By utilizing wave velocity imaging technology,the uniaxial multi-stage loading test was conducted on siltstone to attain wave velocity imagings during rock fracture.Based on the time series parameters of acoustic emis...By utilizing wave velocity imaging technology,the uniaxial multi-stage loading test was conducted on siltstone to attain wave velocity imagings during rock fracture.Based on the time series parameters of acoustic emissions(AE),joint response characteristics of the velocity field and AE during rock fracture were analyzed.Moreover,the localization effect of damage during rock fracture was explored by applying wave velocity imagings.The experimental result showed that the wave velocity imagings enable three-dimensional(3-D)visualization of the extent and spatial position of damage to the rock.A damaged zone has a low wave velocity and a zone where the low wave velocity is concentrated tends to correspond to a severely damaged zone.AE parameters and wave velocity imagings depict the changes in activity of cracks during rock fracture from temporal and spatial perspectives,respectively:the activity of cracks is strengthened,and the rate of AE events increases during rock fracture;correspondingly,the low-velocity zones are gradually aggregated and their area gradually increases.From the wave velocity imagings,the damaged zones in rock were divided into an initially damaged zone,a progressively damaged zone,and a fractured zone.During rock fracture,the progressively damaged zone and the fractured zone both develop around the initially damaged zone,showing a typical localization effect of the damage.By capturing the spatial development trends of the progressively damaged zone and fractured zone in wave velocity imagings,the development of microfractures can be predicted,exerting practical significance for determining the position of the main fracture.展开更多
Four blue-violet light emitting InGaN/GaN multiple quantum well(MQW) structures with different well widths are grown by metal–organic chemical vapor deposition. The carrier localization effect in these samples is i...Four blue-violet light emitting InGaN/GaN multiple quantum well(MQW) structures with different well widths are grown by metal–organic chemical vapor deposition. The carrier localization effect in these samples is investigated mainly by temperature-dependent photoluminescence measurements. It is found that the localization effect is enhanced as the well width increases from 1.8 nm to 3.6 nm in our experiments. The temperature induced PL peak blueshift and linewidth variation increase with increasing well width, implying that a greater amplitude of potential fluctuation as well as more localization states exist in wider wells. In addition, it is noted that the broadening of the PL spectra always occurs mainly on the low-energy side of the PL spectra due to the temperature-induced band-gap shrinkage, while in the case of the widest well, a large extension of the spectral curve also occurs in the high energy sides due to the existence of more shallow localized centers.展开更多
Today,with the rapid development of the internet,a large amount of information often accompanies the rapid transmission of disease outbreaks,and increasing numbers of scholars are studying the relationship between inf...Today,with the rapid development of the internet,a large amount of information often accompanies the rapid transmission of disease outbreaks,and increasing numbers of scholars are studying the relationship between information and the disease transmission process using complex networks.In fact,the disease transmission process is very complex.Besides this information,there will often be individual behavioral measures and other factors to consider.Most of the previous research has aimed to establish a two-layer network model to consider the impact of information on the transmission process of disease,rarely divided into information and behavior,respectively.To carry out a more in-depth analysis of the disease transmission process and the intrinsic influencing mechanism,this paper divides information and behavior into two layers and proposes the establishment of a complex network to study the dynamic co-evolution of information diffusion,vaccination behavior,and disease transmission.This is achieved by considering four influential relationships between adjacent layers in multilayer networks.In the information layer,the diffusion process of negative information is described,and the feedback effects of local and global vaccination are considered.In the behavioral layer,an individual's vaccination behavior is described,and the probability of an individual receiving a vaccination is influenced by two factors:the influence of negative information,and the influence of local and global disease severity.In the disease layer,individual susceptibility is considered to be influenced by vaccination behavior.The state transition equations are derived using the micro Markov chain approach(MMCA),and disease prevalence thresholds are obtained.It is demonstrated through simulation experiments that the negative information diffusion is less influenced by local vaccination behavior,and is mainly influenced by global vaccination behavior;vaccination behavior is mainly influenced by local disease conditions,and is less influenced by global disease conditions;the disease transmission threshold increases with the increasing vaccination rate;and the scale of disease transmission increases with the increasing negative information diffusion rate and decreases with the increasing vaccination rate.Finally,it is found that when individual vaccination behavior considers both the influence of negative information and disease,it can increase the disease transmission threshold and reduce the scale of disease transmission.Therefore,we should resist the diffusion of negative information,increase vaccination proportions,and take appropriate protective measures in time.展开更多
Mechanical properties of TC17 titanium alloy undergo a significant reduction after linear friction welding(LFW),of which the strength and ductility are hard to be improved simultaneously by traditional aging heat trea...Mechanical properties of TC17 titanium alloy undergo a significant reduction after linear friction welding(LFW),of which the strength and ductility are hard to be improved simultaneously by traditional aging heat treatment(AHT),seriously limiting the application of LFW in the manufacturing of TC17 titanium alloy blisks.To this end,the present work proposes to use electric pulse treatment(EPT)to enhance the strength and ductility of TC17 LFW joints simultaneously by improving its microstructure.The results show that,in comparison to the uneven distribution ofαphases in the welding zone(WZ),heat-affected zone(HAZ),and base metal(BM)zone after AHT,EPT can selectively homogenize theαphase distribution of WZ and HAZ without impacting the BM.The selective effect of EPT is reflected as the synergistic influence of the local Joule heating effect and the electron wind effect,which promotes the diffusion ofβphase stabilizing element Mo and leads to a competitive precipitation ofβphase andαphase in theαphase transition temperature range.The ratio ofαphase toβphase in the WZ and HAZ finally approaches an equilibrium point which is similar to that of BM,leading to a uniform distribution ofαphase and realizing the synergy of strength-ductility of LFW joint:the maximum strength increase observed is 12.9%,accompanied by a corresponding elongation increase of 122%(by AHT&EPT),and the maximum plasticity improvement is 185%,accompanied by a corresponding strength increase of 4.3%(by EPT for 1 h).This study provides essential insights for improving the strength and ductility of LFW TC17 titanium alloy blisks and enhancing the applications of LFW in aeroengine components.展开更多
