Locally resonant sonic materials, due to their ability to control the propagation of low-frequency elastic waves, have become a promising option for underwater sound absorption materials. In this paper, the finite ele...Locally resonant sonic materials, due to their ability to control the propagation of low-frequency elastic waves, have become a promising option for underwater sound absorption materials. In this paper, the finite element method is used to investigate the absorption characteristics of a viscoelastic panel periodically embedded with a type of infinite-long noncoaxially cylindrical locally resonant scatterers(LRSs). The effect of the core position in the coating layer of the LRS on the low-frequency(500 Hz–3000 Hz) sound absorption property is investigated. With increasing the longitudinal core eccentricity e, there occur few changes in the absorptance at the frequencies below 1500 Hz, however, the absorptance above 1500 Hz becomes gradually better and the valid absorption(with absorptance above 0.8) frequency band(VAFB)of the viscoelastic panel becomes accordingly broader. The absorption mechanism is revealed by using the displacement field maps of the viscoelastic panel and the steel slab. The results show two typical resonance modes. One is the overall resonance mode(ORM) caused by steel backing, and the other is the core resonance mode(CRM) caused by LRS. The absorptance of the viscoelastic panel by ORM is induced mainly by the vibration of the steel slab and affected little by core position. On the contrary, with increasing the core eccentricity, the CRM shifts toward high frequency band and decouples with the ORM, leading to two separate absorption peaks and the broadened VAFB of the panel.展开更多
The clustered regularly interspaced short palindromic repeats(CRISPR)–CRISPR-associated protein(Cas) system has been widely used for genome editing. In this system, the cytosine base editor(CBE) and adenine base edit...The clustered regularly interspaced short palindromic repeats(CRISPR)–CRISPR-associated protein(Cas) system has been widely used for genome editing. In this system, the cytosine base editor(CBE) and adenine base editor(ABE) allow generating precise and irreversible base mutations in a programmable manner and have been used in many different types of cells and organisms. However, their applications are limited by low editing efficiency at certain genomic target sites or at specific target cytosine(C) or adenine(A) residues. Using a strategy of combining optimized synergistic core components, we developed a new multiplex super-assembled ABE(sABE) in rice that showed higher base-editing efficiency than previously developed ABEs. We also designed a new type of nuclear localization signal(NLS) comprising a FLAG epitope tag with four copies of a codon-optimized NLS(F4NLS^(r2)) to generate another ABE named F4NLS-sABE. This new NLS increased editing efficiency or edited additional A at several target sites. A new multiplex super-assembled CBE(sCBE) and F4NLS^(r2) involved F4NLS-sCBE were also created using the same strategy. F4NLS-sCBE was proven to be much more efficient than sCBE in rice. These optimized base editors will serve as powerful genome-editing tools for basic research or molecular breeding in rice and will provide a reference for the development of superior editing tools for other plants or animals.展开更多
Using numerical simulation, we investigate the high-order plasmon resonances in individual nanostructures of an Ag nanorice core surrounded by an Al2O3 shell. The peak positions of localized surface plasmon resonances...Using numerical simulation, we investigate the high-order plasmon resonances in individual nanostructures of an Ag nanorice core surrounded by an Al2O3 shell. The peak positions of localized surface plasmon resonances (LSPRs) are red-shifted exponentially with the increase of the dielectric shell thickness. This is due to the exponential decay of electromagnetic field intensity in the direction perpendicular to the interface. This exponential red-shift depends on the wavelength of the resonance peak instead of the resonance order. In addition, we find that the LSPRs in an Ag nanorice of 60-nm width can be perfectly described by a single linear function. These features make nanorice an ideal platform for sensing applications.展开更多
黄病毒科病毒核衣壳蛋白的核仁定位在病毒颗粒包装与病毒复制中发挥重要作用。为鉴定黄病毒科的猪瘟病毒Core蛋白核仁定位序列,本研究构建了将Core蛋白、截短突变体和氨基酸位点突变体分别与增强型绿色荧光蛋白(enhanced green fluoresc...黄病毒科病毒核衣壳蛋白的核仁定位在病毒颗粒包装与病毒复制中发挥重要作用。为鉴定黄病毒科的猪瘟病毒Core蛋白核仁定位序列,本研究构建了将Core蛋白、截短突变体和氨基酸位点突变体分别与增强型绿色荧光蛋白(enhanced green fluorescent protein,EGFP)融合的真核表达质粒,转染至PK15细胞后进行表达和定位分析,结果显示Core蛋白核仁定位序列为PESRKKL,其关键氨基酸为R76K77,对理解猪瘟病毒Core蛋白结构与功能和为后续研究Core蛋白在病毒复制及颗粒包装中的作用有重要意义。展开更多
We investigate numerically and experimentally the modification of the spontaneous emission rate for micrometersized light sources embedded in a hollow-core photonic crystal fiber (HCPCF). The diameter of the light s...We investigate numerically and experimentally the modification of the spontaneous emission rate for micrometersized light sources embedded in a hollow-core photonic crystal fiber (HCPCF). The diameter of the light source is deliberately chosen such that they could be easily introduced into the central hole of the hollow-core photonic crystal fiber by capillary force. The photoluminescence from the microparticles is measured by using an inverted microscope in combination with a spectrometer. The modification of the spontaneous emission rate is observed in a wavelength region where there is no band gap. The experimental observations are consistent with the simulation results obtained by the plane wave expansion and finite-difference time-domain techniques.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.51275519)
