OBJECTIVE:To determine direct targeting of localized adiposity through Morus alba Linne bark injection based on pharmacology network analysis.METHODS:Male C57BL/6J mice were fed a high-fat diet(HFD)to induce obesity.A...OBJECTIVE:To determine direct targeting of localized adiposity through Morus alba Linne bark injection based on pharmacology network analysis.METHODS:Male C57BL/6J mice were fed a high-fat diet(HFD)to induce obesity.After 6 weeks on HFD,the water extract of Morus alba L.bark(MAB,2 mg/mL)was locally injected into one inguinal fat pad,while saline was injected into the other side,3 times/week for 6 weeks(n=6/group).The water extract of MAB was freeze-dried and then diluted in saline before use.RESULTS:HFD-fed mice treated with local MAB topical injection showed reduced adipocyte weight and size in inguinal fat pads by dual-energy X-ray absorptiometry.No toxicity changes seen in liver,spleen,kidney tissue,or alanine aminotransferase/aspartate aminotransferase levels in serum by MAB injection.Protein levels of phosphorylated insulin receptor substrate-1 and glucose transporter type 4,and mRNA expression of adiponectin,were increased in inguinal adipose tissue injected with MAB locally.Locally MAB injection led to a decrease in glucose-6-phosphatase and phosphoenolpyruvate carboxykinase,linked to gluconeogenesis,while forkhead box protein O1,which regulates these factors,was increased.Moreover,there was an increase in adenosine 5‘-monophosphate-activated protein kinase,related to lipogenesis,as well as elevated levels of hormone-sensitive lipase and fatty acid synthase,both associated with lipolysis.These results support the'insulin signaling pathway'and'regulation of lipolysis in adipocytes'identified in the Kyoto Encyclopedia of Genes and Genomes pathway through network analysis.CONCLUSION:This study suggests that MAB topical injection exhibits localized fat reduction by inhibiting insulin resistance,gluconeogenesis and lipogenesis mediator,while activating lipolysis enzymes within targeted adipose site.展开更多
Corrosion poses a major threat to the safety of transportation pipelines.Therefore,it is crucial to have an in-depth understanding of corrosion mechanisms in pipeline steels for the effective management of pipeline in...Corrosion poses a major threat to the safety of transportation pipelines.Therefore,it is crucial to have an in-depth understanding of corrosion mechanisms in pipeline steels for the effective management of pipeline integrity.Conducting research on corrosion mechanisms relies on the use of efficient and reliable corrosion monitoring and analysis techniques.The advancements in corrosion monitoring techniques specifically designed for the localized corrosion monitoring were aimed to be introduced,and a comprehensive overview of recent progress in understanding the localized corrosion mechanisms in pipeline steels was provided.Based on the different corrosive environments encountered,the localized corrosion issues inside pipelines are classified into two categories:localized corrosion primarily influenced by electrochemical processes and localized corrosion controlled by both electrochemical and mechanical factors.Additionally,a thorough analysis of the synergistic effects between micro-cell and macro-cell currents,as well as the interplay of mechanics and electrochemistry is presented.Finally,recommendations for future research on the mechanisms of internal localized corrosion in pipelines are provided.展开更多
In recent years,adeno-associated viruses(AAVs)have emerged as leading vectors in gene therapy,with several FDA-approved treatments and ongoing clinical trials demonstrating their effectiveness in treating inherited re...In recent years,adeno-associated viruses(AAVs)have emerged as leading vectors in gene therapy,with several FDA-approved treatments and ongoing clinical trials demonstrating their effectiveness in treating inherited retinal diseases,hemophilia,and Duchenne muscular dystrophy,among others.However,AAV-based therapies still face challenges,including immune responses and side effects,due to high viral doses.To address these challenges,various strategies have been developed,such as creating new viral capsids,optimizing gene expression regulation,and improving delivery methods.Localized delivery is a promising direction,utilizing the tissue tropism of AAVs to reduce systemic side effects and lower the required viral dose,thus improving targeting and efficiency,especially for organs that are difficult to treat with conventional methods.These innovations have opened new pathways for the clinical application of AAVs.This review aims to provide a comprehensive summary of the various applications of AAVs,offer valuable insights for future research directions,and holds significant importance for researchers and clinicians in the field.As AAV therapy continues to evolve,this article emphasizes its transformative potential in treating genetic diseases,indicating the central role of AAV in the future of gene therapy.展开更多
Owing to anionic redox,cathode materials containing layered Li-rich Mn-based oxides(LLOs)are promising for the development of next-generation lithium-ion batteries(LIBs)with a large energy density(~500–600 Wh·kg...Owing to anionic redox,cathode materials containing layered Li-rich Mn-based oxides(LLOs)are promising for the development of next-generation lithium-ion batteries(LIBs)with a large energy density(~500–600 Wh·kg^(−1)).However,these LLOs are easily degraded during cycling,which limits their lifespan.So far,the degradation mechanism is still under debate.Herein,LLOs are post-treated through implantation with energetic Ti ion flux(Ti-LLO),which modifies the structure of LLOs both at the surface and within the bulk.Unlike the dominant R3m phase(73.24%)observed in LLOs,the phase structure of Ti-LLO is altered,with Li-rich C2/m accounting for 67.72%in the bulk,alongside the formation of a thin(approximately 2 nm),uniform,and continuous Li-Ti-O spinel layer at the surface.Apart from phase structure changes,chemical valence states of transition metals and O,as well as their evolution,are analyzed and compared to charge transport kinetics to elucidate their contributions to the enhanced discharge capacity in Ti-LLOs.Besides,the role of the Li-Ti-O spinel layer at the surface in providing anticorrosion protection at the interface of LLOs/electrolyte during cycling is evaluated.As a result,we demonstrate that a superhigh discharge capacity(335.3 mAh·g^(−1))at 0.1 C can be achieved,along with prolonged cycling stability(showing capacity retention of approximately 80%after 500 cycles at 1 C)through these modifications.Moreover,we confirmed the universality of the strategy by implanting other ions,which offers practical strategies for achieving high performance in LLO cathode materials through thermodynamics and kinetics pathways.展开更多
