locked threshold, the metastable pulse train with a tunable repetition rate is obtained in the transition from the continuous wave state to the passive mode-locked state via proper adjustment of the polarization controller. A simpie model has been established to explain the experimental observation.展开更多
Coherent beam combining(CBC)is an efficient way to scale the brightness of laser arrays.We demonstrate the active phase locking CBC of two slab laser amplifiers based on the multi-dithering technique.The experimental ...Coherent beam combining(CBC)is an efficient way to scale the brightness of laser arrays.We demonstrate the active phase locking CBC of two slab laser amplifiers based on the multi-dithering technique.The experimental investigation on the 102 W coherent beam combining of two slab amplifiers shows that the whole system in a closed loop performs well over a long time observation.The contrast of the coherent combined beam profile is about 87%and the combining efficiency is nearly 85%.In addition,the CBC of two green lasers is realized based on the second-harmonic generation of the phase locking pump lasers.To the best of our knowledge,this is the first report about second-harmonic active phase locking,which indicates further potential applications of CBC.展开更多
AIM: To review the results of our experience with the Medartis Aptus plating system for four corner arthrodesis of the wrist, which uses a combination of compression screws and variable angle locking screws.METHODS: W...AIM: To review the results of our experience with the Medartis Aptus plating system for four corner arthrodesis of the wrist, which uses a combination of compression screws and variable angle locking screws.METHODS: We reviewed the results of 17 procedures in 16 patients that underwent scaphoid excision and four corner fusion using the Medartis Aptus system between May 2010 and June 2014. The primary outcome measure was radiographic and clinical union. RESULTS: The mean clinical follow up time was 20.6 mo. The mean union time was 6 mo. Two non-unions required revision procedures. The mean disabilities of the arm, shoulder and hand score taken after union was 36. The mean final grip strength was 27 kg. The mean final range of movement was 30° flexion and 31° of extension. All patients had a restored scapholunate angle on postoperative radiographs. There were no incidences of dorsal impingement.CONCLUSION: Overall our experience with the Aptus plating system shows comparable results to other methods of fixation for four corner fusion, in the short to medium term.展开更多
The locking of tearing modes by the error field is studied by nonlinear numerical modeling.The threshold of mode locking for J-TEXT tokamak plasmas is found.
We present a laser frequency locking to Rydberg transition with electromagnetically induced transparency(EIT)spectra in a room-temperature cesium vapor cell. Cesium levels 6S_(1/2), 6P_(3/2), and the n D_(5/2)...We present a laser frequency locking to Rydberg transition with electromagnetically induced transparency(EIT)spectra in a room-temperature cesium vapor cell. Cesium levels 6S_(1/2), 6P_(3/2), and the n D_(5/2) state, compose a cascade three-level system, where a coupling laser drives Rydberg transition, and probe laser detects the EIT signal. The error signal, obtained by demodulating the EIT signal, is used to lock the coupling laser frequency to Rydberg transition. The laser frequency fluctuation, ~0.7 MHz, is obtained after locking on, with the minimum Allan variance to be 8.9 × 10^(-11).This kind of locking method can be used to stabilize the laser frequency to the excited transition.展开更多
65 km Semangko Fault is part of southern segments of Sumatran Fault Zone(SFZ)which is complex corresponds to the transition from the strike-slip regime of the SFZ to the normal faulting tectonics of the Sunda Strait.T...65 km Semangko Fault is part of southern segments of Sumatran Fault Zone(SFZ)which is complex corresponds to the transition from the strike-slip regime of the SFZ to the normal faulting tectonics of the Sunda Strait.The recent publication showed branches of Semangko Fault:West Semangko Fault(WSF)and East Semangko Fault(ESF).This study estimated geodetic slip rate and locking depth of ESF using Global Positioning System(GPS)time series data from 2007 to 2019 from all available GPS sites.GPS velocities refer to Sundaland Plate were used to estimate the fault parameters of the WSF and ESF simultaneously.Non-uniformity of velocity direction shows the complexities of Semangko Fault possibly caused by the contribution of all faults around ESF.An ESF geodetic slip rate,which is 12.5±2 mm/yr was lower than WSF,which is 16.5±2 mm/yr.It is consistent with the rigid block nature of the SFZ system as northern segment slip rates have similar value.Small slip rates are possibly leading to lower generated seismic moment than the major segment of SFZ.展开更多
