期刊文献+
共找到111篇文章
< 1 2 6 >
每页显示 20 50 100
Data-driven adaptive distributed optimal disturbance rejection control of frequency regulation in nonlinear power systems
1
作者 Changhui Yu Xiao Qi +4 位作者 Weixiong Wu Hui Deng Ming Du Wenguang Zhang Tianyu Wang 《Control Theory and Technology》 2025年第3期423-436,共14页
With the increasing penetration of renewable energy resources in power systems,conventional timescale separated load frequency control(LFC)and economic dispatch may degrade frequency performance and reduce economic ef... With the increasing penetration of renewable energy resources in power systems,conventional timescale separated load frequency control(LFC)and economic dispatch may degrade frequency performance and reduce economic efficiency.This paper proposes a novel data-driven adaptive distributed optimal disturbance rejection control(DODRC)method for real-time economic LFC problem in nonlinear power systems.Firstly,a basic DODRC method is proposed by integrating the active disturbance rejection control method and the partial primal–dual algorithm.Then,to deal with the tie-line power flow constraints,the logarithmic barrier function is employed to reconstruct the Lagrange function to obtain the constrained DODRC method.By analyzing the sensitivity of the uncertain parameters of power systems,a data-driven adaptive DODRC method is finally proposed with a neural network.The effectiveness of the proposed method is demonstrated by experimental results using real-time equipment. 展开更多
关键词 Load frequency control Economic dispatch Active disturbance rejection control Tie-line thermal constraints Uncertain parameters
原文传递
Optimal load frequency control system for two-area connected via AC/DC link using cuckoo search algorithm
2
作者 Gaber EL-SAADY Alexey MIKHAYLOV +2 位作者 Nora BARANYAI Mahrous AHMED Mahmoud HEMEIDA 《虚拟现实与智能硬件(中英文)》 2025年第3期299-316,共18页
Background Interconnection of different power systems has a major effect on system stability.This study aims to design an optimal load frequency control(LFC)system based on a proportional-integral(PI)controller for a ... Background Interconnection of different power systems has a major effect on system stability.This study aims to design an optimal load frequency control(LFC)system based on a proportional-integral(PI)controller for a two-area power system.Methods Two areas were connected through an AC tie line in parallel with a DC link to stabilize the frequency of oscillations in both areas.The PI parameters were tuned using the cuckoo search algorithm(CSA)to minimize the integral absolute error(IAE).A state matrix was provided,and the stability of the system was verified by calculating the eigenvalues.The frequency response was investigated for load variation,changes in the generator rate constraint,the turbine time constant,and the governor time constant.Results The CSA was compared with particle swarm optimization algorithm(PSO)under identical conditions.The system was modeled based on a state-space mathematical representation and simulated using MATLAB.The results demonstrated the effectiveness of the proposed controller based on both algorithms and,it is clear that CSA is superior to PSO.Conclusion The CSA algorithm smoothens the system response,reduces ripples,decreases overshooting and settling time,and improves the overall system performance under different disturbances. 展开更多
关键词 Load frequency control Cuckoo search algorithm PI controllers State space modeling
在线阅读 下载PDF
A Novel Cascaded TID-FOI Controller Tuned with Walrus Optimization Algorithm for Frequency Regulation of Deregulated Power System
3
作者 Geetanjali Dei Deepak Kumar Gupta +3 位作者 Binod Kumar Sahu Amitkumar V.Jha Bhargav Appasani Nicu Bizon 《Energy Engineering》 2025年第8期3399-3431,共33页
This paper presents an innovative and effective control strategy tailored for a deregulated,diversified energy system involving multiple interconnected area.Each area integrates a unique mix of power generation techno... This paper presents an innovative and effective control strategy tailored for a deregulated,diversified energy system involving multiple interconnected area.Each area integrates a unique mix of power generation technologies:Area 1 combines thermal,hydro,and distributed generation;Area 2 utilizes a blend of thermal units,distributed solar technologies(DST),and hydro power;andThird control area hosts geothermal power station alongside thermal power generation unit and hydropower units.The suggested control system employs a multi-layered approach,featuring a blended methodology utilizing the Tilted Integral Derivative controller(TID)and the Fractional-Order Integral method to enhance performance and stability.The parameters of this hybrid TID-FOI controller are finely tuned using an advanced optimization method known as the Walrus Optimization Algorithm(WaOA).Performance analysis reveals that the combined TID-FOI controller significantly outperforms the TID and PID controllers when comparing their dynamic response across various system configurations.The study also incorporates investigation of redox flow batteries within the broader scope of energy storage applications to assess their impact on system performance.In addition,the research explores the controller’s effectiveness under different power exchange scenarios in a deregulated market,accounting for restrictions on generation ramp rates and governor hysteresis effects in dynamic control.To ensure the reliability and resilience of the presented methodology,the system transitions and develops across a broad range of varying parameters and stochastic load fluctuation.To wrap up,the study offers a pioneering control approach-a hybrid TID-FOI controller optimized via the Walrus Optimization Algorithm(WaOA)-designed for enhanced stability and performance in a complex,three-region hybrid energy system functioning within a deregulated framework. 展开更多