Wireless Sensor Network(WSNs)consists of a group of nodes that analyze the information from surrounding regions.The sensor nodes are responsible for accumulating and exchanging information.Generally,node local-ization...Wireless Sensor Network(WSNs)consists of a group of nodes that analyze the information from surrounding regions.The sensor nodes are responsible for accumulating and exchanging information.Generally,node local-ization is the process of identifying the target node’s location.In this research work,a Received Signal Strength Indicator(RSSI)-based optimal node localization approach is proposed to solve the complexities in the conventional node localization models.Initially,the RSSI value is identified using the Deep Neural Network(DNN).The RSSI is conceded as the range-based method and it does not require special hardware for the node localization process,also it consumes a very minimal amount of cost for localizing the nodes in 3D WSN.The position of the anchor nodes is fixed for detecting the location of the target.Further,the optimal position of the target node is identified using Hybrid T cell Immune with Lotus Effect Optimization algorithm(HTCI-LEO).During the node localization process,the average localization error is minimized,which is the objective of the optimal node localization.In the regular and irregular surfaces,this hybrid algorithm effectively performs the localization process.The suggested hybrid algorithm converges very fast in the three-dimensional(3D)environment.The accuracy of the proposed node localization process is 94.25%.展开更多
Photoluminescence(PL) spectra of two different green InGaN/GaN multiple quantum well(MQW) samples S1 and S2,respectively with a higher growth temperature and a lower growth temperature of InGaN well layers are analyze...Photoluminescence(PL) spectra of two different green InGaN/GaN multiple quantum well(MQW) samples S1 and S2,respectively with a higher growth temperature and a lower growth temperature of InGaN well layers are analyzed over a wide temperature range of 6 K-3 30 K and an excitation power range of 0.001 mW-75 mW.The excitation power-dependent PL peak energy and linewidth at 6 K show that in an initial excitation power range,the emission process of the MQW is dominated simultaneously by the combined effects of the carrier scattering and Coulomb screening for both the samples,and both the carrier scattering effect and the Coulomb screening effect are stronger for S2 than those for S1;in the highest excitation power range,the emission process of the MQWs is dominated by the filling effect of the high-energy localized states for S1,and by the Coulomb screening effect for S2.The behaviors can be attributed to the fact that sample S2 should have a higher amount of In content in the InGaN well layers than S1 because of the lower growth temperature,and this results in a stronger component fluctuation-induced potential fluctuation and a stronger well/barrier lattice mismatchinduced quantum-confined Stark effect.This explanation is also supported by other relevant measurements of the samples,such as temperature-dependent peak energy and excitation-power-dependent internal quantum efficiency.展开更多
Nusantara,the new capital city of Indonesia,and its surrounding areas experienced intense heavy rainfall on 15-16 March 2022,leading to devastating and widespread flooding.However,the factors triggering such intense h...Nusantara,the new capital city of Indonesia,and its surrounding areas experienced intense heavy rainfall on 15-16 March 2022,leading to devastating and widespread flooding.However,the factors triggering such intense heavy rainfall and the underlying physical mechanisms are still not fully understood.Using high-resolution GSMaP(Global Satellite Mapping of Precipitation)data,we show that a mesoscale convective system(MCS)was the primary cause of the heavy rainfall event.The rainfall peak occurred during the MCS's mature stage at 1800 UTC 15 March 2022,and diminished as it entered the dissipation stage.To understand the large-scale environmental factors affecting the MCS event,we analyzed contributions from the MJO,equatorial waves,and low-frequency variability to column water vapor and moisture flux convergence.Results indicate a substantial influence of the MJO and equatorial waves on lower-level(boundary layer)meridional moisture flux convergence during the pre-MCS stage and initiation,with their contributions accounting for up to80%during the growth phase.Moreover,while La Nina and the Asian monsoon had negligible impacts on MCS moisture supply,we find a large contribution from the residual term of the water vapour budget during the maturation and decay phases of the MCS.This suggests that local forcing(such as small-scale convection,local evaporation,land-surface feedback,and topography)also contributed to modulation of the intensity and duration of the MCS.The results of this study can help in our understanding of the potential causes of extreme rainfall in Nusantara and could be leveraged to improve rainstorm forecasting and risk management across the region in the future.展开更多
Zhangjiakou is an important wind power base in Hebei Province,China.The impact of its wind farms on the local climate is controversial.Based on long-term meteorological data from 1981 to 2018,we investigated the effec...Zhangjiakou is an important wind power base in Hebei Province,China.The impact of its wind farms on the local climate is controversial.Based on long-term meteorological data from 1981 to 2018,we investigated the effects of the Shangyi Wind Farm(SWF)in Zhangjiakou on air temperature,wind speed,relative humidity,and precipitation using the anomaly or ratio method between the impacted weather station and the non-impacted background weather station.The influence of the SWF on land surface temperature(LST)and evapotranspiration(ET)using MODIS satellite data from 2003 to 2018 was also explored.The results showed that the SWF had an atmospheric warming effect at night especially in summer and autumn(up to 0.95℃).The daytime air temperature changes were marginal,and their signs were varying depending on the season.The annual mean wind speed decreased by 6%,mainly noted in spring and winter(up to 14%).The precipitation and relative humidity were not affected by the SWF.There was no increase in LST in the SWF perhaps due to the increased vegetation coverage unrelated to the wind farms,which canceled out the wind farm-induced land surface warming and also resulted in an increase in ET.The results showed that the impact of wind farms on the local climate was significant,while their impact on the regional climate was slight.展开更多
Research of the acoustic local effect of metamaterial is widely used in the fields of environmental science,military industry and biomedicine.In this paper,the metamaterial is designed by annular columnar structures.T...Research of the acoustic local effect of metamaterial is widely used in the fields of environmental science,military industry and biomedicine.In this paper,the metamaterial is designed by annular columnar structures.The acoustic local effect in slender columnar structure with two layers of rings in air is investigated.Results prove that when the plane acoustic wave is incident into the model,complex interference and diffraction occur.And at different frequencies,multipolar acoustic local effect existes and cycle distribution phenomenon is observed.It is noteworthy that this phenomenon has very weak relatedness with the materials and acoustic parameters of the model.The research of this metamaterial design in this paper has definite reference significance in the acoustic communication and amplification of the acoustic signal detection.展开更多