文摘BACKGROUND Proximal humerus fractures(PHFs)are common,especially in the elderly,and optimal surgical management remains debated.This study compares clinical,functional,and radiographic outcomes of deltoid split(DS)vs deltopectoral(DP)approaches in PHFs treated with locking plates.AIM To evaluate and compare the clinical,functional,and radiographic outcomes-as well as postoperative complication rates-associated with the DS vs the DP surgical approach in the open reduction and internal fixation(ORIF)of PHFs using locking plate constructs.METHODS A multicenter retrospective study of 120 patients undergoing ORIF for closed Neer type II-IV PHFs between January 2023 and December 2023.Patients were grouped by surgical approach[DS(n=70),DP(n=50)].Outcome measures included Numeric Rating Scale(NRS)for pain,Quick-Disabilities in Arm,Shoulder,and Hand questionnaire(QuickDASH),Constant-Murley score,Short Form Health Survey-12v2,and radiographic alignment.Complication rates were recorded.Statistical significance was defined as P<0.05.RESULTS Early outcomes favored the DS group:(1)Lower NRS(3.1 vs 5.9);(2)Higher Constant-Murley(68.2 vs 50.5);and(3)Better QuickDASH(25.4 vs 37.1).Complication rate was lower in the DS group(1.66%vs 5.81%).Radiographic outcomes were comparable.Long-term results were similar between groups.CONCLUSION While both approaches yield satisfactory long-term outcomes,the DS approach is associated with faster early recovery and fewer complications,supporting its use in selected cases.
基金supported by the National Natural Science Foundation of China(Grant Nos.12275240,12261131495,and 12475008)the Natural Science Foundation of Zhejiang Province(Grant No.LY24A050002).
文摘Fiber optic sensing technology,with its low transmission loss,wide bandwidth,and broad dynamic range,offers significant advantages for high-sensitivity measurements.In this study,a multi-band soliton modulation system for stress sensing is proposed,utilizing Ti_(3)C_(2)T_(x)to generate ultrashort pulses.By applying stress to microfibers,dichromatic periodic multisoliton mode-locking at 1530 nm and 1555.2 nm is achieved.Vibrational mechanical stress further modulates cross-phase interactions between solitons,inducing higher-order bound solitons with small-amplitude oscillations.These dynamic processes reveal complex nonlinear optical behaviors and enhance sensing capabilities.Additionally,the feasibility of stable mode-locking of Ti_(3)C_(2)T_(x)in a 1µm multimode cavity is analyzed using the multimode nonlinear Schrodinger equation,and multisoliton states are experimentally demonstrated by integrating a 1µm narrow-linewidth ultrafast multimode laser with a stressed microfiber.
基金supported by the National Natural Science Foundation of China(Grant Nos.12434016 and 12474380)Science and Technology Project of Guangdong Province(Grant No.2020B0101-90001)+1 种基金the National Key Research and Development Program of China(Grant No.2023YFA1406900)the Natural Science Foundation of Guangdong Province(Grant No.2025A1515010714)。
文摘Spin-momentum locking is widely regarded as an inherent property of evanescent waves,where the transverse spin angular momentum is intrinsically tied to the wave's polarization.This principle is well established in systems such as surface plasmon polaritons,surface elastic waves,and other evanescent modes.Here,we theoretically unveil an anomalous breakdown of spin-momentum locking in evanescent electromagnetic waves at a metalgyromagnetic interface.We show that the hybrid polarization of the field induces two successive reversals of transverse spin near the interface—directly violating the conventional locking between spin and momentum.As a result,identical chiral sources placed at different heights above the interface excite evanescent waves propagating in opposite directions,defying standard expectations.This discovery challenges the presumed universality of spin-momentum locking and opens new degrees of freedom for controlling wave propagation in photonic and plasmonic systems.