关键词 Integral time multiplied by absolute error(ITAE) load frequency control(LFC) particle swarm optimization(PSO) tilted integral derivative controller(TID) independent system operator(ISO) walrus optimization algorithm(WaOA) proportional integral derivative controller(PID)
在线阅读 下载PDF
Graded density impactor design via machine learning and numerical simulation:Achieve controllable stress and strain rate 被引量:1
4
作者 Yahui Huang Ruizhi Zhang +6 位作者 Shuaixiong Liu Jian Peng Yong Liu Han Chen Jian Zhang Guoqiang Luo Qiang Shen 《Defence Technology(防务技术)》 2025年第9期262-273,共12页
The graded density impactor(GDI)dynamic loading technique is crucial for acquiring the dynamic physical property parameters of materials used in weapons.The accuracy and timeliness of GDI structural design are key to ... The graded density impactor(GDI)dynamic loading technique is crucial for acquiring the dynamic physical property parameters of materials used in weapons.The accuracy and timeliness of GDI structural design are key to achieving controllable stress-strain rate loading.In this study,we have,for the first time,combined one-dimensional fluid computational software with machine learning methods.We first elucidated the mechanisms by which GDI structures control stress and strain rates.Subsequently,we constructed a machine learning model to create a structure-property response surface.The results show that altering the loading velocity and interlayer thickness has a pronounced regulatory effect on stress and strain rates.In contrast,the impedance distribution index and target thickness have less significant effects on stress regulation,although there is a matching relationship between target thickness and interlayer thickness.Compared with traditional design methods,the machine learning approach offers a10^(4)—10^(5)times increase in efficiency and the potential to achieve a global optimum,holding promise for guiding the design of GDI. 展开更多
关键词 Machine learning Numerical simulation Graded density impactor controllable stress-strain rate loading Response surface methodology
在线阅读 下载PDF
Stability and Stabilization of Sampled-Data Based LFC for Power Systems:A Data-Driven Method
5
作者 Yu-Long Fan Chuan-Ke Zhang Yong He 《IEEE/CAA Journal of Automatica Sinica》 2025年第1期291-293,共3页
Dear Editor,This letter is concerned with stability analysis and stabilization design for sampled-data based load frequency control(LFC) systems via a data-driven method. By describing the dynamic behavior of LFC syst... Dear Editor,This letter is concerned with stability analysis and stabilization design for sampled-data based load frequency control(LFC) systems via a data-driven method. By describing the dynamic behavior of LFC systems based on a data-based representation, a stability criterion is derived to obtain the admissible maximum sampling interval(MSI) for a given controller and a design condition of the PI-type controller is further developed to meet the required MSI. Finally, the effectiveness of the proposed methods is verified by a case study. 展开更多
关键词 sampling interval msi lfc systems stability analysis stability criterion design condition load frequency control lfc stabilization design
在线阅读 下载PDF
Optimising PID Controllers for Multi-Area Automatic Generation Control With Improved NSGA-Ⅱ
6
作者 Yang Yang Yuchao Gao +1 位作者 Shangce Gao Jinran Wu 《CAAI Transactions on Intelligence Technology》 2025年第4期1135-1147,共13页
Modern automated generation control(AGC)is increasingly complex,requiring precise frequency control for stability and operational accuracy.Traditional PID controller optimisation methods often struggle to handle nonli... Modern automated generation control(AGC)is increasingly complex,requiring precise frequency control for stability and operational accuracy.Traditional PID controller optimisation methods often struggle to handle nonlinearities and meet robustness requirements across diverse operational scenarios.This paper introduces an enhanced strategy using a multi-objective optimisation framework and a modified non-dominated sorting genetic algorithm Ⅱ(SNSGA).The proposed model optimises the PID controller by minimising key performance metrics:integration time squared error(ITSE),integration time absolute error(ITAE),and rate of change of deviation(J).This approach balances convergence rate,overshoot,and oscillation dynamics effectively.A fuzzy-based method is employed to select the most suitable solution from the Pareto set.The comparative analysis demonstrates that the SNSGA-based approach offers superior tuning capabilities over traditional NSGA-Ⅱ and other advanced control methods.In a two-area thermal power system without reheat,the SNSGA significantly reduces settling times for frequency deviations:2.94s for Δf_(1) and 4.98s for Δf_(2),marking improvements of 31.6%and 13.4%over NSGA-Ⅱ,respectively. 展开更多
关键词 automatic generation control load frequency control multi-objective optimization nondominated sorting genetic algorithmⅡ PID controller