Rare-earth Sm^(3+)-doped Pb(Mg_(1/3)Nb_(2/3))O_(3)-0.25PbTiO_(3)(PMN-0.25PT)ferroelectric ceramics with doping amounts between 0%-3%were developed via a conventional solid-state method.The doping effect of Sm^(3+)ions...Rare-earth Sm^(3+)-doped Pb(Mg_(1/3)Nb_(2/3))O_(3)-0.25PbTiO_(3)(PMN-0.25PT)ferroelectric ceramics with doping amounts between 0%-3%were developed via a conventional solid-state method.The doping effect of Sm^(3+)ions on the PMN-0.25PT matrix was systematically investigated on the basis of the phase structure,temperature-dependent dielectric,ferroelectric,and electrotechnical properties.Due to the disruption of long-range ferroelectric order,the addition of Sm^(3+)ions effectively lowers the Tm(temperature corresponding to maximum permittivity)of the samples,leading to enhanced relaxor ferroelectric(RFE)characteristic and superior electric field-induced strain(electrostrain)properties at room temperature.Intriguingly,a considerable large-signal equivalent piezoelectric coefficient d∗_(33)of 2376 pm/V and a very small hysteresis were attained in the PMN-0.25PT component doped with 2.5 mol.%Sm^(3+).The findings of piezoelectric force microscopy indicate that the addition of Sm^(3+)increases the local structural heterogeneity of the PMN-0.25PT matrix and that the enhanced electromechanical performance is due to the dynamic behavior of polar nanoregions.Importantly,strong temperature-dependent electrostrain and electrostrictive coefficient Q33 are observed in the critical region around Tm in all Sm^(3+)-modified PMN-0.25PT ceramic samples studied.This work elucidates the phase transition behavior of Sm^(3+)-doped PMN-0.25PT and reveals a critical region where electrostrictive properties can be greatly improved due to a strong temperature-dependent characteristic.展开更多
Through the Three Gorges well network, we examine different coseismic changes in water temperature caused by local earthquakes since 2008, and offer a mechanistic explanation.The relations between the coseismic change...Through the Three Gorges well network, we examine different coseismic changes in water temperature caused by local earthquakes since 2008, and offer a mechanistic explanation.The relations between the coseismic changes in water temperature and the parameters of distant and local earthquakes are deduced.展开更多
Local thermal effect influencing the fluorescence of triply ionized rare earth ions doped in nanocrystals is studied with laser spectroscopy and theory of thermal transportation for transparent oxyfluoride glass ceram...Local thermal effect influencing the fluorescence of triply ionized rare earth ions doped in nanocrystals is studied with laser spectroscopy and theory of thermal transportation for transparent oxyfluoride glass ceramics containing nanocrystals. The result shows that the local temperature of the nanocrystals embedded in glass matrices is much higher than the environmental temperature of the sample. It is suggested that the tempera,ture-dependent thermal energy induced by the light absorption must be considered when the theory of thermal transportation is applied to the study of local thermal effect.展开更多
The localized effect of light diffracted by a capillary wave is discovered by changing the wave amplitude. The localized range is related to the wave number and the amplitude. The dependence of the half maximum locali...The localized effect of light diffracted by a capillary wave is discovered by changing the wave amplitude. The localized range is related to the wave number and the amplitude. The dependence of the half maximum localized angle on the wave number and amplitude is analytically derived. Meanwhile, the analytic angular distribution of the diffraction light in the localized range is obtained. Experiments are carried out to achieve diffraction patterns to confirm the localized effect and to measure the angular distribution of the diffraction light intensity as well as to determine the localized range scales corresponding to different wave amplitudes. Theoretical curves of the light intensity angular distribution and localized interval widths related to surface acoustic wave amplitudes are compared with the experimental data. The experimental results agree well with the theoretical prediction.展开更多
Understanding the nonlinear relationship between hydrological response and key factors and the cause behind this relationship is vital for water resource management and earth system model.In this study,we undertook se...Understanding the nonlinear relationship between hydrological response and key factors and the cause behind this relationship is vital for water resource management and earth system model.In this study,we undertook several steps to explore the relationship.Initially,we partitioned runoff response change(RRC)into multiple components associated with climate and catchment properties,and examined the spatial patterns and smoothness indicated by the Moran's Index of RRC across the contiguous United States(CONUS).Subsequently,we employed a machine learning model to predict RRC using catchment attribute predictors encompassing climate,topography,hydrology,soil,land use/cover,and geology.Additionally,we identified the primary factors influencing RRC and quantified how these key factors control RRC by employing the accumulated local effect,which allows for the representation of not only dominant but also secondary effects.Finally,we explored the relationship between ecoregion patterns,climate gradients,and the distribution of RRC across CONUS.Our findings indicate that:(1)RRC demonstrating significant connections between catchments tends to be well predicted by catchment attributes in space;(2)climate,hydrology,and topography emerge as the top three key attributes nonlinearly influencing the RRC patterns,with their second-order effects determining the heterogeneous patterns of RRC;and(3)local Moran's I signifies a collaborative relationship between the patterns of RRC and their spatial smoothness,climate space,and ecoregions.展开更多
Accelerating green innovation is crucial for achieving high-quality development in China.Despite this importance,empirical evidence on the harmonization techniques in the context of carbon-trading policies has been re...Accelerating green innovation is crucial for achieving high-quality development in China.Despite this importance,empirical evidence on the harmonization techniques in the context of carbon-trading policies has been remarkably thin.To address this gap,we employed the difference-in-difference(DID)and spatial difference-in-difference(S-DID)models using panel data from 2007 to 2017 for 30 Chinese provinces.Our findings reveal that the carbon-trading policy contributes significantly to the coordinated advancement of green technologies across Chinese provinces and exhibits a local siphoning effect.Specifically,the pilot areas of the policy have attracted talent from neighboring regions,which has fostered local cooperation and promoted coordinated innovation in green technologies within the region.展开更多