基金supported by the National Natural Science Foundation of China(42474003,42074007)the Fundamental Research Funds for the Central Universities(2042023kfyq01)。
文摘As a major fault in the northeastern Qinghai-Xizang Plateau,the Haiyuan fault zone is important for understanding the regional deformation.Aiming at the differences in the slip rate and locking degree obtained from different studies,this study constructs a refined block model(including Qilian,Alxa,Ordos,Xining,Haiyuan,and Lanzhou blocks)and uses the grid search and simulated annealing methods to invert GPS data for slip rate and locking degree of the Haiyuan fault zone.The results are as follows:(1)The sinistral slip rates in the western,middle,and eastern segments are 4.93-5.22 mm/a,1.52-4.94 mm/a,and 0.43-1.18 mm/a,decreasing eastward on the whole,while the compression rates are 0.45-1.26 mm/a,0.58-2.62 mm/a,and3.52-4.48 mm/a,increasing eastward on the whole.(2)The locking depth of the western segment increases from about 5 km to about 20 km eastward;the middle segment decreases and then increases eastward;the eastern segment concentrates at about 20 km(PHI is about 0.86).(3)The slip deficit is relatively higher in the Lenglongling,Jinqianghe,Maomaoshan,and Liupanshan faults(averaging about 3.42 mm/a,4.16 mm/a,4.23 mm/a,and 3.43 mm/a within 20 km).(4)The Qilian,Alxa,Xining,Lanzhou,and Haiyuan blocks rotate clockwise,while the Ordos block rotates counterclockwise.Additionally,by comparing different block models,the Haiyuan block should be considered independently.The Haiyuan fault zone adjusts surrounding block movements and uplifts Liupanshan mountain tectonically.The results can provide important references for understanding the regional earthquake risk and deformation mechanism.
基金funded by NSERC Discovery Grants, NSERC Discovery Accelerator Supplements, Innovation Proof-of-Concept Grant of Research Manitoba, and Faculty of Science Research Innovation and Commercialization Grant of University of Manitoba (C.-M.H.)。
文摘A cavity magnonic oscillator uses the coupling of a planar transmission line oscillator(cavity) and spin excitations(magnons) in a ferrimagnetic material to achieve superior frequency stability and reduced phase noise. Like many low phase noise oscillators, a cavity magnonic oscillator faces the challenge that its narrow resonance profile is not well suited for injection locking amplification. This work presents an improved design for such an oscillator configured as an injection locking amplifier(ILA) with an extended lock range. The proposed design features a two-stage architecture, consisting of a pre-amplification oscillator and a cavity magnonic oscillator, separated by an isolator to prevent backward locking.By optimizing the circuit parameters of each stage, the proposed design achieved an order of magnitude increase in lock range, when compared to its predecessors, all while preserving the phase noise quality of the input, making it well-suited for narrowband, sensitive signal amplification. Furthermore, this work provides a method for using oscillators with high spectral purity as injection locking amplifiers.
基金supported by the National Major Scientific Instruments and Equipment Development Projects of China(No.41827808)the Major Program of the National Natural Science Foundation of China(No.42090055)Supported by Science and Technology Projects of Xizang Autonomous Region,China(No.XZ202402ZD0001)。
文摘In 2018,Baige,Xizang,witnessed two consecutive large-scale landslides,causing significant damage and drawing widespread attention.From March 2011 to February 2018,the Baige landslide exhibited a 50-m displacement without complete failure,culminating in a collapse in October 2018.The mechanisms behind its resistance to failure despite substantial deformation and the influence of the complex geo-structure within the tectonic mélange belt remain unclear.To address these questions,this study utilized a multidisciplinary approach,integrating on-site geological field mapping,surface deformation monitoring,multielectrode resistivity method,and deep displacement analysis.The aim was to evaluate the impact of the intricate geo-structure within the tectonic mélange belt on the Baige landslide events.Findings reveal that the landslide's geo-structure consists of structurally fractured,mesh-like rock masses,including heterogeneous lenticular rock masses and intermittent brittle shear zones distributed around the lens-shaped rock masses.The study underscores that the inhomogeneous and weakly deformed lenticular rock masses function as natural locked segments,governing the stability of the Baige landslide.Specifically,the relatively intact and hard granodiorite porphyry play a crucial role in locking the landslide's deformation.Deep displacement analysis indicates that the brittle shear zones act as the sliding surfaces.The progressive destruction of the locked segments and the gradual penetration of brittle shear zones,driven by gravitational potential energy,contribute to the landslide occurrence.This research provides critical insights into the formation mechanisms of large-scale landslides within tectonic mélange belts.
