The load/unload response ratio YQ with the geophysical parameter coda Q-1 of the crust as response is denned in this study.The variation in YQ-1 before and after the Northridge earthquake of January 17,1994(California...The load/unload response ratio YQ with the geophysical parameter coda Q-1 of the crust as response is denned in this study.The variation in YQ-1 before and after the Northridge earthquake of January 17,1994(California)has been investigated by using the data of coda Q-1 with frequencies of 1.5,3.0,6.0,12.0,and 24.0 Hz in the Southern California from 1987 to 1994.It can be found that YQ-1 for coda waves with all frequencies,the frequency of 12.0 Hz excluded,ascended to a certain extent prior to the occurrence of the rnainshock and returned to normality after the main shock.展开更多
Implementing acoustic emission experiments with large rock samples, LURR (Load/Unload Response Ratio) theory was studied. The loading conditions in the experiments were designed to simulate the complicated loading pro...Implementing acoustic emission experiments with large rock samples, LURR (Load/Unload Response Ratio) theory was studied. The loading conditions in the experiments were designed to simulate the complicated loading process of underground rocks. The damages emerging inside the rock samples were recorded by the acoustic emission technique during the loading process. The experimental results were consistent with prediction by LURR theory. Integrating the changing processes of LURR value Y and the location process of acoustic emission events showed agreement between the variation of LURR value Y and the damage evolution inside the rocks. Furthermore, the high value of Y emerged before the complete breakdown of materials. Therefore, the damage evolution of rock specimen can be quantitatively analyzed with LURR theory, thus the failure of the rock materials and the earthquake occurrence may be predicted. The experimental results gave a further verification of LURR theory.展开更多
In this paper, the tempo-spatial evolution characteristics of the load/unload response ratio (namely LURR or Y value) before strong earthquakes with magnitude over 6 during 1976~1994 in California of America are studi...In this paper, the tempo-spatial evolution characteristics of the load/unload response ratio (namely LURR or Y value) before strong earthquakes with magnitude over 6 during 1976~1994 in California of America are studied in detail. The results show that there appear some high-Y regions cohering with the regional tectonic trend in a great area 3~4 years before strong earthquakes and these high-Y regions migrate from the periphery to the epicenter region at a speed of tens of kilometers per year. The load/unload response ratio (LURR) anomalies near the epicenter region characterizes a type of (ascend ? descend( and appear and increase steeply until one year or less before most earthquakes. (Positive( earthquakes form usually a concentration area; in and near which the main shock occurs. We have analyzed the different and same characters of earthquakes between California of American and the Chinese mainland. Basing on these results, we discuss the approach and method how to predict and estimate the three parameters (place, time and magnitude) of a strong earthquake in California of American by applying the characteristics of the LURR.展开更多
Rock experiment results indicate that the load/unload response ratio (LURR) of rocks expressed via strain energy may have singular or negative value after the stress in the rock reaches its maximum before rock failure...Rock experiment results indicate that the load/unload response ratio (LURR) of rocks expressed via strain energy may have singular or negative value after the stress in the rock reaches its maximum before rock failure or when the rock goes into the strain-weakening phase. The universality of this phenomenon is discussed. Expressed via strain or strain energy and the travel time of P wave, the variation form of the reciprocal of LURR during the process of rock failure preparation is derived. The results show that after a sharp decrease the reciprocal of LURR reaches its minimum when the main fracture of the rock is about to appear. This feature can be taken as an indication that the rock main fracture is impending.展开更多
In this paper, the theory of the load/unload response ratio is applied to the prediction of the reservoir-induced earthquakes, and variation of the load/unload response ratio Y preceding the occurrence of main shocks ...In this paper, the theory of the load/unload response ratio is applied to the prediction of the reservoir-induced earthquakes, and variation of the load/unload response ratio Y preceding the occurrence of main shocks of the reservoir-induced earthquakes in Xinfengjiang, Foziling, Danjiangkou, and Shenwo. The results show that the load/unload response ratio Y rises evidently prior to the main shocks.展开更多
The variation in load/unload response ratio before some moderate earthquakes is analyzed based on the theory of the load/unload response ratio.The results show that the load-unload response ratio increases noticeably ...The variation in load/unload response ratio before some moderate earthquakes is analyzed based on the theory of the load/unload response ratio.The results show that the load-unload response ratio increases noticeably before moderate earthquakes,and there are three kinds of patterns in which the load/unload response ratio varies and the duration of noticeable increase in load/unload response ratio ranges from half a year to two years.展开更多
The load/unload experiments on rock failure under pressure have been carried out in Material Test System (MTS) in the Laboratory for Non-linear Mechanics of Continuous Media (LNM), Institute of Mechanics, Chinese Acad...The load/unload experiments on rock failure under pressure have been carried out in Material Test System (MTS) in the Laboratory for Non-linear Mechanics of Continuous Media (LNM), Institute of Mechanics, Chinese Academy of Sciences, and load/unload response ratio (LURR) values with strain as response (i.e. inverse elastic constant as response rate) have been obtained. The experimental results are in accordance with theoretical results and those in real earthquakes: LURR rises just before rock failure. So LURR can be used as the precursor of rock failure and earthquake prediction.展开更多