Nowadays,photoca-talytic water splitting for hydrogen production is widely recognized as a promising solution to solve both energy shortages and environmental pollution.Nevertheless,photocatalytic hydrogen evolution i...Nowadays,photoca-talytic water splitting for hydrogen production is widely recognized as a promising solution to solve both energy shortages and environmental pollution.Nevertheless,photocatalytic hydrogen evolution is currently hindered by challenges,such as inefficient photogenerated carrier separation and migration and inadequate light absorption by photocatalysts.To overcome such challenges,we herein engineered hollow Cu_(2-x)Se@ZnIn_(2)S_(4) core-shell heterostructures(HCSHs)via synergistic utilization of energy level engineering,interfacial engineering,and local surface plasmon resonance(LSPR)effect.The optimal sample exhibits an outstanding hydrogen evolution rate(46.78 mmol·g^(-1)·h^(-1))under visible-near-infrared(VIS-NIR)irradiation,which is 1.78 times that under VIS irradiation alone and 7.8 times that of ZnIn_(2)S_(4) reference under the same illumination condition.Comprehensive studies demonstrate that the built-in electric field within the p-n heterojunctions,along with the unique core-shell structure,significantly enhances the separation and directional migration of photogenerated carriers.Meanwhile,the NIR LSPR effect from the Cu_(2-x)Se component lowers the apparent activation energy and accelerates the reaction kinetics mainly via plasmonic hot electron-assisted cleavage of the adsorbed water,with photothermal heating providing a secondary contribution.This work is of great importance in developing highly efficient photocatalysts and in boosting LSPR-enhanced photocatalytic applications.展开更多
Our research began with a consideration of the etymological origins of the terms Ashi and the Ashi point. We used both original source texts and textual criticism to trace the original meaning of the phrases, "take t...Our research began with a consideration of the etymological origins of the terms Ashi and the Ashi point. We used both original source texts and textual criticism to trace the original meaning of the phrases, "take the tender spot as the point" and "use the Ashi method." Linguistic theory informed our discussion of three similar terms and our analysis of them. We show that Ashi points are in theory similar to regular acupuncture points in terms of their definition and function. Furthermore, we can use the concept of "c/i-pathway (Qi./ie)" to expand our understanding of the clinical use of Ashi points. Ultimately, the main purpose of our research was to clarify that the classical Ashi point and modern, western concept of the trigger point are in fact quite similar. The two concepts have been described in different languages primarily due to cultural differences.展开更多
Ground motions are significantly influenced by dynamic characteristics of overburden soil layers near ground surface,as thick and soft soil layers would obviously amplify the ground motion strength. The conventional r...Ground motions are significantly influenced by dynamic characteristics of overburden soil layers near ground surface,as thick and soft soil layers would obviously amplify the ground motion strength. The conventional research method on soil nonlinear dynamic characteristics under strong motions is based on experiments in laboratories for the deficiency of observation data,but it is difficult to reliably simulate the complex factors of soils in actual earthquake durations,including loading paths,boundary conditions,and drainage conditions. The incremental data of the vertical downhole observation array,which is comprised of at least one observation point on ground surface and one observation point in a downhole rock base, makes it possible to study soil nonlinear dynamics according to in situ observation data,and provides new basic data and development opportunities to soil nonlinear dynamics studies.展开更多
Collapses of transmission towers were often observed in previous large earthquakes such as the Chi-Chi earthquake in Taiwan and Wenchuan earthquake in Sichuan,China. These collapses were partially caused by the pullin...Collapses of transmission towers were often observed in previous large earthquakes such as the Chi-Chi earthquake in Taiwan and Wenchuan earthquake in Sichuan,China. These collapses were partially caused by the pulling forces from the transmission lines generated from out-of-phase responses of the adjacent towers owing to spatially varying earthquake ground motions. In this paper,a 3D finite element model of the transmission tower-line system is established considering the geometric nonlinearity of transmission lines. The nonlinear responses of the structural system at a canyon site are analyzed subjected to spatially varying ground motions. The spatial variations of ground motion associated with the wave passage,coherency loss,and local site effects are given. The spatially varying ground motions are simulated stochastically based on an empirical coherency loss function and a filtered Tajimi-Kanai power spectral density function. The site effect is considered by a transfer function derived from 1D wave propagation theory. Compared with structural responses calculated using the uniform ground motion and delayed excitations,numerical results indicate that seismic responses of transmission towers and power lines are amplified when considering spatially varying ground motions including site effects. Each factor of ground motion spatial variations has a significant effect on the seismic response of the structure,especially for the local site effect. Therefore,neglecting the earthquake ground motion spatial variations may lead to a substantial underestimation of the response of transmission tower-line system during strong earthquakes. Each effect of ground motion spatial variations should be incorporated in seismic analysis of the structural system.展开更多
Lead borate glasses xB2O3+(99–x)PbO+0.5Eu2O3(x=70,60,...,10) were prepared by melt-quenching method.The luminescent properties were characterized with excitation and emission spectra.The emission intensities for 5D0-...Lead borate glasses xB2O3+(99–x)PbO+0.5Eu2O3(x=70,60,...,10) were prepared by melt-quenching method.The luminescent properties were characterized with excitation and emission spectra.The emission intensities for 5D0-7FJ(J=0–4) were analyzed to give variation of the relative electric dipole line strengths with the composition of glasses so as to examine the crucial implicit assumption of independent electric dipole line strength on the composition of glass in the Phys.Rev.Lett.2003,91,203903 paper studying l...展开更多
基金Projects(51774138,51804122,51904105)supported by the National Natural Science Foundation of ChinaProjects(E2021209148,E2021209052)supported by the Natural Science Foundation of Hebei Province,China。
文摘By utilizing wave velocity imaging technology,the uniaxial multi-stage loading test was conducted on siltstone to attain wave velocity imagings during rock fracture.Based on the time series parameters of acoustic emissions(AE),joint response characteristics of the velocity field and AE during rock fracture were analyzed.Moreover,the localization effect of damage during rock fracture was explored by applying wave velocity imagings.The experimental result showed that the wave velocity imagings enable three-dimensional(3-D)visualization of the extent and spatial position of damage to the rock.A damaged zone has a low wave velocity and a zone where the low wave velocity is concentrated tends to correspond to a severely damaged zone.AE parameters and wave velocity imagings depict the changes in activity of cracks during rock fracture from temporal and spatial perspectives,respectively:the activity of cracks is strengthened,and the rate of AE events increases during rock fracture;correspondingly,the low-velocity zones are gradually aggregated and their area gradually increases.From the wave velocity imagings,the damaged zones in rock were divided into an initially damaged zone,a progressively damaged zone,and a fractured zone.During rock fracture,the progressively damaged zone and the fractured zone both develop around the initially damaged zone,showing a typical localization effect of the damage.By capturing the spatial development trends of the progressively damaged zone and fractured zone in wave velocity imagings,the development of microfractures can be predicted,exerting practical significance for determining the position of the main fracture.