在线阅读 下载PDF
Centralized synthetic inertia control of inverter-based thermostatically controlled load clusters for grid frequency regulation
7
作者 Te Zhou Meng Zhou +4 位作者 Shuai Wang Zhi Li Yang Han Tomislav Capuder Ning Zhang 《iEnergy》 2025年第1期16-30,共15页
As the development of new power systems progresses,the inherent inertia of power systems continues to diminish.Centralized frequency regulation,which relies on rapid communication and real-time control,can enable inve... As the development of new power systems progresses,the inherent inertia of power systems continues to diminish.Centralized frequency regulation,which relies on rapid communication and real-time control,can enable inverter-based thermostatically controlled load(ITCL)clusters to provide virtual inertia support to the power grid.However,ITCL clusters exhibit significant discrete response characteristics,which precludes the direct integration of load-side inertia support into the synchronous unit side.To address this issue,this paper elaborates on the existing technical framework and analyzes the underlying causes of the problem.It proposes a timestamp allocation mechanism for ITCL cluster control instructions,ensuring that many ITCL terminals can be triggered at staggered times,thereby allowing the load cluster power to adhere to the inertia analog control law at any moment.Building on this foundation,the paper further examines the impact of the inertia response delay of ITCL clusters,which is based on centralized frequency regulation,on the stability of the power system.A design scheme for inertia analog control parameters is proposed,taking into account dual constraints,frequency stability and load cluster regulation capacity.Finally,the feasibility and applicability of the proposed mechanism and parameter design scheme are investigated through simulations conducted via MATLAB/Simulink. 展开更多
关键词 Thermostatically controlled load demand response frequency response centralized frequency regulation inertia analog
在线阅读 下载PDF
Distributed Model Predictive Load Frequency Control of Multi-area Power System with DFIGs 被引量:17
8
作者 Yi Zhang Xiangjie Liu Bin Qu 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2017年第1期125-135,共11页
Reliable load frequency control LFC is crucial to the operation and design of modern electric power systems. Considering the LFC problem of a four-Area interconnected power system with wind turbines, this paper presen... Reliable load frequency control LFC is crucial to the operation and design of modern electric power systems. Considering the LFC problem of a four-Area interconnected power system with wind turbines, this paper presents a distributed model predictive control DMPC based on coordination scheme. The proposed algorithm solves a series of local optimization problems to minimize a performance objective for each control area. The generation rate constraints GRCs, load disturbance changes, and the wind speed constraints are considered. Furthermore, the DMPC algorithm may reduce the impact of the randomness and intermittence of wind turbine effectively. A performance comparison between the proposed controller with and without the participation of the wind turbines is carried out. Analysis and simulation results show possible improvements on closed-loop performance, and computational burden with the physical constraints. © 2014 Chinese Association of Automation. 展开更多
关键词 Asynchronous generators Electric control equipment Electric fault currents Electric frequency control Electric load management Electric power systems Model predictive control Optimization Press load control WIND Wind turbines
在线阅读 下载PDF
Neural-Network-Based Terminal Sliding Mode Control for Frequency Stabilization of Renewable Power Systems 被引量:6
9
作者 Dianwei Qian Guoliang Fan 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2018年第3期706-717,共12页
This paper addresses a terminal sliding mode control(T-SMC) method for load frequency control(LFC) in renewable power systems with generation rate constraints(GRC).A two-area interconnected power system with wind turb... This paper addresses a terminal sliding mode control(T-SMC) method for load frequency control(LFC) in renewable power systems with generation rate constraints(GRC).A two-area interconnected power system with wind turbines is taken into account for simulation studies. The terminal sliding mode controllers are assigned in each area to achieve the LFC goal. The increasing complexity of the nonlinear power system aggravates the effects of system uncertainties. Radial basis function neural networks(RBF NNs) are designed to approximate the entire uncertainties. The terminal sliding mode controllers and the RBF NNs work in parallel to solve the LFC problem for the renewable power system. Some simulation results illustrate the feasibility and validity of the presented scheme. 展开更多
关键词 Generation rate constraint(GRC) load frequency control(LFC) radial basis function neural networks(RBF NNs) renewable power system terminal sliding mode control(T-SMC)
在线阅读 下载PDF
Decentralized Resilient H_∞Load Frequency Control for Cyber-Physical Power Systems Under DoS Attacks 被引量:3
10
作者 Xin Zhao Suli Zou Zhongjing Ma 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2021年第11期1737-1751,共15页