文摘Locally resonant sonic materials, due to their ability to control the propagation of low-frequency elastic waves, have become a promising option for underwater sound absorption materials. In this paper, the finite element method is used to investigate the absorption characteristics of a viscoelastic panel periodically embedded with a type of infinite-long noncoaxially cylindrical locally resonant scatterers(LRSs). The effect of the core position in the coating layer of the LRS on the low-frequency(500 Hz–3000 Hz) sound absorption property is investigated. With increasing the longitudinal core eccentricity e, there occur few changes in the absorptance at the frequencies below 1500 Hz, however, the absorptance above 1500 Hz becomes gradually better and the valid absorption(with absorptance above 0.8) frequency band(VAFB)of the viscoelastic panel becomes accordingly broader. The absorption mechanism is revealed by using the displacement field maps of the viscoelastic panel and the steel slab. The results show two typical resonance modes. One is the overall resonance mode(ORM) caused by steel backing, and the other is the core resonance mode(CRM) caused by LRS. The absorptance of the viscoelastic panel by ORM is induced mainly by the vibration of the steel slab and affected little by core position. On the contrary, with increasing the core eccentricity, the CRM shifts toward high frequency band and decouples with the ORM, leading to two separate absorption peaks and the broadened VAFB of the panel.
基金supported by the Beijing Scholars Program[BSP041]。
文摘The clustered regularly interspaced short palindromic repeats(CRISPR)–CRISPR-associated protein(Cas) system has been widely used for genome editing. In this system, the cytosine base editor(CBE) and adenine base editor(ABE) allow generating precise and irreversible base mutations in a programmable manner and have been used in many different types of cells and organisms. However, their applications are limited by low editing efficiency at certain genomic target sites or at specific target cytosine(C) or adenine(A) residues. Using a strategy of combining optimized synergistic core components, we developed a new multiplex super-assembled ABE(sABE) in rice that showed higher base-editing efficiency than previously developed ABEs. We also designed a new type of nuclear localization signal(NLS) comprising a FLAG epitope tag with four copies of a codon-optimized NLS(F4NLS^(r2)) to generate another ABE named F4NLS-sABE. This new NLS increased editing efficiency or edited additional A at several target sites. A new multiplex super-assembled CBE(sCBE) and F4NLS^(r2) involved F4NLS-sCBE were also created using the same strategy. F4NLS-sCBE was proven to be much more efficient than sCBE in rice. These optimized base editors will serve as powerful genome-editing tools for basic research or molecular breeding in rice and will provide a reference for the development of superior editing tools for other plants or animals.
基金Project supported by the National Key Basic Research and Development Program of China (Grant Nos.2009CB930700 and 2012YQ12006005)the National Natural Science Foundation of China (Grant Nos.11134013,11227407,and 11004237)the Knowledge Innovation Project of the Chinese Academy of Sciences (Grant No.KJCX2-EW-W04)
文摘Using numerical simulation, we investigate the high-order plasmon resonances in individual nanostructures of an Ag nanorice core surrounded by an Al2O3 shell. The peak positions of localized surface plasmon resonances (LSPRs) are red-shifted exponentially with the increase of the dielectric shell thickness. This is due to the exponential decay of electromagnetic field intensity in the direction perpendicular to the interface. This exponential red-shift depends on the wavelength of the resonance peak instead of the resonance order. In addition, we find that the LSPRs in an Ag nanorice of 60-nm width can be perfectly described by a single linear function. These features make nanorice an ideal platform for sensing applications.
文摘黄病毒科病毒核衣壳蛋白的核仁定位在病毒颗粒包装与病毒复制中发挥重要作用。为鉴定黄病毒科的猪瘟病毒Core蛋白核仁定位序列,本研究构建了将Core蛋白、截短突变体和氨基酸位点突变体分别与增强型绿色荧光蛋白(enhanced green fluorescent protein,EGFP)融合的真核表达质粒,转染至PK15细胞后进行表达和定位分析,结果显示Core蛋白核仁定位序列为PESRKKL,其关键氨基酸为R76K77,对理解猪瘟病毒Core蛋白结构与功能和为后续研究Core蛋白在病毒复制及颗粒包装中的作用有重要意义。
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10674051 and 10811120010)the Program for Innovative Research Team of the Higher Education of Guangdong, China (Grant No 06CXTD005)
文摘We investigate numerically and experimentally the modification of the spontaneous emission rate for micrometersized light sources embedded in a hollow-core photonic crystal fiber (HCPCF). The diameter of the light source is deliberately chosen such that they could be easily introduced into the central hole of the hollow-core photonic crystal fiber by capillary force. The photoluminescence from the microparticles is measured by using an inverted microscope in combination with a spectrometer. The modification of the spontaneous emission rate is observed in a wavelength region where there is no band gap. The experimental observations are consistent with the simulation results obtained by the plane wave expansion and finite-difference time-domain techniques.