基金supported by the National Key Research and Development Program of China(Grant No.2016YFB0401801)the National Natural Science Foundation of China(Grant Nos.61674138,61674139,61604145,61574135,61574134,61474142,61474110,61377020,and 61376089)+1 种基金Science Challenge Project,China(Grant No.JCKY2016212A503)One Hundred Person Project of the Chinese Academy of Sciences
文摘Four blue-violet light emitting InGaN/GaN multiple quantum well(MQW) structures with different well widths are grown by metal–organic chemical vapor deposition. The carrier localization effect in these samples is investigated mainly by temperature-dependent photoluminescence measurements. It is found that the localization effect is enhanced as the well width increases from 1.8 nm to 3.6 nm in our experiments. The temperature induced PL peak blueshift and linewidth variation increase with increasing well width, implying that a greater amplitude of potential fluctuation as well as more localization states exist in wider wells. In addition, it is noted that the broadening of the PL spectra always occurs mainly on the low-energy side of the PL spectra due to the temperature-induced band-gap shrinkage, while in the case of the widest well, a large extension of the spectral curve also occurs in the high energy sides due to the existence of more shallow localized centers.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 72174121 and 71774111)the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learningthe Natural Science Foundation of Shanghai (Grant No. 21ZR1444100)
文摘Today,with the rapid development of the internet,a large amount of information often accompanies the rapid transmission of disease outbreaks,and increasing numbers of scholars are studying the relationship between information and the disease transmission process using complex networks.In fact,the disease transmission process is very complex.Besides this information,there will often be individual behavioral measures and other factors to consider.Most of the previous research has aimed to establish a two-layer network model to consider the impact of information on the transmission process of disease,rarely divided into information and behavior,respectively.To carry out a more in-depth analysis of the disease transmission process and the intrinsic influencing mechanism,this paper divides information and behavior into two layers and proposes the establishment of a complex network to study the dynamic co-evolution of information diffusion,vaccination behavior,and disease transmission.This is achieved by considering four influential relationships between adjacent layers in multilayer networks.In the information layer,the diffusion process of negative information is described,and the feedback effects of local and global vaccination are considered.In the behavioral layer,an individual's vaccination behavior is described,and the probability of an individual receiving a vaccination is influenced by two factors:the influence of negative information,and the influence of local and global disease severity.In the disease layer,individual susceptibility is considered to be influenced by vaccination behavior.The state transition equations are derived using the micro Markov chain approach(MMCA),and disease prevalence thresholds are obtained.It is demonstrated through simulation experiments that the negative information diffusion is less influenced by local vaccination behavior,and is mainly influenced by global vaccination behavior;vaccination behavior is mainly influenced by local disease conditions,and is less influenced by global disease conditions;the disease transmission threshold increases with the increasing vaccination rate;and the scale of disease transmission increases with the increasing negative information diffusion rate and decreases with the increasing vaccination rate.Finally,it is found that when individual vaccination behavior considers both the influence of negative information and disease,it can increase the disease transmission threshold and reduce the scale of disease transmission.Therefore,we should resist the diffusion of negative information,increase vaccination proportions,and take appropriate protective measures in time.
基金the National Science Fund for Distinguished Young Scholars(No.52225505)the National Sci-ence and Technology Major Project(No.J2019-VII-0014-0154)+1 种基金the National Natural Science Foundation of China(No.52005412)the Open Research Fund of State Key Laboratory of Precision Man-ufacturing for Extreme Service Performance(No.Kfkt2023-12)for financial supports given to this research.