This paper designs a decentralized resilient H_(∞)load frequency control(LFC)scheme for multi-area cyber-physical power systems(CPPSs).Under the network-based control framework,the sampled measurements are transmitte... This paper designs a decentralized resilient H_(∞)load frequency control(LFC)scheme for multi-area cyber-physical power systems(CPPSs).Under the network-based control framework,the sampled measurements are transmitted through the communication networks,which may be attacked by energylimited denial-of-service(DoS)attacks with a characterization of the maximum count of continuous data losses(resilience index).Each area is controlled in a decentralized mode,and the impacts on one area from other areas via their interconnections are regarded as the additional load disturbance of this area.Then,the closed-loop LFC system of each area under DoS attacks is modeled as an aperiodic sampled-data control system with external disturbances.Under this modeling,a decentralized resilient H_(∞)scheme is presented to design the state-feedback controllers with guaranteed H∞performance and resilience index based on a novel transmission interval-dependent loop functional method.When given the controllers,the proposed scheme can obtain a less conservative H_(∞)performance and resilience index that the LFC system can tolerate.The effectiveness of the proposed LFC scheme is evaluated on a one-area CPPS and two three-area CPPSs under DoS attacks. 展开更多
关键词 Cyber-physical power systems(CPPSs) denial-of-service(DoS)attacks load frequency control(LFC) sampled-data control
在线阅读 下载PDF
Robust Control for Static Loading of Electro-hydraulic Load Simulator with Friction Compensation 被引量:22
11
作者 YAO Jianyong JIAO Zongxia YAO Bin 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2012年第6期954-962,共9页
Load simulator is a key test equipment for aircraft actuation systems in hardware-in-the-loop-simulation. Static loading is an essential function of the load simulator and widely used in the static/dynamic stiffness t... Load simulator is a key test equipment for aircraft actuation systems in hardware-in-the-loop-simulation. Static loading is an essential function of the load simulator and widely used in the static/dynamic stiffness test of aircraft actuation systems. The tracking performance of the static loading is studied in this paper. Firstly, the nonlinear mathematical models of the hydraulic load simulator are derived, and the feedback linearization method is employed to construct a feed-forward controller to improve the force tracking performance. Considering the effect of the friction, a LuGre model based friction compensation is synthesized, in which the unmeasurable state is estimated by a dual state observer via a controlled learning mechanism to guarantee that the estimation is bounded. The modeling errors are attenuated by a well-designed robust controller with a control accuracy measured by a design parameter. Employing the dual state observer is to capture the different effects of the unmeasured state and hence can improve the friction compensation accuracy. The tracking performance is summarized by a derived theorem. Experimental results are also obtained to verify the high performance nature of the proposed control strategy. 展开更多
关键词 electro-hydraulic load simulator robust control friction compensation feedback linearization LuGre model nonlinear control state estimation
原文传递
Robust Stabilization of Load Frequency Control System Under Networked Environment 被引量:1
12
作者 Ashraf Khalil Ji-Hong Wang Omar Mohamed 《International Journal of Automation and computing》 EI CSCD 2017年第1期93-105,共13页
The deregulation of the electricity market made the open communication infrastructure an exigent need for future power system. In this scenario dedicated communication links are replaced by shared networks. These shar... The deregulation of the electricity market made the open communication infrastructure an exigent need for future power system. In this scenario dedicated communication links are replaced by shared networks. These shared networks are characterized by random time delay and data loss. The random time delay and data loss may lead to system instability if they are not considered during the controller design stage. Load frequency control systems used to rely on dedicated communication links. To meet future power system challenges these dedicated networks are replaced by open communication links which makes the system stochastic. In this paper, the stochastic stabilization of load frequency control system under networked environment is investigated. The shared network is represented by three states which are governed by Markov chains. A controller synthesis method based on the stochastic stability criteria is presented in the paper. A one-area load frequency control system is chosen as case study. The effectiveness of the proposed method for the controller synthesis is tested through simulation. The derived proportion integration (PI) controller proves to be optimum where it is a compromise between compensating the random time delay effects and degrading the system dynamic performance. The range of the PI controller gains that guarantee the stochastic stability is determined. Also the range of the PI controller gains that achieve the robust stochastic stability is determined where the decay rate is used to measure the robustness of the system. 展开更多
关键词 Load frequency control load frequency control (LFC) Markov chains networked control system robust stabilization.