Cascading thermal runaway(TR)propagation poses a critical safety concern for large-format sodium-ion battery(SIB)systems because of the heightened risks of fires or explosions.However,effectively suppressing TR propag...Cascading thermal runaway(TR)propagation poses a critical safety concern for large-format sodium-ion battery(SIB)systems because of the heightened risks of fires or explosions.However,effectively suppressing TR propagation without introducing unintended side effects remains a significant challenge.Herein,we demonstrate a localized energy release method to mitigate TR,by reducing the state of charge(SOC)of cells adjacent to the thermally runaway unit.We discover that as the SOCs decreased from 100%to 25%,the TR trigger temperature decreased significantly,and the maximum temperature decrease from 367 to 229℃.Meanwhile,the volume of gas decreased to one-third of its original value,while the range of explosion limits significantly narrowed.The analysis of the morphology of the debris further confirms that the structural damage is greater at higher SOC levels.Moreover,an Entropy Weight and Technique for Order Preference by Similarity to an Ideal Solution(EW-TOPSIS)method has been established to assess the safety status of SIBs,showing that the TR possibility is nearly linear with the SOCs,and the TR hazard is exponentially related to the SOCs.Finally,when the SOC of cells adjacent to the TR cell is reduced to 25%,TR can be directly blocked without the need for additional cooling or thermal insulation methods.This study not only advances the understanding of TR behavior in SIBs but also offers a straightforward approach to mitigating the TR risk in SIB systems.展开更多
When only a portion of the shield lining structures in a full-line tunnel are overloaded,their bearing and failure characteristics are significantly different from those in the full-line overloaded case.In existing st...When only a portion of the shield lining structures in a full-line tunnel are overloaded,their bearing and failure characteristics are significantly different from those in the full-line overloaded case.In existing studies,one or several segmental lining rings have been studied,with overload applied to selected lining rings to analyze the performance evolution of the lining structures;however,this approach fails to reveal the bearing and failure characteristics of shield lining rings under localized overload.To address this research gap,we employ 3D finite element modeling to investigate the mechanical performance and failure mechanisms of shield segmental linings under localized overload conditions,and compare the results with full-line overload scenarios.Additionally,the impact of reinforcing shield segmental linings with steel rings is studied to address issues arising from localized overloads.The results indicate that localized overloads lead to significant ring joint dislocation and higher stress on longitudinal bolts,potentially causing longitudinal bolt failure.Furthermore,the overall deformation of lining rings,segmental joint opening,and stress in circumferential bolts and steel bars is lower compared to full-line overloads.For the same overload level,the convergence deformation of the lining under full-line overload is 1.5 to 2.0 times higher than that under localized overload.For localized overload situations,a reinforcement scheme with steel rings spanning across two adjacent lining rings is more effective than installing steel rings within individual lining rings.This spanning ring reinforcement strategy not only enhances the structural rigidity of each ring,but also limits joint dislocation and reduces stress on longitudinal bolts,with the reduction in maximum ring joint dislocation ranging from 70%to 82%and the reduction in maximum longitudinal bolt stress ranging from 19%to 57%compared to reinforcement within rings.展开更多
304H austenitic stainless steel wire was investigated,emphasizing microstructural deformation,martensite phase transformation,and residual magnetic properties during drawing.Utilizing several microstructural observati...304H austenitic stainless steel wire was investigated,emphasizing microstructural deformation,martensite phase transformation,and residual magnetic properties during drawing.Utilizing several microstructural observation techniques,the volume fraction of martensite,modes of grain deformation in distinct regions,and the phase relationship between austenite and martensite were comprehensively characterized.In addition,a finite element simulation with representative volume elements specific to different zones also offers insights into strain responses during the drawing process.Results from the first-pass drawing reveal that there exists a higher volume fraction of martensite in the central region of 304H austenitic stainless steel wire compared to edge areas.This discrepancy is attributed to a concentrated presence of shear slip system{111}<110>γcrystallographic orientation,primarily accumulating in the central region obeying the Kurdjumov-Sachs path.Subsequent to the second drawing pass,the cumulative shear deformation within distinct regions of the steel wire became more pronounced.This resulted in a progressive augmentation of the volume fraction of martensite in both the central and peripheral regions of the steel wire.Concurrently,this led to a discernible elevation in the overall residual magnetism of the steel wire.展开更多
Under investigation is the n-component nonlinear Schrödinger equation with higher-order effects,which describes the ultrashort pulses in the birefringent fiber.Based on the Lax pair,the eigenfunction and generali...Under investigation is the n-component nonlinear Schrödinger equation with higher-order effects,which describes the ultrashort pulses in the birefringent fiber.Based on the Lax pair,the eigenfunction and generalized Darboux transformation are derived.Next,we construct several novel higher-order localized waves and classified them into three categories:(i)higher-order rogue waves interacting with bright/antidark breathers,(ii)higher-order breather fission/fusion,(iii)higherorder breather interacting with soliton.Moreover,we explore the effects of parameters on the structure,collision process and energy distribution of localized waves and these characteristics are significantly different from previous ones.Finally,the dynamical properties of these solutions are discussed in detail.展开更多
The nonisospectral effectλ_t=α(t)λsatisfied by spectral parameterλopens up a new scheme for constructing localized waves to some nonlinear partial differential equations.In this paper,we perform this effect on a c...The nonisospectral effectλ_t=α(t)λsatisfied by spectral parameterλopens up a new scheme for constructing localized waves to some nonlinear partial differential equations.In this paper,we perform this effect on a complex nonisospectral nonpotential sine-Gordon equation by the bilinearization reduction method.From an integrable nonisospectral Ablowitz–Kaup–Newell–Segur equation,we construct some exact solutions in double Wronskian form to the reduced complex nonisospectral nonpotential sine-Gordon equation.These solutions,including soliton solutions,Jordan-block solutions and interaction solutions,exhibit localized structure,whose dynamics are analyzed with graphical illustration.The research ideas and methods in this paper can be generalized to other negative order nonisospectral integrable systems.展开更多
The publisher regrets that the document header on top left of the first page should be“Research Highlights”instead of“Prospective”.The publisher would like to apologise for any inconvenience caused.
