This paper presents a series of monotonically combined lateral loading tests to investigate the bearing capacity of the MSCs (modified suction caissons) in the saturated marine fine sand. The lateral loads were appl...This paper presents a series of monotonically combined lateral loading tests to investigate the bearing capacity of the MSCs (modified suction caissons) in the saturated marine fine sand. The lateral loads were applied under load- and displacement-controlled methods at the loading eccentricity ratios of 1.5, 2.0 and 2.5. Results show that, in the displacement-controlled test, the deflection-softening behavior of load-deflection curves for MSCs was observed, and the softening degree of the load-deflection response increased with the increasing external skirt length or the decreasing loading eccentricity. It was also found that the rotation center of the MSC at failure determined by the load-controlled method is slightly lower than that by the displacement-controlled method. The calculated MSC capacity based on the rotation center position in serviceability limit state is relatively conservative, compared with the calculated capacity based on the rotation center position in the ultimate limit state. In the limit state, the passive earth pressures opposite the loading direction under load- and displacement-controlled methods decrease by 46% and 74% corresponding to peak values, respectively; however, the passive earth pressures in the loading direction at failure only decrease by approximately 3% and 7%, compared with their peak values.展开更多
To integrate insulation and load-bearing functions in prefabricated composite wall structures,a novel design based on fiber-reinforced expanded polystyrene(EPS)con-crete is proposed.The research focuses on three key a...To integrate insulation and load-bearing functions in prefabricated composite wall structures,a novel design based on fiber-reinforced expanded polystyrene(EPS)con-crete is proposed.The research focuses on three key as-pects:material properties,seismic performance,and ther-mal performance.Firstly,the compressive strength and thermal conductivity of fiber-reinforced EPS concrete were analyzed at different sand ratios,leading to the development of an optimal mix design and a damage constitutive model.Secondly,a combination of experimental and numerical analysis methods was used to investigate the seismic perfor-mance of prefabricated composite walls with different infill materials,including autoclaved aerated fly ash and fiber-reinforced EPS concrete.Finally,thermal perfor-mance studies were conducted on prefabricated composite wall panels with different infill materials.The results indi-cate that the specimens underwent elastic,elastoplastic,and failure stages during loading.While specimens using EPS concrete exhibited a slightly lower overall bearing capacity,they demonstrated superior ductility,energy dissipation ca-pacity,and enhanced insulation and thermal stability.展开更多
The split-Hopkinson pressure bar(SHPB)is a widely used experimental technique for studying the mechanical properties of materials at high strain rates.There are two kinds of loading methods applied in the SHPB techniq...The split-Hopkinson pressure bar(SHPB)is a widely used experimental technique for studying the mechanical properties of materials at high strain rates.There are two kinds of loading methods applied in the SHPB technique,namely one-side loading and symmetric loading.However,the experimental accuracy of the two loading methods is affected by the interface contact.The present study focused on the inadequate contact caused by the misalignment of the pressure bars.The commercial software ABAQUS was used for simulations.The result shows that the inadequate contact caused by the alignment of the bars has a non-negligible effect on the calculated results.Compared with the one-side loading Hopkinson pressure bar,the symmetric loading Hopkinson pressure bar has a more relaxed requirement for the alignment of the bars.The conclusion arrived at in this paper can help researchers to make a reasonable choice between one-side and symmetric loading Hopkinson pressure bars according to actual requirements.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.51379118 and 51639002)SDUST Scientific Found(Grant No.2015KYTD104)
文摘This paper presents a series of monotonically combined lateral loading tests to investigate the bearing capacity of the MSCs (modified suction caissons) in the saturated marine fine sand. The lateral loads were applied under load- and displacement-controlled methods at the loading eccentricity ratios of 1.5, 2.0 and 2.5. Results show that, in the displacement-controlled test, the deflection-softening behavior of load-deflection curves for MSCs was observed, and the softening degree of the load-deflection response increased with the increasing external skirt length or the decreasing loading eccentricity. It was also found that the rotation center of the MSC at failure determined by the load-controlled method is slightly lower than that by the displacement-controlled method. The calculated MSC capacity based on the rotation center position in serviceability limit state is relatively conservative, compared with the calculated capacity based on the rotation center position in the ultimate limit state. In the limit state, the passive earth pressures opposite the loading direction under load- and displacement-controlled methods decrease by 46% and 74% corresponding to peak values, respectively; however, the passive earth pressures in the loading direction at failure only decrease by approximately 3% and 7%, compared with their peak values.
基金The National Natural Science Foundation of China (No. 52168022)。
文摘To integrate insulation and load-bearing functions in prefabricated composite wall structures,a novel design based on fiber-reinforced expanded polystyrene(EPS)con-crete is proposed.The research focuses on three key as-pects:material properties,seismic performance,and ther-mal performance.Firstly,the compressive strength and thermal conductivity of fiber-reinforced EPS concrete were analyzed at different sand ratios,leading to the development of an optimal mix design and a damage constitutive model.Secondly,a combination of experimental and numerical analysis methods was used to investigate the seismic perfor-mance of prefabricated composite walls with different infill materials,including autoclaved aerated fly ash and fiber-reinforced EPS concrete.Finally,thermal perfor-mance studies were conducted on prefabricated composite wall panels with different infill materials.The results indi-cate that the specimens underwent elastic,elastoplastic,and failure stages during loading.While specimens using EPS concrete exhibited a slightly lower overall bearing capacity,they demonstrated superior ductility,energy dissipation ca-pacity,and enhanced insulation and thermal stability.
基金This work was supported by the Natural Science Foundation of Shannxi Province,China(2021JQ-947)the China Postdoctoral Science Fund(2019M653785)+1 种基金The author Dr.Cao is very grateful for the support received from the Young Scientists Fund of the National Natural Science Foundation of China[grant number 51904332]Natural Science Foundation of Shannxi Province,China[grant number 2020JQ-934].
文摘The split-Hopkinson pressure bar(SHPB)is a widely used experimental technique for studying the mechanical properties of materials at high strain rates.There are two kinds of loading methods applied in the SHPB technique,namely one-side loading and symmetric loading.However,the experimental accuracy of the two loading methods is affected by the interface contact.The present study focused on the inadequate contact caused by the misalignment of the pressure bars.The commercial software ABAQUS was used for simulations.The result shows that the inadequate contact caused by the alignment of the bars has a non-negligible effect on the calculated results.Compared with the one-side loading Hopkinson pressure bar,the symmetric loading Hopkinson pressure bar has a more relaxed requirement for the alignment of the bars.The conclusion arrived at in this paper can help researchers to make a reasonable choice between one-side and symmetric loading Hopkinson pressure bars according to actual requirements.