原文传递
ELECTRO-HYDRAULIC COMPOUND CONTROL METHOD AND CHARACTERISTIC OF CONTROL FOR TENSION SYSTEM WITH HIGH INERTIA LOADS 被引量:2
13
作者 ZHONG Tianyu WANG Qingfeng +1 位作者 LI Yanmin GONG Fangyou 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2006年第3期391-395,共5页
Based on the pressure regulation circuit adopting electro-hydraulic proportional relief valve to control tension, a new type of electro-hydraulic compound control circuit with throttle control unit is presented, which... Based on the pressure regulation circuit adopting electro-hydraulic proportional relief valve to control tension, a new type of electro-hydraulic compound control circuit with throttle control unit is presented, which can obtain optimal dynamic damping ratio through real-time altering pressure-flow gain of the throttle control unit, improve the dynamic characteristic of tension follow-up control for the tension system with high inertia loads. Moreover, the characteristic when the cable linear velocity variation causes change of tension is investigated, and a compound control strategy is proposed. The theoretical analysis and experimental results show that the electro-hydraulic compound control circuit is effective and the characteristic of the compound control strategy is satisfactory. 展开更多
关键词 High inertia loads Tension control system Compound control strategy
在线阅读 下载PDF
Force Control Compensation Method with Variable Load Stiffness and Damping of the Hydraulic Drive Unit Force Control System 被引量:10
14
作者 KONG Xiangdong BA Kaixian +3 位作者 YU Bin CAO Yuan ZHU Qixin ZHAO Hualong 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2016年第3期454-464,共11页
Each joint of hydraulic drive quadruped robot is driven by the hydraulic drive unit(HDU), and the contacting between the robot foot end and the ground is complex and variable, which increases the difficulty of force... Each joint of hydraulic drive quadruped robot is driven by the hydraulic drive unit(HDU), and the contacting between the robot foot end and the ground is complex and variable, which increases the difficulty of force control inevitably. In the recent years, although many scholars researched some control methods such as disturbance rejection control, parameter self-adaptive control, impedance control and so on, to improve the force control performance of HDU, the robustness of the force control still needs improving. Therefore, how to simulate the complex and variable load characteristics of the environment structure and how to ensure HDU having excellent force control performance with the complex and variable load characteristics are key issues to be solved in this paper. The force control system mathematic model of HDU is established by the mechanism modeling method, and the theoretical models of a novel force control compensation method and a load characteristics simulation method under different environment structures are derived, considering the dynamic characteristics of the load stiffness and the load damping under different environment structures. Then, simulation effects of the variable load stiffness and load damping under the step and sinusoidal load force are analyzed experimentally on the HDU force control performance test platform, which provides the foundation for the force control compensation experiment research. In addition, the optimized PID control parameters are designed to make the HDU have better force control performance with suitable load stiffness and load damping, under which the force control compensation method is introduced, and the robustness of the force control system with several constant load characteristics and the variable load characteristics respectively are comparatively analyzed by experiment. The research results indicate that if the load characteristics are known, the force control compensation method presented in this paper has positive compensation effects on the load characteristics variation, i.e., this method decreases the effects of the load characteristics variation on the force control performance and enhances the force control system robustness with the constant PID parameters, thereby, the online PID parameters tuning control method which is complex needs not be adopted. All the above research provides theoretical and experimental foundation for the force control method of the quadruped robot joints with high robustness. 展开更多
关键词 quadruped robot force control system hydraulic drive unit force control compensation method variable load stiffness and damping simulation
在线阅读 下载PDF
Compensated acceleration feedback based active disturbance rejection control for launch vehicles 被引量:3
15
作者 Xiaoyan ZHANG Wenchao XUE +2 位作者 Zibo LIU Ran ZHANG Huifeng LI 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第4期464-478,共15页
