Consider the semiparametric varying-coefficient heteroscedastic partially linear model Yi = X^T i β+ Z^T iα(Ti) + σiei, 1 ≤ i≤ n, where σ ^2i= f(Ui), β is a p × 1 column vector of unknown parameter, ...Consider the semiparametric varying-coefficient heteroscedastic partially linear model Yi = X^T i β+ Z^T iα(Ti) + σiei, 1 ≤ i≤ n, where σ ^2i= f(Ui), β is a p × 1 column vector of unknown parameter, (Xi, Zi, Ti, Ui) are random design q-dimensional vector of unknown functions, el points, Yi are the response variables, α(-) is a are random errors. For both cases that f(.) is known and unknown, we propose the empirical log-likelihood ratio statistics for the parameter f(.). For each case, a nonparametric version of Wilks' theorem is derived. The results are then used to construct confidence regions of the parameter. Simulation studies are carried out to assess the performance of the empirical likelihood method.展开更多
In this paper, we propose the test statistic to check whether the nonparametric function in partially linear models is linear or not. We estimate the nonparametric function in alternative by using the local linear met...In this paper, we propose the test statistic to check whether the nonparametric function in partially linear models is linear or not. We estimate the nonparametric function in alternative by using the local linear method, and then estimate the parameters by the two stage method. The test statistic under the null hypothesis is calculated, and it is shown to be asymptotically normal.展开更多
We propose the test statistic to check whether the nonpararnetric functions in two partially linear models are equality or not in this paper. We estimate the nonparametric function both in null hypothesis and the alte...We propose the test statistic to check whether the nonpararnetric functions in two partially linear models are equality or not in this paper. We estimate the nonparametric function both in null hypothesis and the alternative by the local linear method, where we ignore the parametric components, and then estimate the parameters by the two stage method. The test statistic is derived, and it is shown to be asymptotically normal under the null hypothesis.展开更多
In this article,a procedure for estimating the coefficient functions on the functional-coefficient regression models with different smoothing variables in different coefficient functions is defined.First step,by the l...In this article,a procedure for estimating the coefficient functions on the functional-coefficient regression models with different smoothing variables in different coefficient functions is defined.First step,by the local linear technique and the averaged method,the initial estimates of the coefficient functions are given.Second step,based on the initial estimates,the efficient estimates of the coefficient functions are proposed by a one-step back-fitting procedure.The efficient estimators share the same asymptotic normalities as the local linear estimators for the functional-coefficient models with a single smoothing variable in different functions.Two simulated examples show that the procedure is effective.展开更多
由于人类DNA序列上单核苷酸具有多态性,DNA序列异常挖掘是后基因组时代的一个重要研究课题。文章在分析现有DNA序列数据挖掘方法的基础上,利用流形学习中不同低维嵌入向量之间向量距离不同的特点,提出了基于流形学习的DNA序列数据挖掘方...由于人类DNA序列上单核苷酸具有多态性,DNA序列异常挖掘是后基因组时代的一个重要研究课题。文章在分析现有DNA序列数据挖掘方法的基础上,利用流形学习中不同低维嵌入向量之间向量距离不同的特点,提出了基于流形学习的DNA序列数据挖掘方法(5Dlocally linear embedding,简称5DLLE)。实验结果表明,与隐马尔可夫模型(HMM)和支持向量机(SVM)相比,文中所提出的5DLLE方法在DNA序列数据挖掘方面具有一定优势,不但平均识别率高,而且计算时间相对较少。展开更多
基金Supported by the National Natural Science Foundation of China (Grant No. 71171003)Natural Science Research Project of Anhui Provincial Colleges (Grant No. KJ2011A032)+3 种基金Anhui Polytechnic University Foundation for Recruiting Talent (Grant Nos. 2011YQQ0042009YQQ005)Young Teachers Science Research Foundation of Anhui Polytechnic University (Grant No. 2009YQ035)Anhui Provincial Natural Science Foundation
文摘Consider the semiparametric varying-coefficient heteroscedastic partially linear model Yi = X^T i β+ Z^T iα(Ti) + σiei, 1 ≤ i≤ n, where σ ^2i= f(Ui), β is a p × 1 column vector of unknown parameter, (Xi, Zi, Ti, Ui) are random design q-dimensional vector of unknown functions, el points, Yi are the response variables, α(-) is a are random errors. For both cases that f(.) is known and unknown, we propose the empirical log-likelihood ratio statistics for the parameter f(.). For each case, a nonparametric version of Wilks' theorem is derived. The results are then used to construct confidence regions of the parameter. Simulation studies are carried out to assess the performance of the empirical likelihood method.
文摘In this paper, we propose the test statistic to check whether the nonparametric function in partially linear models is linear or not. We estimate the nonparametric function in alternative by using the local linear method, and then estimate the parameters by the two stage method. The test statistic under the null hypothesis is calculated, and it is shown to be asymptotically normal.
文摘We propose the test statistic to check whether the nonpararnetric functions in two partially linear models are equality or not in this paper. We estimate the nonparametric function both in null hypothesis and the alternative by the local linear method, where we ignore the parametric components, and then estimate the parameters by the two stage method. The test statistic is derived, and it is shown to be asymptotically normal under the null hypothesis.
文摘In this article,a procedure for estimating the coefficient functions on the functional-coefficient regression models with different smoothing variables in different coefficient functions is defined.First step,by the local linear technique and the averaged method,the initial estimates of the coefficient functions are given.Second step,based on the initial estimates,the efficient estimates of the coefficient functions are proposed by a one-step back-fitting procedure.The efficient estimators share the same asymptotic normalities as the local linear estimators for the functional-coefficient models with a single smoothing variable in different functions.Two simulated examples show that the procedure is effective.
文摘由于人类DNA序列上单核苷酸具有多态性,DNA序列异常挖掘是后基因组时代的一个重要研究课题。文章在分析现有DNA序列数据挖掘方法的基础上,利用流形学习中不同低维嵌入向量之间向量距离不同的特点,提出了基于流形学习的DNA序列数据挖掘方法(5Dlocally linear embedding,简称5DLLE)。实验结果表明,与隐马尔可夫模型(HMM)和支持向量机(SVM)相比,文中所提出的5DLLE方法在DNA序列数据挖掘方面具有一定优势,不但平均识别率高,而且计算时间相对较少。