文摘AIM To compare the outcomes of displaced distal radius fractures treated with volar locking plates and with immediate postoperative mobilisation with the outcomes of these fractures treated with modalities that necessitate 6 wk wrist immobilisation.METHODS A prospective,randomised controlled single-centre trial was conducted with 56 patients who had a displaced radius fracture were randomised to treatment either with a volar locking plate(n=29),or another treatment modality(n=27;cast immobilisation with or without wires or external fixator).Outcomes were measured at 12 wk.Functional outcome scores measured were the Patient-Rated Wrist Evaluation(PRWE)Score;Disabilities of the Arm,Shoulder and Hand and activities of daily living(ADLs).Clinical outcomes were wrist range of motion and grip strength.Radiographic parameters were volar inclination and ulnar variance.RESULTS Patients in the volar locking plate group had significantly better PRWE scores,ADL scores,grip strength and range of extension at three months compared with the control group.All radiological parameters were significantly better in the volar locking plate group at 3 mo.CONCLUSION The present study suggests that volar locking plates produced significantly better functional and clinical outcomes at 3 mo compared with other treatment modalities.Anatomical reduction was significantly more likely to be preserved in the plating group.Level of evidence:Ⅱ.
文摘Complex tibial plateau fractures can seriously affect quality of life and physical and mental health of patients.The anatomical relationship between the proximal tibial bone and soft tissue is complex,resulting in different types of tibial plateau fractures.Violent trauma can lead to displaced fracture,serious soft tissue injury,and potentially,dislocation of the knee joint.Therefore,tibial plateau fractures are extremely unstable.AIM To assess the use of locking compression plate(LCP)+T-type steel plate for postoperative weight bearing and functional recovery of complex tibial plateau fractures.METHODS Ninety-seven patients with complex tibial plateau fractures who underwent surgery at our hospital were selected for retrospective study.Forty-nine patients had been treated with LCP+T-type steel plate limited internal fixation(study group),and 48 patients with bilateral ordinary steel plate support(control group).The operation process index,postoperative rehabilitation related index,Rasmussen score of the knee joint,tibial plateau varus angle(TPA),tibial plateau retroversion angle(PA),and surgical complications of the two groups were compared.RESULTS The operation time and intraoperative bone graft volume in the study group were lower than those in the control group(P<0.05).There were no significant differences in surgical bleeding,anterior external incision length,postoperative drainage,hospital stay duration,and fracture healing time between the groups(P>0.05).There was no significant difference in the TPA and PA angle between the groups immediately and 18 mo after surgery(P>0.05).At 12 mo after surgery,the Rasmussen scale score was higher in the study group than in the control group(P<0.05).There was no significant difference in the Rasmussen scale score at 18 mo after surgery,and the radiology score at 12 and 18 mo after surgery,between the two groups(P>0.05).The postoperative complication rate in the study group(3.77%)was lower than that in the control group(15.09%;P<0.05).CONCLUSION LCP+T-type steel plate internal fixation has advantages in terms of minimizing trauma and enabling early postoperative functional exercise,promoting functional recovery and lower limb weight-bearing,and reducing postoperative complications.
基金Supported by the Key Research Project of StatePower Corporation (SPKJ 0l6-06)the Key Scientific ResearchProject of Hubei Province ( 2004AC101D31)
文摘Contact nonlinear theory was researched. Contact problem was transformed into optimization problem containing Lagrange multiplier, and unsymmetrical stiffness matrix was transformed into symmetrical stiffness matrix. A finite element analysis (FEA) model defining more than 300 contact pairs for long nut-short screw locking mechanism of a large-scale vertical gear-rack typed ship-lift was built. Using augmented Lagrange method and symmetry algorithm of contact element stiffness, the FEA model was analyzed, and the contact stress of contact interfaces and the von Mises stress of key parts were obtained. The results show that the design of the locking mechanism meets the requirement of engineering, and this method is effective for solving large stole nonlinear contact pairs.
文摘To predict the attitude of satellite during the whole deployment process and evaluate the locking impact, a numerical flexible model of a certain satellite associated with four flexible honeycomb solar panels was established. The flexible solar panel was modeled by the finite element analysis (FEA), and the motion equations were derived by Lagrangian formulation. The locking process was based on the method of Hertzian contact, which enables one to predict the locking impact on the satellite and the subsequent oscillation of solar panels. The results reveal that locking operation has great impact on the attitude of the satellite, and the angular acceleration of satellite reaches 22.03°/s2 at the locking moment; the flexible solar panels model is feasible to predict the accurate response of the satellite during deployment and the oscillation of solar panels; the instantly impulsive force occurred during locking process is about 1.5 kN and the changing time is nearly 0.32 s. It provides an effective approach to present the flexible solar panels' deployment process and evaluate the locking impact.
