In some real complex networks, only a few nodes can obtain the global information about the entire networks, but most of the nodes own only local connections therefore own only local information of the networks. A new...In some real complex networks, only a few nodes can obtain the global information about the entire networks, but most of the nodes own only local connections therefore own only local information of the networks. A new local-world evolving network model is proposed in this paper. In the model, not all the nodes obtain local network information, which is different from the local world network model proposed by Li and Chen (LC model). In the LC model, each node has only the local connections therefore owns only local information about the entire networks. Theoretical analysis and numerical simulation show that adjusting the ratio of the number of nodes obtaining the global information of the network to the total number of nodes can effectively control the valuing range for the power-law exponent of the new network. Therefore, if the topological structure of a complex network, especially its exponent of power-law degree distribution, needs controlling, we just add or take away a few nodes which own the global information of the network.展开更多
In view of the serious reactive power loss in the rural network, improved ant colony optimization algorithm (ACOA) was used to optimize the reactive power compensation for the rural distribution system. In this stud...In view of the serious reactive power loss in the rural network, improved ant colony optimization algorithm (ACOA) was used to optimize the reactive power compensation for the rural distribution system. In this study, the traditional ACOA was improved in two aspects: one was the local search strategy, and the other was pheromone mutation and re-initialization strategies. The reactive power optimization for a county's distribution network showed that the improved ACOA was practicable.展开更多
随着集成电路工艺的持续演进,芯片设计对时序性能、功耗和电压完整性的要求日益严苛,传统后端物理设计流程已难以高效满足现代需求。为此,本文在以多电压条形码识别片上系统芯片(system on chip,SOC)的后端设计中,提出并验证了一种结合...随着集成电路工艺的持续演进,芯片设计对时序性能、功耗和电压完整性的要求日益严苛,传统后端物理设计流程已难以高效满足现代需求。为此,本文在以多电压条形码识别片上系统芯片(system on chip,SOC)的后端设计中,提出并验证了一种结合混合放置技术与电压降感知布局优化及局部电源网络增强技术的物理实现方案。在布局阶段,通过混合放置协同布置宏单元与标准单元提高布局效率,引入电压降感知技术,动态优化热点区域的单元分布,改善电压降性能。在后布线阶段,采用局部电源网络增强技术精细调整电源网络,有效缓解局部动态电压降问题。这些技术在多电压条形码识别SOC芯片设计中实现了约0.72%的线长优化、11.92%的动态功耗节省,并将最大动态电压降降低了20.22%,验证了其在低功耗芯片设计中的实际工程价值。展开更多
[目的]DDoS攻击作为一种破坏性极强的网络威胁,严重影响电力系统的稳定运行。由于电力监控局域网中的数据流量复杂多变,DDoS攻击流量与正常流量在表现形式上存在较高相似性,导致二者难以有效区分。传统的静态阈值方法虽能在一定程度上...[目的]DDoS攻击作为一种破坏性极强的网络威胁,严重影响电力系统的稳定运行。由于电力监控局域网中的数据流量复杂多变,DDoS攻击流量与正常流量在表现形式上存在较高相似性,导致二者难以有效区分。传统的静态阈值方法虽能在一定程度上实现流量监测,但因无法适应流量的动态变化,常出现误判,从而削弱了对DDoS攻击的检测效果,难以为电力监控局域网提供可靠的安全保障。为此,提出一种基于动态阈值的电力监控局域网DDoS攻击检测方法。[方法]通过网络流量采集设备实时获取电力监控局域网的流量数据,并利用信息熵理论计算流量熵值。信息熵可反映数据的混乱程度:正常流量通常具有一定规律性,熵值相对稳定;而DDoS攻击流量因异常数据包的大量涌入,导致熵值显著波动。基于此特性,本文设定动态阈值,当流量熵值超过阈值时判定为异常流量。随后,提取异常流量的六元组特征集(包括平均流包数、平均字节数、源IP地址增速、流表生存时间变化、端口增速以及对流比),并将其输入预训练的最小二乘支持向量机(least squares support vector machine,LSSVM)分类器中。LSSVM通过对已知样本的学习建立特征与类别的映射关系,从而实现对异常流量的分类与判断,确定其是否为DDoS攻击流量。[结果]实验结果表明,本文方法在ROC曲线和PR曲线上均表现较好,ROC-AUC和PR-AUC值均较传统方法有所提高。这表明该方法在检测DDoS攻击时具备更高的准确率与召回率,能够有效识别隐藏于正常流量中的攻击流量,并显著降低误判率。[结论]基于动态阈值与LSSVM分类器的检测方法能够有效应对电力监控局域网中DDoS攻击与正常流量难以区分的问题,提升检测的准确性与可靠性,为电力监控局域网提供更为有效的DDoS攻击防护手段,有助于增强电力系统的安全性与稳定性,保障电力供应的可靠运行,对电力行业网络安全防护具有重要的实际应用价值。展开更多
基金supported by the Scientific Research Starting Foundation of Hangzhou Dianzi University (Grant No KYS091507073)partly by the National High Technology Research and Development Program of China (Grant No 2005AA147030)
文摘In some real complex networks, only a few nodes can obtain the global information about the entire networks, but most of the nodes own only local connections therefore own only local information of the networks. A new local-world evolving network model is proposed in this paper. In the model, not all the nodes obtain local network information, which is different from the local world network model proposed by Li and Chen (LC model). In the LC model, each node has only the local connections therefore owns only local information about the entire networks. Theoretical analysis and numerical simulation show that adjusting the ratio of the number of nodes obtaining the global information of the network to the total number of nodes can effectively control the valuing range for the power-law exponent of the new network. Therefore, if the topological structure of a complex network, especially its exponent of power-law degree distribution, needs controlling, we just add or take away a few nodes which own the global information of the network.