In this paper, the attitude tracking and load relief control problems against wind disturbances and uncertain aerodynamics as well as the engine thrust of launch vehicles are studied.Firstly, a framework of Compensate... In this paper, the attitude tracking and load relief control problems against wind disturbances and uncertain aerodynamics as well as the engine thrust of launch vehicles are studied.Firstly, a framework of Compensated Acceleration Feedback based Active Disturbance Rejection Control(CAF-ADRC) is established to achieve both desired attitude tracking and load relief performances. In particular, the total disturbance that includes the effects caused by both aerocoefficient perturbations and disturbances is estimated by constructing an Extended State Observer(ESO) to achieve attitude tracking. Furthermore, combined with the normal acceleration due to the engine thrust, the accelerometer measurement is also compensated to enhance the load relief effect.Secondly, the quantitative analysis of ESO and the entire closed-loop system are studied. It can be concluded that the desired attitude tracking and load relief performances can be achieved simultaneously under the proposed approach. Besides, tuning laws of the proposed approach are systematically given, which are divided into ESO, Proportional Derivative(PD) and Compensated Acceleration Feedback(CAF) modules. Moreover, the performances under CAF-ADRC approach can be better than those under CAF based PD(CAF-PD) approach by tuning load relief gain.Finally, the approach presented is applied to a typical control problem of launch vehicles with wind disturbances and parameter uncertainties. 展开更多
关键词 Launch vehicles Uncertainty analysis Active disturbance rejection control(ADRC) Load relief control Extended state observer(ESO)
原文传递
Active disturbance rejection based load frequency control and voltage regulation in power systems
16
作者 Lili DONG Anusree MANDALI +1 位作者 Allen MORINEC Yang ZHAO 《Control Theory and Technology》 EI CSCD 2018年第4期336-350,共15页
An active disturbance rejection controller (ADRC) is developed for load frequency control (LFC) and voltage regulation respectively in a power system. For LFC, the ADRC is constructed on a three-area interconnecte... An active disturbance rejection controller (ADRC) is developed for load frequency control (LFC) and voltage regulation respectively in a power system. For LFC, the ADRC is constructed on a three-area interconnected power system. The control goal is to maintain the frequency at nominal value (60Hz in North America) and keep tie-line power flow at scheduled value. For voltage regulation, the ADRC is applied to a static var compensator (SVC) as a supplementary controller. It is utilized to maintain the voltages at nearby buses within the ANSI C84.1 limits (or +5% tolerance). Particularly, an alternative ADRC with smaller controller gains than classic ADRC is originally designed on the SVC system. From power generation and transmission to its distribution, both voltage and frequency regulating systems are subject to large and small disturbances caused by sudden load changes, transmission faults, and equipment loss/malfunction etc. The simulation results and theoretical analyses demonstrate the effectiveness of the ADRCs in compensating the disturbances and achieving the control goals. 展开更多
关键词 Active disturbance rejection control power systems load frequency control static var compensator voltageregulation DISTURBANCE system uncertainty
原文传递
Coefficient Diagram Method Based Load Frequency Control for a Modern Power System
17
作者 Princess Garasi Yaser Qudaih +2 位作者 Raheel Ali Masayuki Watanabe Yasunori Mitani 《Journal of Electronic Science and Technology》 CAS 2014年第3期270-276,共7页
increasing penetration of renewable energy sources with a wide range of operating conditions causing power system uncertainties, conventional controllers are incapable of providing proper performance to keep the syste... increasing penetration of renewable energy sources with a wide range of operating conditions causing power system uncertainties, conventional controllers are incapable of providing proper performance to keep the system stable. However, controllable or dispatchable loads such as electric vehicles (EVs) and heat pumps (HPs) can be utilized for supplementary frequency control. This paper shows the ability of plug-in hybrid EVs, HPs, and batteries (BTs) to contribute in the frequency control of an isolated power system. Moreover, we propose a new online intelligent approach by using a coefficient diagram method (CDM) to enhance the system performance and robustness against uncertainties. The performance of the proposed intelligent CDM control has been compared with the proportional-integral (PI) controller and the superiority of the proposed scheme has been verified in Matiab/Simulink programs. 展开更多
关键词 BATTERY coefficient diagram method electric vehicles heat pump load frequency control renewable energy sources.