文摘Mechanical properties of TC17 titanium alloy undergo a significant reduction after linear friction welding(LFW),of which the strength and ductility are hard to be improved simultaneously by traditional aging heat treatment(AHT),seriously limiting the application of LFW in the manufacturing of TC17 titanium alloy blisks.To this end,the present work proposes to use electric pulse treatment(EPT)to enhance the strength and ductility of TC17 LFW joints simultaneously by improving its microstructure.The results show that,in comparison to the uneven distribution ofαphases in the welding zone(WZ),heat-affected zone(HAZ),and base metal(BM)zone after AHT,EPT can selectively homogenize theαphase distribution of WZ and HAZ without impacting the BM.The selective effect of EPT is reflected as the synergistic influence of the local Joule heating effect and the electron wind effect,which promotes the diffusion ofβphase stabilizing element Mo and leads to a competitive precipitation ofβphase andαphase in theαphase transition temperature range.The ratio ofαphase toβphase in the WZ and HAZ finally approaches an equilibrium point which is similar to that of BM,leading to a uniform distribution ofαphase and realizing the synergy of strength-ductility of LFW joint:the maximum strength increase observed is 12.9%,accompanied by a corresponding elongation increase of 122%(by AHT&EPT),and the maximum plasticity improvement is 185%,accompanied by a corresponding strength increase of 4.3%(by EPT for 1 h).This study provides essential insights for improving the strength and ductility of LFW TC17 titanium alloy blisks and enhancing the applications of LFW in aeroengine components.
基金appreciation to King Saud University for funding this research through the Researchers Supporting Program number(RSPD2024R918),King Saud University,Riyadh,Saudi Arabia.
文摘Wireless Sensor Network(WSNs)consists of a group of nodes that analyze the information from surrounding regions.The sensor nodes are responsible for accumulating and exchanging information.Generally,node local-ization is the process of identifying the target node’s location.In this research work,a Received Signal Strength Indicator(RSSI)-based optimal node localization approach is proposed to solve the complexities in the conventional node localization models.Initially,the RSSI value is identified using the Deep Neural Network(DNN).The RSSI is conceded as the range-based method and it does not require special hardware for the node localization process,also it consumes a very minimal amount of cost for localizing the nodes in 3D WSN.The position of the anchor nodes is fixed for detecting the location of the target.Further,the optimal position of the target node is identified using Hybrid T cell Immune with Lotus Effect Optimization algorithm(HTCI-LEO).During the node localization process,the average localization error is minimized,which is the objective of the optimal node localization.In the regular and irregular surfaces,this hybrid algorithm effectively performs the localization process.The suggested hybrid algorithm converges very fast in the three-dimensional(3D)environment.The accuracy of the proposed node localization process is 94.25%.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.51672163 and 51872167)the Major Research Plan of the National Natural Science Foundation of China(Grant No.91433112)。
文摘Photoluminescence(PL) spectra of two different green InGaN/GaN multiple quantum well(MQW) samples S1 and S2,respectively with a higher growth temperature and a lower growth temperature of InGaN well layers are analyzed over a wide temperature range of 6 K-3 30 K and an excitation power range of 0.001 mW-75 mW.The excitation power-dependent PL peak energy and linewidth at 6 K show that in an initial excitation power range,the emission process of the MQW is dominated simultaneously by the combined effects of the carrier scattering and Coulomb screening for both the samples,and both the carrier scattering effect and the Coulomb screening effect are stronger for S2 than those for S1;in the highest excitation power range,the emission process of the MQWs is dominated by the filling effect of the high-energy localized states for S1,and by the Coulomb screening effect for S2.The behaviors can be attributed to the fact that sample S2 should have a higher amount of In content in the InGaN well layers than S1 because of the lower growth temperature,and this results in a stronger component fluctuation-induced potential fluctuation and a stronger well/barrier lattice mismatchinduced quantum-confined Stark effect.This explanation is also supported by other relevant measurements of the samples,such as temperature-dependent peak energy and excitation-power-dependent internal quantum efficiency.
基金supported by the Budget Execution(Allotment)Document,National Research and Innovation Agency(BRIN)in 2022(Grant No.SP DIPA-124.01.1.690504/2022)。
文摘Nusantara,the new capital city of Indonesia,and its surrounding areas experienced intense heavy rainfall on 15-16 March 2022,leading to devastating and widespread flooding.However,the factors triggering such intense heavy rainfall and the underlying physical mechanisms are still not fully understood.Using high-resolution GSMaP(Global Satellite Mapping of Precipitation)data,we show that a mesoscale convective system(MCS)was the primary cause of the heavy rainfall event.The rainfall peak occurred during the MCS's mature stage at 1800 UTC 15 March 2022,and diminished as it entered the dissipation stage.To understand the large-scale environmental factors affecting the MCS event,we analyzed contributions from the MJO,equatorial waves,and low-frequency variability to column water vapor and moisture flux convergence.Results indicate a substantial influence of the MJO and equatorial waves on lower-level(boundary layer)meridional moisture flux convergence during the pre-MCS stage and initiation,with their contributions accounting for up to80%during the growth phase.Moreover,while La Nina and the Asian monsoon had negligible impacts on MCS moisture supply,we find a large contribution from the residual term of the water vapour budget during the maturation and decay phases of the MCS.This suggests that local forcing(such as small-scale convection,local evaporation,land-surface feedback,and topography)also contributed to modulation of the intensity and duration of the MCS.The results of this study can help in our understanding of the potential causes of extreme rainfall in Nusantara and could be leveraged to improve rainstorm forecasting and risk management across the region in the future.
基金This research was supported by the National Key R&D Program of China(2018YFB1502801).
文摘Zhangjiakou is an important wind power base in Hebei Province,China.The impact of its wind farms on the local climate is controversial.Based on long-term meteorological data from 1981 to 2018,we investigated the effects of the Shangyi Wind Farm(SWF)in Zhangjiakou on air temperature,wind speed,relative humidity,and precipitation using the anomaly or ratio method between the impacted weather station and the non-impacted background weather station.The influence of the SWF on land surface temperature(LST)and evapotranspiration(ET)using MODIS satellite data from 2003 to 2018 was also explored.The results showed that the SWF had an atmospheric warming effect at night especially in summer and autumn(up to 0.95℃).The daytime air temperature changes were marginal,and their signs were varying depending on the season.The annual mean wind speed decreased by 6%,mainly noted in spring and winter(up to 14%).The precipitation and relative humidity were not affected by the SWF.There was no increase in LST in the SWF perhaps due to the increased vegetation coverage unrelated to the wind farms,which canceled out the wind farm-induced land surface warming and also resulted in an increase in ET.The results showed that the impact of wind farms on the local climate was significant,while their impact on the regional climate was slight.