Conventional proton exchange membrane(PEM)electrolysis technology relies on ultrapure water,as cationic impurities(such as Na^(+),Ca^(2+) and Fe^(3+))can occupy H+transport sites in the membrane[1],leading to a sharp ...Conventional proton exchange membrane(PEM)electrolysis technology relies on ultrapure water,as cationic impurities(such as Na^(+),Ca^(2+) and Fe^(3+))can occupy H+transport sites in the membrane[1],leading to a sharp rise in cathode pH,catalyst deactivation,and membrane degradation[2].This forces the system to be equipped with complex water purification equipment and even necessitates the replacement of membrane electrode assemblies(MEAs),increasing the levelized cost of hydrogen(LCOH)[3].To address this,Tao Ling's group recently proposed a"local pH regulation"strategy in Nature Energy[4].展开更多
A high speed LIGBT with localized lifetime control by using high dose and low en ergy helium implantation(LC-LIGBT) is proposed.Compared with conventional LIGB Ts,particle irradiation results show that trade-off relat...A high speed LIGBT with localized lifetime control by using high dose and low en ergy helium implantation(LC-LIGBT) is proposed.Compared with conventional LIGB Ts,particle irradiation results show that trade-off relationship between turn- off time and forward voltage drop is improved.At the same time,the forward volta ge drop and turn-off time of such device are researched,when localized lifetime control region place near the p+-n junction,even in p+ anode.The results s how for the first time,helium ions,which stop in the p+ anode,also contribute to the forward voltage drop increasing and turn-off time reducing.展开更多
Autosamplers are indispensable key equipment in modern laboratories,playing a pivotal role in fields such as biomedicine,environmental monitoring,food safety,and materials science.However,domestic autosampler enterpri...Autosamplers are indispensable key equipment in modern laboratories,playing a pivotal role in fields such as biomedicine,environmental monitoring,food safety,and materials science.However,domestic autosampler enterprises are facing formidable challenges,confronted by the technological barriers and brand dominance of international giants,as well as increasingly fierce homogeneous competition in the domestic market.This article aims to thoroughly analyze the current market landscape and,based on seven key dimensions—strategic positioning,product technology,sales channels,brand building,service and support,supply chain optimization,and talent development—propose a series of effective market-winning strategies.This will provide theoretical guidance and practical reference for domestic autosampler enterprises to achieve breakthroughs and sustainable development amidst fierce market competition.展开更多
The paper had studied localized design and construction of roof garden.Starting from the history of roof garden,it summarized development of roof garden.It was considered that roof garden could not only provide public...The paper had studied localized design and construction of roof garden.Starting from the history of roof garden,it summarized development of roof garden.It was considered that roof garden could not only provide public rest space,realize thermal insulation and noise reduction of architectures,help water-storage and urban drainage;but also beautify environment,ameliorate regional climate,enrich urban landscape,help to increase ground greening area and improve ecological quality.Finally,some designing principles for roof garden had been proposed,including ① enhancing security consciousness and highlighting roof load design;② emphasizing ecological use and stressing greening coverage;③ manifesting artistic feature;④ investing cautiously,saving construction cost and paying attention to later maintenance.展开更多
Recently, there was a hot controversy about the concept of localized orbitals, which was triggered by Grushow's work titled "Is it time to retire the hybrid atomic orbital?" [J. Chem. Educ. 88, 860 (2011)]. To c...Recently, there was a hot controversy about the concept of localized orbitals, which was triggered by Grushow's work titled "Is it time to retire the hybrid atomic orbital?" [J. Chem. Educ. 88, 860 (2011)]. To clarify the issue, we assess the delocalized and localized molecular orbitals from an experimental view using electron momentum spectroscopy. The delocalized and localized molecular orbitals based on various theoretical models for CH4, NH3, and H20 are compared with the experimental momentum distributions. Our results show that the delocalized molecular orbitals rather than the localized ones can give a direct interpretation of the experimental (e, 2e) results.展开更多
To clarify the corrosion mechanism associated with the precipitate of T1(Al2CuLi)in Al-Li alloys,the simulated bulk precipitate of T1 was fabricated through melting and casting.Its electrochemical behavior and couplin...To clarify the corrosion mechanism associated with the precipitate of T1(Al2CuLi)in Al-Li alloys,the simulated bulk precipitate of T1 was fabricated through melting and casting.Its electrochemical behavior and coupling behavior with α(Al)in 3.5% NaCl solution were investigated.Meanwhile,the simulated Al alloy containing T1 particle was prepared and its corrosion morphology was observed.The results show that there exists a dynamic conversion corrosion mechanism associated with the precipitate of T1.At the beginning,the precipitate of T1 is anodic to the alloy base and corrosion occurs on its surface.However,during its corrosion process,its potential moves to a positive direction with immersion time increasing,due to the preferential dissolution of Li and the enrichment of Cu.As a result,the corroded T1 becomes cathodic to the alloy base at a later stage,leading to the anodic dissolution and corrosion of the alloy base at its adjacent periphery.It is suggested that the localized corrosion associated with the precipitate of T1 in Al-Li alloys is caused by the alternate anodic dissolution of the T1 precipitate and the alloy base at its adjacent periphery.展开更多