基金Supported by China Postdoctoral Science Foundation(20090460873)
文摘In view of the serious reactive power loss in the rural network, improved ant colony optimization algorithm (ACOA) was used to optimize the reactive power compensation for the rural distribution system. In this study, the traditional ACOA was improved in two aspects: one was the local search strategy, and the other was pheromone mutation and re-initialization strategies. The reactive power optimization for a county's distribution network showed that the improved ACOA was practicable.
文摘随着集成电路工艺的持续演进,芯片设计对时序性能、功耗和电压完整性的要求日益严苛,传统后端物理设计流程已难以高效满足现代需求。为此,本文在以多电压条形码识别片上系统芯片(system on chip,SOC)的后端设计中,提出并验证了一种结合混合放置技术与电压降感知布局优化及局部电源网络增强技术的物理实现方案。在布局阶段,通过混合放置协同布置宏单元与标准单元提高布局效率,引入电压降感知技术,动态优化热点区域的单元分布,改善电压降性能。在后布线阶段,采用局部电源网络增强技术精细调整电源网络,有效缓解局部动态电压降问题。这些技术在多电压条形码识别SOC芯片设计中实现了约0.72%的线长优化、11.92%的动态功耗节省,并将最大动态电压降降低了20.22%,验证了其在低功耗芯片设计中的实际工程价值。
文摘[目的]DDoS攻击作为一种破坏性极强的网络威胁,严重影响电力系统的稳定运行。由于电力监控局域网中的数据流量复杂多变,DDoS攻击流量与正常流量在表现形式上存在较高相似性,导致二者难以有效区分。传统的静态阈值方法虽能在一定程度上实现流量监测,但因无法适应流量的动态变化,常出现误判,从而削弱了对DDoS攻击的检测效果,难以为电力监控局域网提供可靠的安全保障。为此,提出一种基于动态阈值的电力监控局域网DDoS攻击检测方法。[方法]通过网络流量采集设备实时获取电力监控局域网的流量数据,并利用信息熵理论计算流量熵值。信息熵可反映数据的混乱程度:正常流量通常具有一定规律性,熵值相对稳定;而DDoS攻击流量因异常数据包的大量涌入,导致熵值显著波动。基于此特性,本文设定动态阈值,当流量熵值超过阈值时判定为异常流量。随后,提取异常流量的六元组特征集(包括平均流包数、平均字节数、源IP地址增速、流表生存时间变化、端口增速以及对流比),并将其输入预训练的最小二乘支持向量机(least squares support vector machine,LSSVM)分类器中。LSSVM通过对已知样本的学习建立特征与类别的映射关系,从而实现对异常流量的分类与判断,确定其是否为DDoS攻击流量。[结果]实验结果表明,本文方法在ROC曲线和PR曲线上均表现较好,ROC-AUC和PR-AUC值均较传统方法有所提高。这表明该方法在检测DDoS攻击时具备更高的准确率与召回率,能够有效识别隐藏于正常流量中的攻击流量,并显著降低误判率。[结论]基于动态阈值与LSSVM分类器的检测方法能够有效应对电力监控局域网中DDoS攻击与正常流量难以区分的问题,提升检测的准确性与可靠性,为电力监控局域网提供更为有效的DDoS攻击防护手段,有助于增强电力系统的安全性与稳定性,保障电力供应的可靠运行,对电力行业网络安全防护具有重要的实际应用价值。