基金financially supported by the National Natural Science Foundation of China(51805249)the Natural Science Foundation of Jiangsu Province(BK20180436)+1 种基金the Fundamental Research Funds for the Central Universities(NF2018001)the Priority Academic Program Development of Jiangsu Higher Education Institutes。
文摘Sidestay lock mechanism is an important part of landing gear system,and the locking performance can be analyzed based on changes in its stability.However,during numerical continuation analysis of fully-rigid dual-sidestay landing gear without clearance,it has been found that the appearance of bifurcation points does not necessarily imply that both sidestay links can be locked synchronously.This problem reveals the limitations of fully-rigid model with ideally-articulated in solving dual-sidestay mechanisms with extremely high motion sensitivity.Therefore,this study proposes a bifurcation analysis method for synchronous locking of dual-sidestay landing gears,which takes into consideration the joint clearance.For in-depth analysis of this problem,we initially build kinematic and mechanical models of a landing gear mechanism that consider joint clearance.Then,the models are solved based on continuation.The fundamental causes of synchronous locking are discussed in detail,and the number of bifurcation points is found to be closely related to whether the landing gear is completely locked.Finally,the effects of structural parameters on the synchronous locking are analyzed,and the feasible region of parameters satisfying synchronous locking condition is given,which agrees well with the test results.
基金financially supported by the National Natural Science Foundation of China(No.21774135)。
文摘Stimulus-responsive polymers containing dynamic bonds enable fascinating properties of self-healing,recycling and reprocessing due to enhanced relaxation of polymer chain/network with labile linkages.Here,we study the structure and properties of a new type of thermoplastic polyurethanes(TPUs)with trapped dynamic covalent bonds in the hard-phase domain and report the frustrated relaxation of TPUs containing weak dynamic bond andπ-πinteraction in hard segments.As detected by rheometry,the aromatic TPUs with alkyl disulfide in the hard segments possess the maximum network relaxation time in contrast to those without dynamic bonds and alicyclic TPUs.In situ FTIR and small-angle scattering results reveal that the alkyl disulfide facilitates stronger intermolecular interaction and more stable micro-phase morphology inπ-πinteraction based aromatic TPUs.Molecular dynamics simulation for pure hard segments of model molecules verify that the presence of disulfide bonds leads to strongerπ-πstacking of aromatic rings due to both enhanced assembling thermodynamics and kinetics.The enhancedπ-πpacking and micro-phase structure in TPUs further kinetically immobilize the dynamic bond.This kinetically interlocking between the weak dynamic bonds and strong molecular interaction in hard segments leads to much slower network relaxation of TPU.This work provides a new insight in tuning the network relaxation and heat resistance as well as molecular self-assembly in stimulus-responsive dynamic polymers by both molecular design and micro-phase control toward the functional applications of advanced materials.
文摘Abstract We study dynamics in two mutually coupling multi-quantum-well lasers. We carry out theoretical and numerical analysis of synchronization, anti-synchronization, in-phase locking in the two identical lasers but detuning, in detain. It is proved that the coupling level determines stability of the lasers by analyzing the eigenvalue equation. Critical case of locking is discussed via the phase difference equation. Quasi-period and stable states in the two lasers are investigated via varying the current, detuning and coupling level.
基金Project supported by the National Natural Science Foundation of China(Grant No.11074078)the Specialized Research Fund for the Doctoral Program of Higher Education,China(Grant No.20094407110002)+1 种基金the Key Program for Scientific and Technological Innovations of Higher Education Institutes in Guangdong Province,China(Grant No.cxzd1011)the Foundation for Distinguished Young Talents in Higher Education of Guangdong,China(Grant No.C10183)
文摘The transition state between the continuous wave region and the mode-locked region in a passively mode-locked erbium-doped fibre ring laser has been experimentally observed by utilizing the nonlinear polarization rotation technique. When the pump power reaches the mode-locked threshold, the metastable pulse train with a tunable repetition rate is obtained in the transition from the continuous wave state to the passive mode-locked state via proper adjustment of the polarization controller. A simpie model has been established to explain the experimental observation.