The surface properties of weathering steel(WS)is very important for its service performance and safety,and the localized corrosion induced by inclusions is closely related to the surface properties of WS and its appli...The surface properties of weathering steel(WS)is very important for its service performance and safety,and the localized corrosion induced by inclusions is closely related to the surface properties of WS and its application.In the current work,a common spherical(Al,Mg,Ca,Mn)-oxy-sulfide inclusion was selected to investigate the corrosion evolution of complex inclusion and its effect on localized corrosion on WS surface.The results indicate the inclusion in WS consists of(Ca,Mn)sulfides part and(Ca,Al,Mg)oxides part with complex core-shell structure.Locally preferential dissolution occurs in(Ca,Mn)sulfides part as well as metal matrix around the inclusions.Furthermore,both parts of the inclusions with poor conductivity and high-density dislocation at metal matrix around the inclusions was found,which suggests that traditional micro-galvanic corrosion cell may not be the cause of inclusion-induced localized corrosion on WS surface at initial stage of corrosion.The variation in maximum and average depth around the inclusion or selected region with immersion time indicates that localized corrosion induced by inclusions is overwhelmed by uniform corrosion of WS in the latter stage of immersion,then the rust formed on WS surface consists of two layers.展开更多
Localized surface plasmon resonance (LSPR) enhanced photocatalysis has fascinated much interest and considerable efforts have been devoted toward the development of plasmonic photocatalysts. In the past decades, noble...Localized surface plasmon resonance (LSPR) enhanced photocatalysis has fascinated much interest and considerable efforts have been devoted toward the development of plasmonic photocatalysts. In the past decades, noble metal nanoparticles (Au and Ag) with LSPR feature have found wide applications in solar energy conversion. Numerous metal-based photocatalysts have been proposed including metal/semiconductor heterostructures and plasmonic bimetallic or multimetallic nanostructures. However, high cost and scarce reserve of noble metals largely limit their further practical use, which drives the focus gradually shift to low-cost and abundant nonmetallic nanostructures. Recently, various heavily doped semiconductors (such as WO_(3-x), MoO_(3-x), Cu_(2-x)S, TiN) have emerged as potential alternatives to costly noble metals for efficient photocatalysis due to their strong LSPR property in visible-near infrared region. This review starts with a brief introduction to LSPR property and LSPR-enhanced photocatalysis, the following highlights recent advances of plasmonic photocatalysts from noble metal to semiconductor-based plasmonic nanostructures. Their synthesis methods and promising applicability in plasmon-driven photocatalytic reactions such as water splitting, CO_(2) reduction and pollution decomposition are also summarized in details. This review is expected to give guidelines for exploring more efficient plasmonic systems and provide a perspective on development of plasmonic photocatalysis.展开更多
By using a mapping approach and a linear variable separation approach, a new family of solitary wave solutions with arbitrary functions for the (2+1)-dimensional modified dispersive water-wave system (MDWW) is de...By using a mapping approach and a linear variable separation approach, a new family of solitary wave solutions with arbitrary functions for the (2+1)-dimensional modified dispersive water-wave system (MDWW) is derived. Based on the derived solutions and using some multi-valued functions, we obtain some novel folded localized excitations of the system.展开更多
Certain inclusions in high-strength 60Si2Mn-Cr spring steel result in poor resistance to localized corrosion.In this work,to study the effect of inclusions on the localized corrosion behavior of spring steel,accelerat...Certain inclusions in high-strength 60Si2Mn-Cr spring steel result in poor resistance to localized corrosion.In this work,to study the effect of inclusions on the localized corrosion behavior of spring steel,accelerated corrosion tests were performed by immersing spring steel in 3wt%FeCl_(3)solution for different times.The results show that severe corrosion occurred in areas of clustered CaS inclusions.Sulfide inclusions containing Ca and Mg induced the strongest localized corrosion susceptibility.For the case of(Ca,Mn,Mg)S inclusions,the ability to induce localized corrosion susceptibility is ranked as follows:MgS>CaS>MnS.Moreover,CaS,(Ca,Mn)S,and(Ca,Mn,Mg)S inclusions were mainly responsible for inducing environmental embrittlement.展开更多