在线阅读 下载PDF
Load Frequency Control of a Two Area-Power System with Non-reheat Turbines by SMC Approach
18
作者 Jianping Guo 《Journal of Energy and Power Engineering》 2015年第6期566-573,共8页
Load frequency is an important issue in power system operation and control. In this paper, load frequency control for suppression frequency deviation in an interconnected power system with nonlinearities using SMC (s... Load frequency is an important issue in power system operation and control. In this paper, load frequency control for suppression frequency deviation in an interconnected power system with nonlinearities using SMC (sliding mode control) is studied. The governor dead band and GRC (generation rate constraint) is considered in this article. Digit simulations for both two areas and three areas power system with non-reheat turbines are provided to validate the effectiveness of the proposed scheme. The results show that, the robustness of the control method under parameters variation and different load disturbances with the SMC technique. 展开更多
关键词 Sliding mode control load frequency control NONLINEARITIES robustness.
在线阅读 下载PDF
Hybrid Fuzzy Controller Based Frequency Regulation in Restructured Power System
19
作者 P. Anitha P. Subburaj 《Circuits and Systems》 2016年第6期759-770,共12页
This paper discusses the implementation of Load Frequency Control (LFC) in restructured power system using Hybrid Fuzzy controller. The formulation of LFC in open energy market is much more challenging;hence it needs ... This paper discusses the implementation of Load Frequency Control (LFC) in restructured power system using Hybrid Fuzzy controller. The formulation of LFC in open energy market is much more challenging;hence it needs an intelligent controller to adapt the changes imposed by the dynamics of restructured bilateral contracts. Fuzzy Logic Control deals well with uncertainty and indistinctness while Particle Swarm Optimization (PSO) is a well-known optimization tool. Abovementioned techniques are combined and called as Hybrid Fuzzy to improve the dynamic performance of the system. Frequency control of restructured system has been achieved by automatic Membership Function (MF) tuned fuzzy logic controller. The parameters defining membership function has been tuned and updated from time to time using Particle Swarm Optimization (PSO). The robustness of the proposed hybrid fuzzy controller has been compared with conventional fuzzy logic controller using performance measures like overshoot and settling time following a step load perturbation. The motivation for using membership function tuning using PSO is to show the behavior of the controller for a wide range of system parameters and load changes. Error based analysis with parametric uncertainties and load changes is tested on a two-area restructured power system. 展开更多
关键词 Fuzzy Logic controller Membership Function Particle Swarm Optimization Load Frequency control Bilateral Market
在线阅读 下载PDF
A Novel Flower Pollination Algorithm to Solve Load Frequency Control for a Hydro-Thermal Deregulated Power System
20
作者 D. Lakshmi A. Peer Fathima Ranganath Muthu 《Circuits and Systems》 2016年第4期166-178,共13页
Load frequency control plays a vital role in power system operation and control. LFC regulates the frequency of larger interconnected power systems and keeps the net interchange of power between the pool members at pr... Load frequency control plays a vital role in power system operation and control. LFC regulates the frequency of larger interconnected power systems and keeps the net interchange of power between the pool members at predetermined values for the corresponding changes in load demand. In this paper, the two-area, hydrothermal deregulated power system is considered with Redox Flow Batteries (RFB) in both the areas. RFB is an energy storage device, which converts electrical energy into chemical energy, that is used to meet the sudden requirement of real power load and hence very effective in reducing the peak shoots. With conventional proportional-integral (PI) controller, it is difficult to get the optimum solution. Hence, intelligent techniques are used to tune the PI controller of the LFC to improve the dynamic response. In the family of intelligent techniques, a recent nature inspired algorithm called the Flower Pollination Algorithm (FPA) gives the global minima solution. The optimal value of the controller is determined by minimizing the ISE. The results show that the proposed FPA tuned PI controller improves the dynamic response of the deregulated system faster than the PI controller for different cases. The simulation is implemented in MATLAB environment. 展开更多
关键词 Load Frequency control Redox Flow Battery Proportional Integral controller Flower Pollination Algorithm
在线阅读 下载PDF
上一页 1 2 6 下一页 到第
使用帮助 返回顶部