基金National Natural Science Foundation of China(No.61671414)Natural Science Foundation for Young Scientists of Shanxi Province,China(No.201601D202035)
文摘Research of the acoustic local effect of metamaterial is widely used in the fields of environmental science,military industry and biomedicine.In this paper,the metamaterial is designed by annular columnar structures.The acoustic local effect in slender columnar structure with two layers of rings in air is investigated.Results prove that when the plane acoustic wave is incident into the model,complex interference and diffraction occur.And at different frequencies,multipolar acoustic local effect existes and cycle distribution phenomenon is observed.It is noteworthy that this phenomenon has very weak relatedness with the materials and acoustic parameters of the model.The research of this metamaterial design in this paper has definite reference significance in the acoustic communication and amplification of the acoustic signal detection.
基金the National Natural Science Foundation of China(Grant No.52261135548)the Key Research and Development Program of Shaanxi(Program No.2022KWZ-22)+3 种基金the National Key Research and Development Program of China(Grant Nos.2021YFE0115000 and 2021YFB3800602)Russian Science Foundation(Project No.23-42-00116)the Ural Center for Shared Use“Modern nanotechnology”Ural Federal University(Reg.No.2968)which is supported by the Ministry of Science and Higher Education RF(Project No.075-15-2021-677)was used.The SEM work was done at International Center for Dielectric Research(ICDR),Xi’an Jiaotong University,Xi’an,China.
文摘Rare-earth Sm^(3+)-doped Pb(Mg_(1/3)Nb_(2/3))O_(3)-0.25PbTiO_(3)(PMN-0.25PT)ferroelectric ceramics with doping amounts between 0%-3%were developed via a conventional solid-state method.The doping effect of Sm^(3+)ions on the PMN-0.25PT matrix was systematically investigated on the basis of the phase structure,temperature-dependent dielectric,ferroelectric,and electrotechnical properties.Due to the disruption of long-range ferroelectric order,the addition of Sm^(3+)ions effectively lowers the Tm(temperature corresponding to maximum permittivity)of the samples,leading to enhanced relaxor ferroelectric(RFE)characteristic and superior electric field-induced strain(electrostrain)properties at room temperature.Intriguingly,a considerable large-signal equivalent piezoelectric coefficient d∗_(33)of 2376 pm/V and a very small hysteresis were attained in the PMN-0.25PT component doped with 2.5 mol.%Sm^(3+).The findings of piezoelectric force microscopy indicate that the addition of Sm^(3+)increases the local structural heterogeneity of the PMN-0.25PT matrix and that the enhanced electromechanical performance is due to the dynamic behavior of polar nanoregions.Importantly,strong temperature-dependent electrostrain and electrostrictive coefficient Q33 are observed in the critical region around Tm in all Sm^(3+)-modified PMN-0.25PT ceramic samples studied.This work elucidates the phase transition behavior of Sm^(3+)-doped PMN-0.25PT and reveals a critical region where electrostrictive properties can be greatly improved due to a strong temperature-dependent characteristic.
基金supported by the China Three Gorges Corporation Research Fund (SXSN/3354)
文摘Through the Three Gorges well network, we examine different coseismic changes in water temperature caused by local earthquakes since 2008, and offer a mechanistic explanation.The relations between the coseismic changes in water temperature and the parameters of distant and local earthquakes are deduced.
文摘Local thermal effect influencing the fluorescence of triply ionized rare earth ions doped in nanocrystals is studied with laser spectroscopy and theory of thermal transportation for transparent oxyfluoride glass ceramics containing nanocrystals. The result shows that the local temperature of the nanocrystals embedded in glass matrices is much higher than the environmental temperature of the sample. It is suggested that the tempera,ture-dependent thermal energy induced by the light absorption must be considered when the theory of thermal transportation is applied to the study of local thermal effect.
文摘The localized effect of light diffracted by a capillary wave is discovered by changing the wave amplitude. The localized range is related to the wave number and the amplitude. The dependence of the half maximum localized angle on the wave number and amplitude is analytically derived. Meanwhile, the analytic angular distribution of the diffraction light in the localized range is obtained. Experiments are carried out to achieve diffraction patterns to confirm the localized effect and to measure the angular distribution of the diffraction light intensity as well as to determine the localized range scales corresponding to different wave amplitudes. Theoretical curves of the light intensity angular distribution and localized interval widths related to surface acoustic wave amplitudes are compared with the experimental data. The experimental results agree well with the theoretical prediction.
基金National Natural Science Foundation of China,No.U2243203,No.51979069Natural Science Foundation of Jiangsu Province,China,No.BK20211202Research Council of Norway,No.FRINATEK Project 274310。
文摘Understanding the nonlinear relationship between hydrological response and key factors and the cause behind this relationship is vital for water resource management and earth system model.In this study,we undertook several steps to explore the relationship.Initially,we partitioned runoff response change(RRC)into multiple components associated with climate and catchment properties,and examined the spatial patterns and smoothness indicated by the Moran's Index of RRC across the contiguous United States(CONUS).Subsequently,we employed a machine learning model to predict RRC using catchment attribute predictors encompassing climate,topography,hydrology,soil,land use/cover,and geology.Additionally,we identified the primary factors influencing RRC and quantified how these key factors control RRC by employing the accumulated local effect,which allows for the representation of not only dominant but also secondary effects.Finally,we explored the relationship between ecoregion patterns,climate gradients,and the distribution of RRC across CONUS.Our findings indicate that:(1)RRC demonstrating significant connections between catchments tends to be well predicted by catchment attributes in space;(2)climate,hydrology,and topography emerge as the top three key attributes nonlinearly influencing the RRC patterns,with their second-order effects determining the heterogeneous patterns of RRC;and(3)local Moran's I signifies a collaborative relationship between the patterns of RRC and their spatial smoothness,climate space,and ecoregions.