基金Supported by Korea Health Technology R&D Project through the National Research Foundation of Korea,funded by the Korean Government(Project Number:NRF-2019R1I1A2A01063598)Undergraduate Research Program of the College of Korean Medicine,Kyung Hee University,Republic of Korea,in 2023(Project Number:2023)。
文摘OBJECTIVE:To determine direct targeting of localized adiposity through Morus alba Linne bark injection based on pharmacology network analysis.METHODS:Male C57BL/6J mice were fed a high-fat diet(HFD)to induce obesity.After 6 weeks on HFD,the water extract of Morus alba L.bark(MAB,2 mg/mL)was locally injected into one inguinal fat pad,while saline was injected into the other side,3 times/week for 6 weeks(n=6/group).The water extract of MAB was freeze-dried and then diluted in saline before use.RESULTS:HFD-fed mice treated with local MAB topical injection showed reduced adipocyte weight and size in inguinal fat pads by dual-energy X-ray absorptiometry.No toxicity changes seen in liver,spleen,kidney tissue,or alanine aminotransferase/aspartate aminotransferase levels in serum by MAB injection.Protein levels of phosphorylated insulin receptor substrate-1 and glucose transporter type 4,and mRNA expression of adiponectin,were increased in inguinal adipose tissue injected with MAB locally.Locally MAB injection led to a decrease in glucose-6-phosphatase and phosphoenolpyruvate carboxykinase,linked to gluconeogenesis,while forkhead box protein O1,which regulates these factors,was increased.Moreover,there was an increase in adenosine 5‘-monophosphate-activated protein kinase,related to lipogenesis,as well as elevated levels of hormone-sensitive lipase and fatty acid synthase,both associated with lipolysis.These results support the'insulin signaling pathway'and'regulation of lipolysis in adipocytes'identified in the Kyoto Encyclopedia of Genes and Genomes pathway through network analysis.CONCLUSION:This study suggests that MAB topical injection exhibits localized fat reduction by inhibiting insulin resistance,gluconeogenesis and lipogenesis mediator,while activating lipolysis enzymes within targeted adipose site.
基金sponsored by the National Key R&D Program of China(No.2022YFC2806200)the National Natural Science Foundation of China(No.52001055)the Open Foundation of State Key Laboratory of Structural Analysis for Industrial Equipment(GZ22118).
文摘Corrosion poses a major threat to the safety of transportation pipelines.Therefore,it is crucial to have an in-depth understanding of corrosion mechanisms in pipeline steels for the effective management of pipeline integrity.Conducting research on corrosion mechanisms relies on the use of efficient and reliable corrosion monitoring and analysis techniques.The advancements in corrosion monitoring techniques specifically designed for the localized corrosion monitoring were aimed to be introduced,and a comprehensive overview of recent progress in understanding the localized corrosion mechanisms in pipeline steels was provided.Based on the different corrosive environments encountered,the localized corrosion issues inside pipelines are classified into two categories:localized corrosion primarily influenced by electrochemical processes and localized corrosion controlled by both electrochemical and mechanical factors.Additionally,a thorough analysis of the synergistic effects between micro-cell and macro-cell currents,as well as the interplay of mechanics and electrochemistry is presented.Finally,recommendations for future research on the mechanisms of internal localized corrosion in pipelines are provided.
基金supported by the Guiding Funds of Central Government for Supporting the Development of the Local Science and Technology(2024BSB012)National Natural Science Foundation of China(No.81772833).
文摘In recent years,adeno-associated viruses(AAVs)have emerged as leading vectors in gene therapy,with several FDA-approved treatments and ongoing clinical trials demonstrating their effectiveness in treating inherited retinal diseases,hemophilia,and Duchenne muscular dystrophy,among others.However,AAV-based therapies still face challenges,including immune responses and side effects,due to high viral doses.To address these challenges,various strategies have been developed,such as creating new viral capsids,optimizing gene expression regulation,and improving delivery methods.Localized delivery is a promising direction,utilizing the tissue tropism of AAVs to reduce systemic side effects and lower the required viral dose,thus improving targeting and efficiency,especially for organs that are difficult to treat with conventional methods.These innovations have opened new pathways for the clinical application of AAVs.This review aims to provide a comprehensive summary of the various applications of AAVs,offer valuable insights for future research directions,and holds significant importance for researchers and clinicians in the field.As AAV therapy continues to evolve,this article emphasizes its transformative potential in treating genetic diseases,indicating the central role of AAV in the future of gene therapy.
基金supported by the National Key Research and Development Program of China(2022YFB2502000)the National Natural Science Foundation of China(52201277,52207244,52207245)+1 种基金the Xi'an Young Talent Lifting Program(959202413060)the National Outstanding Youth Foundation of China(52125104).