基金by the Innovation Foundation for Graduates in National University of Defense Technology under Grant B090704the Hunan Provincial Innovation Foundation For Postgraduate(No CX2009B006).
文摘Coherent beam combining(CBC)is an efficient way to scale the brightness of laser arrays.We demonstrate the active phase locking CBC of two slab laser amplifiers based on the multi-dithering technique.The experimental investigation on the 102 W coherent beam combining of two slab amplifiers shows that the whole system in a closed loop performs well over a long time observation.The contrast of the coherent combined beam profile is about 87%and the combining efficiency is nearly 85%.In addition,the CBC of two green lasers is realized based on the second-harmonic generation of the phase locking pump lasers.To the best of our knowledge,this is the first report about second-harmonic active phase locking,which indicates further potential applications of CBC.
文摘AIM: To review the results of our experience with the Medartis Aptus plating system for four corner arthrodesis of the wrist, which uses a combination of compression screws and variable angle locking screws.METHODS: We reviewed the results of 17 procedures in 16 patients that underwent scaphoid excision and four corner fusion using the Medartis Aptus system between May 2010 and June 2014. The primary outcome measure was radiographic and clinical union. RESULTS: The mean clinical follow up time was 20.6 mo. The mean union time was 6 mo. Two non-unions required revision procedures. The mean disabilities of the arm, shoulder and hand score taken after union was 36. The mean final grip strength was 27 kg. The mean final range of movement was 30° flexion and 31° of extension. All patients had a restored scapholunate angle on postoperative radiographs. There were no incidences of dorsal impingement.CONCLUSION: Overall our experience with the Aptus plating system shows comparable results to other methods of fixation for four corner fusion, in the short to medium term.
基金by the National Natural Science Foundation of China under Grant No 10805022the ITER Special Foundation(2009GB105003,2010GB108004)the National Basic Research Program of China under Grant No 2008CB717805.
文摘The locking of tearing modes by the error field is studied by nonlinear numerical modeling.The threshold of mode locking for J-TEXT tokamak plasmas is found.
基金Project supported by the National Basic Research Program of China(Grant No.2012CB921603)the National Natural Science Foundation of China(Grants Nos.11274209,61475090,61378039,and 61378013)the Research Project Supported by Shanxi Scholarship Council of China(Grant No.2014-009)
文摘We present a laser frequency locking to Rydberg transition with electromagnetically induced transparency(EIT)spectra in a room-temperature cesium vapor cell. Cesium levels 6S_(1/2), 6P_(3/2), and the n D_(5/2) state, compose a cascade three-level system, where a coupling laser drives Rydberg transition, and probe laser detects the EIT signal. The error signal, obtained by demodulating the EIT signal, is used to lock the coupling laser frequency to Rydberg transition. The laser frequency fluctuation, ~0.7 MHz, is obtained after locking on, with the minimum Allan variance to be 8.9 × 10^(-11).This kind of locking method can be used to stabilize the laser frequency to the excited transition.
基金funded by Institut Teknologi Sumatera Smart Mandiri 2019 Research Grant Fund No.B/364/IT9.C1/PT.01.03/2019
文摘65 km Semangko Fault is part of southern segments of Sumatran Fault Zone(SFZ)which is complex corresponds to the transition from the strike-slip regime of the SFZ to the normal faulting tectonics of the Sunda Strait.The recent publication showed branches of Semangko Fault:West Semangko Fault(WSF)and East Semangko Fault(ESF).This study estimated geodetic slip rate and locking depth of ESF using Global Positioning System(GPS)time series data from 2007 to 2019 from all available GPS sites.GPS velocities refer to Sundaland Plate were used to estimate the fault parameters of the WSF and ESF simultaneously.Non-uniformity of velocity direction shows the complexities of Semangko Fault possibly caused by the contribution of all faults around ESF.An ESF geodetic slip rate,which is 12.5±2 mm/yr was lower than WSF,which is 16.5±2 mm/yr.It is consistent with the rigid block nature of the SFZ system as northern segment slip rates have similar value.Small slip rates are possibly leading to lower generated seismic moment than the major segment of SFZ.