基金National Social Science Foundation of China(Grant No.:23BJL108).
文摘Accelerating green innovation is crucial for achieving high-quality development in China.Despite this importance,empirical evidence on the harmonization techniques in the context of carbon-trading policies has been remarkably thin.To address this gap,we employed the difference-in-difference(DID)and spatial difference-in-difference(S-DID)models using panel data from 2007 to 2017 for 30 Chinese provinces.Our findings reveal that the carbon-trading policy contributes significantly to the coordinated advancement of green technologies across Chinese provinces and exhibits a local siphoning effect.Specifically,the pilot areas of the policy have attracted talent from neighboring regions,which has fostered local cooperation and promoted coordinated innovation in green technologies within the region.
基金financially supported by the National Natural Science Foundation of China(NSFC,Nos.22272008 and 21872011).
文摘Nowadays,photoca-talytic water splitting for hydrogen production is widely recognized as a promising solution to solve both energy shortages and environmental pollution.Nevertheless,photocatalytic hydrogen evolution is currently hindered by challenges,such as inefficient photogenerated carrier separation and migration and inadequate light absorption by photocatalysts.To overcome such challenges,we herein engineered hollow Cu_(2-x)Se@ZnIn_(2)S_(4) core-shell heterostructures(HCSHs)via synergistic utilization of energy level engineering,interfacial engineering,and local surface plasmon resonance(LSPR)effect.The optimal sample exhibits an outstanding hydrogen evolution rate(46.78 mmol·g^(-1)·h^(-1))under visible-near-infrared(VIS-NIR)irradiation,which is 1.78 times that under VIS irradiation alone and 7.8 times that of ZnIn_(2)S_(4) reference under the same illumination condition.Comprehensive studies demonstrate that the built-in electric field within the p-n heterojunctions,along with the unique core-shell structure,significantly enhances the separation and directional migration of photogenerated carriers.Meanwhile,the NIR LSPR effect from the Cu_(2-x)Se component lowers the apparent activation energy and accelerates the reaction kinetics mainly via plasmonic hot electron-assisted cleavage of the adsorbed water,with photothermal heating providing a secondary contribution.This work is of great importance in developing highly efficient photocatalysts and in boosting LSPR-enhanced photocatalytic applications.
基金Supported by Project of National Key Basic Research and Development Plan(973 Plan):2013CB532006
文摘Our research began with a consideration of the etymological origins of the terms Ashi and the Ashi point. We used both original source texts and textual criticism to trace the original meaning of the phrases, "take the tender spot as the point" and "use the Ashi method." Linguistic theory informed our discussion of three similar terms and our analysis of them. We show that Ashi points are in theory similar to regular acupuncture points in terms of their definition and function. Furthermore, we can use the concept of "c/i-pathway (Qi./ie)" to expand our understanding of the clinical use of Ashi points. Ultimately, the main purpose of our research was to clarify that the classical Ashi point and modern, western concept of the trigger point are in fact quite similar. The two concepts have been described in different languages primarily due to cultural differences.
基金funded by the Special Research Fund for Seismology(201408020)the Natural Science Foundation of China (51578514,U1434210)
文摘Ground motions are significantly influenced by dynamic characteristics of overburden soil layers near ground surface,as thick and soft soil layers would obviously amplify the ground motion strength. The conventional research method on soil nonlinear dynamic characteristics under strong motions is based on experiments in laboratories for the deficiency of observation data,but it is difficult to reliably simulate the complex factors of soils in actual earthquake durations,including loading paths,boundary conditions,and drainage conditions. The incremental data of the vertical downhole observation array,which is comprised of at least one observation point on ground surface and one observation point in a downhole rock base, makes it possible to study soil nonlinear dynamics according to in situ observation data,and provides new basic data and development opportunities to soil nonlinear dynamics studies.
基金Project supported by the National Natural Science Foundation of China (No. 50638010)the Specialized Research Fund for the Doctoral Program of Higher Education of China (No. 20070141036)
文摘Collapses of transmission towers were often observed in previous large earthquakes such as the Chi-Chi earthquake in Taiwan and Wenchuan earthquake in Sichuan,China. These collapses were partially caused by the pulling forces from the transmission lines generated from out-of-phase responses of the adjacent towers owing to spatially varying earthquake ground motions. In this paper,a 3D finite element model of the transmission tower-line system is established considering the geometric nonlinearity of transmission lines. The nonlinear responses of the structural system at a canyon site are analyzed subjected to spatially varying ground motions. The spatial variations of ground motion associated with the wave passage,coherency loss,and local site effects are given. The spatially varying ground motions are simulated stochastically based on an empirical coherency loss function and a filtered Tajimi-Kanai power spectral density function. The site effect is considered by a transfer function derived from 1D wave propagation theory. Compared with structural responses calculated using the uniform ground motion and delayed excitations,numerical results indicate that seismic responses of transmission towers and power lines are amplified when considering spatially varying ground motions including site effects. Each factor of ground motion spatial variations has a significant effect on the seismic response of the structure,especially for the local site effect. Therefore,neglecting the earthquake ground motion spatial variations may lead to a substantial underestimation of the response of transmission tower-line system during strong earthquakes. Each effect of ground motion spatial variations should be incorporated in seismic analysis of the structural system.
基金supported by the National Natural Science Foundation of China (10874253 and 10874173)
文摘Lead borate glasses xB2O3+(99–x)PbO+0.5Eu2O3(x=70,60,...,10) were prepared by melt-quenching method.The luminescent properties were characterized with excitation and emission spectra.The emission intensities for 5D0-7FJ(J=0–4) were analyzed to give variation of the relative electric dipole line strengths with the composition of glasses so as to examine the crucial implicit assumption of independent electric dipole line strength on the composition of glass in the Phys.Rev.Lett.2003,91,203903 paper studying l...