文摘Owing to anionic redox,cathode materials containing layered Li-rich Mn-based oxides(LLOs)are promising for the development of next-generation lithium-ion batteries(LIBs)with a large energy density(~500–600 Wh·kg^(−1)).However,these LLOs are easily degraded during cycling,which limits their lifespan.So far,the degradation mechanism is still under debate.Herein,LLOs are post-treated through implantation with energetic Ti ion flux(Ti-LLO),which modifies the structure of LLOs both at the surface and within the bulk.Unlike the dominant R3m phase(73.24%)observed in LLOs,the phase structure of Ti-LLO is altered,with Li-rich C2/m accounting for 67.72%in the bulk,alongside the formation of a thin(approximately 2 nm),uniform,and continuous Li-Ti-O spinel layer at the surface.Apart from phase structure changes,chemical valence states of transition metals and O,as well as their evolution,are analyzed and compared to charge transport kinetics to elucidate their contributions to the enhanced discharge capacity in Ti-LLOs.Besides,the role of the Li-Ti-O spinel layer at the surface in providing anticorrosion protection at the interface of LLOs/electrolyte during cycling is evaluated.As a result,we demonstrate that a superhigh discharge capacity(335.3 mAh·g^(−1))at 0.1 C can be achieved,along with prolonged cycling stability(showing capacity retention of approximately 80%after 500 cycles at 1 C)through these modifications.Moreover,we confirmed the universality of the strategy by implanting other ions,which offers practical strategies for achieving high performance in LLO cathode materials through thermodynamics and kinetics pathways.
基金supported by the National Key R&D Program of China(2023YFB2407900)the National Natural Science Foundation of China(52302512)+1 种基金State Key Laboratory of New Ceramic and Fine Processing Tsinghua University(KFZD202305)Zhejiang Province Science and Technology Program Grant(2024C0127(SD2))。
文摘Cascading thermal runaway(TR)propagation poses a critical safety concern for large-format sodium-ion battery(SIB)systems because of the heightened risks of fires or explosions.However,effectively suppressing TR propagation without introducing unintended side effects remains a significant challenge.Herein,we demonstrate a localized energy release method to mitigate TR,by reducing the state of charge(SOC)of cells adjacent to the thermally runaway unit.We discover that as the SOCs decreased from 100%to 25%,the TR trigger temperature decreased significantly,and the maximum temperature decrease from 367 to 229℃.Meanwhile,the volume of gas decreased to one-third of its original value,while the range of explosion limits significantly narrowed.The analysis of the morphology of the debris further confirms that the structural damage is greater at higher SOC levels.Moreover,an Entropy Weight and Technique for Order Preference by Similarity to an Ideal Solution(EW-TOPSIS)method has been established to assess the safety status of SIBs,showing that the TR possibility is nearly linear with the SOCs,and the TR hazard is exponentially related to the SOCs.Finally,when the SOC of cells adjacent to the TR cell is reduced to 25%,TR can be directly blocked without the need for additional cooling or thermal insulation methods.This study not only advances the understanding of TR behavior in SIBs but also offers a straightforward approach to mitigating the TR risk in SIB systems.
基金supported by the National Natural Science Foundation of China(No.52008308).
文摘When only a portion of the shield lining structures in a full-line tunnel are overloaded,their bearing and failure characteristics are significantly different from those in the full-line overloaded case.In existing studies,one or several segmental lining rings have been studied,with overload applied to selected lining rings to analyze the performance evolution of the lining structures;however,this approach fails to reveal the bearing and failure characteristics of shield lining rings under localized overload.To address this research gap,we employ 3D finite element modeling to investigate the mechanical performance and failure mechanisms of shield segmental linings under localized overload conditions,and compare the results with full-line overload scenarios.Additionally,the impact of reinforcing shield segmental linings with steel rings is studied to address issues arising from localized overloads.The results indicate that localized overloads lead to significant ring joint dislocation and higher stress on longitudinal bolts,potentially causing longitudinal bolt failure.Furthermore,the overall deformation of lining rings,segmental joint opening,and stress in circumferential bolts and steel bars is lower compared to full-line overloads.For the same overload level,the convergence deformation of the lining under full-line overload is 1.5 to 2.0 times higher than that under localized overload.For localized overload situations,a reinforcement scheme with steel rings spanning across two adjacent lining rings is more effective than installing steel rings within individual lining rings.This spanning ring reinforcement strategy not only enhances the structural rigidity of each ring,but also limits joint dislocation and reduces stress on longitudinal bolts,with the reduction in maximum ring joint dislocation ranging from 70%to 82%and the reduction in maximum longitudinal bolt stress ranging from 19%to 57%compared to reinforcement within rings.
基金funded by National Natural Science Foundation of China(52201084 and 52231003)Major Program(JD)of Hubei Province(2023BAA019)+2 种基金China Scholarship Council(CSC)Postdoctoral Station of metallurgical Engineering of Wuhan University of Science and Technology(WUST)Postdoctoral workstation of Zhejiang Jincheng New Material Co.,Ltd.
文摘304H austenitic stainless steel wire was investigated,emphasizing microstructural deformation,martensite phase transformation,and residual magnetic properties during drawing.Utilizing several microstructural observation techniques,the volume fraction of martensite,modes of grain deformation in distinct regions,and the phase relationship between austenite and martensite were comprehensively characterized.In addition,a finite element simulation with representative volume elements specific to different zones also offers insights into strain responses during the drawing process.Results from the first-pass drawing reveal that there exists a higher volume fraction of martensite in the central region of 304H austenitic stainless steel wire compared to edge areas.This discrepancy is attributed to a concentrated presence of shear slip system{111}<110>γcrystallographic orientation,primarily accumulating in the central region obeying the Kurdjumov-Sachs path.Subsequent to the second drawing pass,the cumulative shear deformation within distinct regions of the steel wire became more pronounced.This resulted in a progressive augmentation of the volume fraction of martensite in both the central and peripheral regions of the steel wire.Concurrently,this led to a discernible elevation in the overall residual magnetism of the steel wire.
