期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Robust Texture Classification via Group-Collaboratively Representation-Based Strategy 被引量:1
1
作者 Xiao-Ling Xia Hang-Hui Huang 《Journal of Electronic Science and Technology》 CAS 2013年第4期412-416,共5页
In this paper, we present a simple but powerful ensemble for robust texture classification. The proposed method uses a single type of feature descriptor, i.e. scale-invariant feature transform (SIFT), and inherits t... In this paper, we present a simple but powerful ensemble for robust texture classification. The proposed method uses a single type of feature descriptor, i.e. scale-invariant feature transform (SIFT), and inherits the spirit of the spatial pyramid matching model (SPM). In a flexible way of partitioning the original texture images, our approach can produce sufficient informative local features and thereby form a reliable feature pond or train a new class-specific dictionary. To take full advantage of this feature pond, we develop a group-collaboratively representation-based strategy (GCRS) for the final classification. It is solved by the well-known group lasso. But we go beyond of this and propose a locality-constraint method to speed up this, named local constraint-GCRS (LC-GCRS). Experimental results on three public texture datasets demonstrate the proposed approach achieves competitive outcomes and even outperforms the state-of-the-art methods. Particularly, most of methods cannot work well when only a few samples of each category are available for training, but our approach still achieves very high classification accuracy, e.g. an average accuracy of 92.1% for the Brodatz dataset when only one image is used for training, significantly higher than any other methods. 展开更多
关键词 Dictionary learning group lasso localconstraint spatial pyramid matching textureclassification.
在线阅读 下载PDF
基于结构化遮挡编码和极限学习机的局部遮挡人脸识别 被引量:5
2
作者 张芳艳 王新 许新征 《计算机应用》 CSCD 北大核心 2019年第10期2893-2898,共6页
提出使用结构化遮挡编码(SOC)结合极限学习机(ELM)的算法来处理人脸识别中的遮挡问题。首先,使用SOC去除图像上的遮挡物,将遮挡物体与人脸分离开;同时,通过局部性约束字典(LCD)来估计遮挡物的位置,建立遮挡字典和人脸字典。然后,将建立... 提出使用结构化遮挡编码(SOC)结合极限学习机(ELM)的算法来处理人脸识别中的遮挡问题。首先,使用SOC去除图像上的遮挡物,将遮挡物体与人脸分离开;同时,通过局部性约束字典(LCD)来估计遮挡物的位置,建立遮挡字典和人脸字典。然后,将建立好的人脸字典矩阵进行归一化处理,并利用ELM对归一化的数据进行分类识别。最后,在AR人脸库上进行的仿真实验结果表明,所提方法对不同遮挡物和不同区域遮挡的图像具有较好的识别率和鲁棒性。 展开更多
关键词 人脸识别 遮挡 结构化遮挡编码 局部性约束字典 极限学习机
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部