In the present paper, a simple and direct method was proposed to solve the (2+ 1)-dimensional long dispersive wave equations. A variable-dependent transformation was intorducedto convert the equations into the simpler...In the present paper, a simple and direct method was proposed to solve the (2+ 1)-dimensional long dispersive wave equations. A variable-dependent transformation was intorducedto convert the equations into the simpler forms, which are coupled and linear partial differentialequations, then obtain its general solution. Some special types of the localized excitations, suchas oscillating dromion, multi-solitoff, multi-dromion, multi-lump and multi-ring soliton solutionsare derived by selecting the arbitrary functions appropriately.展开更多
With an extended mapping approach and a linear variable separation method, new families of variable separation solutions (including solitary wave solutions, periodic wave solutions, and rational function solutions) ...With an extended mapping approach and a linear variable separation method, new families of variable separation solutions (including solitary wave solutions, periodic wave solutions, and rational function solutions) with arbitrary functions for (3+1)-dimensionai Burgers system is derived. Based on the derived excitations, we obtain some novel localized coherent structures and study the interactions between solitons.展开更多
In this letter, starting from a B?cklund transformation, a general solution of a (2+1)-dimensional integrable system is obtained by using the new variable separation approach.
文摘In the present paper, a simple and direct method was proposed to solve the (2+ 1)-dimensional long dispersive wave equations. A variable-dependent transformation was intorducedto convert the equations into the simpler forms, which are coupled and linear partial differentialequations, then obtain its general solution. Some special types of the localized excitations, suchas oscillating dromion, multi-solitoff, multi-dromion, multi-lump and multi-ring soliton solutionsare derived by selecting the arbitrary functions appropriately.
基金The project supported by the Natural Science Foundation of Zhejiang Province under Grant Nos.Y606128 and Y604106the Natural Science Foundation of Zhejiang Lishui University under Grant Nos.FC06001 and QN06009
文摘With an extended mapping approach and a linear variable separation method, new families of variable separation solutions (including solitary wave solutions, periodic wave solutions, and rational function solutions) with arbitrary functions for (3+1)-dimensionai Burgers system is derived. Based on the derived excitations, we obtain some novel localized coherent structures and study the interactions between solitons.
文摘In this letter, starting from a B?cklund transformation, a general solution of a (2+1)-dimensional integrable system is obtained by using the new variable separation approach.