基金Project supported by the National Natural Science Foundation of China(Grant No.12271096)the Natural Science Foundation of Fujian Province(Grant No.2021J01302)。
文摘Under investigation is the n-component nonlinear Schrödinger equation with higher-order effects,which describes the ultrashort pulses in the birefringent fiber.Based on the Lax pair,the eigenfunction and generalized Darboux transformation are derived.Next,we construct several novel higher-order localized waves and classified them into three categories:(i)higher-order rogue waves interacting with bright/antidark breathers,(ii)higher-order breather fission/fusion,(iii)higherorder breather interacting with soliton.Moreover,we explore the effects of parameters on the structure,collision process and energy distribution of localized waves and these characteristics are significantly different from previous ones.Finally,the dynamical properties of these solutions are discussed in detail.
基金supported by the National Natural Science Foundation of China(Grant No.12071432)Zhejiang Provincial Natural Science Foundation(Grant No.LZ24A010007)。
文摘The nonisospectral effectλ_t=α(t)λsatisfied by spectral parameterλopens up a new scheme for constructing localized waves to some nonlinear partial differential equations.In this paper,we perform this effect on a complex nonisospectral nonpotential sine-Gordon equation by the bilinearization reduction method.From an integrable nonisospectral Ablowitz–Kaup–Newell–Segur equation,we construct some exact solutions in double Wronskian form to the reduced complex nonisospectral nonpotential sine-Gordon equation.These solutions,including soliton solutions,Jordan-block solutions and interaction solutions,exhibit localized structure,whose dynamics are analyzed with graphical illustration.The research ideas and methods in this paper can be generalized to other negative order nonisospectral integrable systems.
文摘The publisher regrets that the document header on top left of the first page should be“Research Highlights”instead of“Prospective”.The publisher would like to apologise for any inconvenience caused.
基金the Natural Science Foundation of Guangxi,China(No.2021GXNSFBA220058)the National Natural Science Foundation of China(Nos.22272036, 22362008)Guangxi Normal University Research Grant,China(No.2022TD).
文摘Conventional proton exchange membrane(PEM)electrolysis technology relies on ultrapure water,as cationic impurities(such as Na^(+),Ca^(2+) and Fe^(3+))can occupy H+transport sites in the membrane[1],leading to a sharp rise in cathode pH,catalyst deactivation,and membrane degradation[2].This forces the system to be equipped with complex water purification equipment and even necessitates the replacement of membrane electrode assemblies(MEAs),increasing the levelized cost of hydrogen(LCOH)[3].To address this,Tao Ling's group recently proposed a"local pH regulation"strategy in Nature Energy[4].
文摘A high speed LIGBT with localized lifetime control by using high dose and low en ergy helium implantation(LC-LIGBT) is proposed.Compared with conventional LIGB Ts,particle irradiation results show that trade-off relationship between turn- off time and forward voltage drop is improved.At the same time,the forward volta ge drop and turn-off time of such device are researched,when localized lifetime control region place near the p+-n junction,even in p+ anode.The results s how for the first time,helium ions,which stop in the p+ anode,also contribute to the forward voltage drop increasing and turn-off time reducing.
文摘Autosamplers are indispensable key equipment in modern laboratories,playing a pivotal role in fields such as biomedicine,environmental monitoring,food safety,and materials science.However,domestic autosampler enterprises are facing formidable challenges,confronted by the technological barriers and brand dominance of international giants,as well as increasingly fierce homogeneous competition in the domestic market.This article aims to thoroughly analyze the current market landscape and,based on seven key dimensions—strategic positioning,product technology,sales channels,brand building,service and support,supply chain optimization,and talent development—propose a series of effective market-winning strategies.This will provide theoretical guidance and practical reference for domestic autosampler enterprises to achieve breakthroughs and sustainable development amidst fierce market competition.
文摘The paper had studied localized design and construction of roof garden.Starting from the history of roof garden,it summarized development of roof garden.It was considered that roof garden could not only provide public rest space,realize thermal insulation and noise reduction of architectures,help water-storage and urban drainage;but also beautify environment,ameliorate regional climate,enrich urban landscape,help to increase ground greening area and improve ecological quality.Finally,some designing principles for roof garden had been proposed,including ① enhancing security consciousness and highlighting roof load design;② emphasizing ecological use and stressing greening coverage;③ manifesting artistic feature;④ investing cautiously,saving construction cost and paying attention to later maintenance.
基金supported by the National Natural Science Foundation of China(Grant No.11174175)the Tsinghua University Initiative Scientific Research Program,China
文摘Recently, there was a hot controversy about the concept of localized orbitals, which was triggered by Grushow's work titled "Is it time to retire the hybrid atomic orbital?" [J. Chem. Educ. 88, 860 (2011)]. To clarify the issue, we assess the delocalized and localized molecular orbitals from an experimental view using electron momentum spectroscopy. The delocalized and localized molecular orbitals based on various theoretical models for CH4, NH3, and H20 are compared with the experimental momentum distributions. Our results show that the delocalized molecular orbitals rather than the localized ones can give a direct interpretation of the experimental (e, 2e) results.
基金Project(50401012) supported by the National Natural Science Foundation of China
文摘To clarify the corrosion mechanism associated with the precipitate of T1(Al2CuLi)in Al-Li alloys,the simulated bulk precipitate of T1 was fabricated through melting and casting.Its electrochemical behavior and coupling behavior with α(Al)in 3.5% NaCl solution were investigated.Meanwhile,the simulated Al alloy containing T1 particle was prepared and its corrosion morphology was observed.The results show that there exists a dynamic conversion corrosion mechanism associated with the precipitate of T1.At the beginning,the precipitate of T1 is anodic to the alloy base and corrosion occurs on its surface.However,during its corrosion process,its potential moves to a positive direction with immersion time increasing,due to the preferential dissolution of Li and the enrichment of Cu.As a result,the corroded T1 becomes cathodic to the alloy base at a later stage,leading to the anodic dissolution and corrosion of the alloy base at its adjacent periphery.It is suggested that the localized corrosion associated with the precipitate of T1 in Al-Li alloys is caused by the alternate anodic dissolution of the T1 precipitate and the alloy base at its adjacent periphery.
基金financially supported by the National Key Research and Development Program of China(No.2017YFB0702302)the National Natural Science Foundation of China(No.51771174)the National Materials Corrosion and Protection Data Center。
文摘The surface properties of weathering steel(WS)is very important for its service performance and safety,and the localized corrosion induced by inclusions is closely related to the surface properties of WS and its application.In the current work,a common spherical(Al,Mg,Ca,Mn)-oxy-sulfide inclusion was selected to investigate the corrosion evolution of complex inclusion and its effect on localized corrosion on WS surface.The results indicate the inclusion in WS consists of(Ca,Mn)sulfides part and(Ca,Al,Mg)oxides part with complex core-shell structure.Locally preferential dissolution occurs in(Ca,Mn)sulfides part as well as metal matrix around the inclusions.Furthermore,both parts of the inclusions with poor conductivity and high-density dislocation at metal matrix around the inclusions was found,which suggests that traditional micro-galvanic corrosion cell may not be the cause of inclusion-induced localized corrosion on WS surface at initial stage of corrosion.The variation in maximum and average depth around the inclusion or selected region with immersion time indicates that localized corrosion induced by inclusions is overwhelmed by uniform corrosion of WS in the latter stage of immersion,then the rust formed on WS surface consists of two layers.
基金supported by the National Natural Science Foundation of China (Nos. 11904133, 51872125)Guangdong Natural Science Funds for Distinguished Young Scholar (No. 2018B030306004) and GDUPS (2018)+1 种基金the Fundamental Research Funds for the Central Universities (No. 21619322)Regional Joint Foundation in Guangdong Province (No. 2019A1515110210)。
文摘Localized surface plasmon resonance (LSPR) enhanced photocatalysis has fascinated much interest and considerable efforts have been devoted toward the development of plasmonic photocatalysts. In the past decades, noble metal nanoparticles (Au and Ag) with LSPR feature have found wide applications in solar energy conversion. Numerous metal-based photocatalysts have been proposed including metal/semiconductor heterostructures and plasmonic bimetallic or multimetallic nanostructures. However, high cost and scarce reserve of noble metals largely limit their further practical use, which drives the focus gradually shift to low-cost and abundant nonmetallic nanostructures. Recently, various heavily doped semiconductors (such as WO_(3-x), MoO_(3-x), Cu_(2-x)S, TiN) have emerged as potential alternatives to costly noble metals for efficient photocatalysis due to their strong LSPR property in visible-near infrared region. This review starts with a brief introduction to LSPR property and LSPR-enhanced photocatalysis, the following highlights recent advances of plasmonic photocatalysts from noble metal to semiconductor-based plasmonic nanostructures. Their synthesis methods and promising applicability in plasmon-driven photocatalytic reactions such as water splitting, CO_(2) reduction and pollution decomposition are also summarized in details. This review is expected to give guidelines for exploring more efficient plasmonic systems and provide a perspective on development of plasmonic photocatalysis.
基金Project supported by the Natural Science Foundation of Zhejiang Province, China (Grant Nos. Y6100257 and Y6110140)
文摘By using a mapping approach and a linear variable separation approach, a new family of solitary wave solutions with arbitrary functions for the (2+1)-dimensional modified dispersive water-wave system (MDWW) is derived. Based on the derived solutions and using some multi-valued functions, we obtain some novel folded localized excitations of the system.
基金the National Natural Science Foundation of China(Nos.51574190,51734003,51874116)Fundamental Research Funds for the Central Universities(No.FRF-TP-18-009C1).
文摘Certain inclusions in high-strength 60Si2Mn-Cr spring steel result in poor resistance to localized corrosion.In this work,to study the effect of inclusions on the localized corrosion behavior of spring steel,accelerated corrosion tests were performed by immersing spring steel in 3wt%FeCl_(3)solution for different times.The results show that severe corrosion occurred in areas of clustered CaS inclusions.Sulfide inclusions containing Ca and Mg induced the strongest localized corrosion susceptibility.For the case of(Ca,Mn,Mg)S inclusions,the ability to induce localized corrosion susceptibility is ranked as follows:MgS>CaS>MnS.Moreover,CaS,(Ca,Mn)S,and(Ca,Mn,Mg)S inclusions were mainly responsible for inducing environmental embrittlement.