The study focuses on the creep characteristics of significant yellow sandstone for water conservancy, hydropower, and other waterrelated slope excavation unloading rock-graded loading creep characteristics. It conduct...The study focuses on the creep characteristics of significant yellow sandstone for water conservancy, hydropower, and other waterrelated slope excavation unloading rock-graded loading creep characteristics. It conducts a uniaxial graded loading creep test on yellow sandstone under different pre-peak unloading and wetting-drying cycles. The improved nonlinear Nishihara model was obtained by introducing a nonlinear viscous element with an accelerated creep threshold switch. The sensitivity characteristics of the parameters of the improved creep model were analyzed and a nonlinear creep constitutive model was established, considering the unloading-cyclic intrinsic damage induced by water intrusion. The research results show that:(1)With an increase in the unloading point, the porosity of the rock samples initially decreases and then increases. As the number of cyclic water intrusions rises, the porosity of the rock samples gradually increases, reaching a maximum of 9.58% at an unloading point of 70% uniaxial compression stress(0.7 Rc) after five cycles.(2) Total creep deformation increases with the number of cyclic water intrusions;however, with an increase in the unloading ratio, the original samples show an initial decrease, followed by an increase in creep deformation. With a higher unloading ratio and various instances of cyclic water intrusion, the total creep time of the rock samples,compared to the original samples, is reduced by 21.8%and 23.02%. The creep damage mode gradually changes from shear damage to tensile damage.(3) The sensitivity characteristics of the improved creep model parameters show that transient elasticity modulus E1 is affected by the coupling of unloading and cyclic water intrusion. The viscoelastic modulus E2 and viscous coefficient η1 are mainly affected by unloading and cyclic water intrusion.(4) Based on the strain equivalence principle of damage mechanics, the damage treatment of the parameters in the original model is improved to construct a nonlinear creep constitutive model that considers unloading-cyclic water intrusion damage. A parameter inversion and comparison to the traditional Nishihara model reveal an average relative standard deviation of 0.271%,significantly less than 1%, indicating a more accurate nonlinear creep constitutive model. The research results are crucial for analyzing the long-term stability of water-related steep rocky slopes post-excavation and unloading and for preventing and controlling creep-type landslide disasters.展开更多
A series of true triaxial unloading tests are conducted on sandstone specimens with a single structural plane to investigate their mechanical behaviors and failure characteristics under different in situ stress states...A series of true triaxial unloading tests are conducted on sandstone specimens with a single structural plane to investigate their mechanical behaviors and failure characteristics under different in situ stress states.The experimental results indicate that the dip angle of structural plane(θ)and the intermediate principal stress(σ2)have an important influence on the peak strength,cracking mode,and rockburst severity.The peak strength exhibits a first increase and then decrease as a function ofσ2 for a constantθ.However,whenσ2 is constant,the maximum peak strength is obtained atθof 90°,and the minimum peak strength is obtained atθof 30°or 45°.For the case of an inclined structural plane,the crack type at the tips of structural plane transforms from a mix of wing and anti-wing cracks to wing cracks with an increase inσ2,while the crack type around the tips of structural plane is always anti-wing cracks for the vertical structural plane,accompanied by a series of tensile cracks besides.The specimens with structural plane do not undergo slabbing failure regardless ofθ,and always exhibit composite tensile-shear failure whatever theσ2 value is.With an increase inσ2 andθ,the intensity of the rockburst is consistent with the tendency of the peak strength.By analyzing the relationship between the cohesion(c),internal friction angle(φ),andθin sandstone specimens,we incorporateθinto the true triaxial unloading strength criterion,and propose a modified linear Mogi-Coulomb criterion.Moreover,the crack propagation mechanism at the tips of structural plane,and closure degree of the structural plane under true triaxial unloading conditions are also discussed and summarized.This study provides theoretical guidance for stability assessment of surrounding rocks containing geological structures in deep complex stress environments.展开更多
It is important to analyze the damage evolution process of surrounding rock under different water content for the stability of engineering rock mass.Based on digital speckle correlation(DSCM),acoustic emission(AE)and ...It is important to analyze the damage evolution process of surrounding rock under different water content for the stability of engineering rock mass.Based on digital speckle correlation(DSCM),acoustic emission(AE)and electromagnetic radiation(EMR),uniaxial hierarchical cyclic loading and unloading tests were carried out on sandstones with different fracture numbers under dry,natural and saturated water content,to explore the fracture propagation,failure precursor characteristics and damage response mechanism under the influence of water content effect.The results show that with the increase of water content,the peak stress and crack initiation stress decrease gradually,and the decreases are 15.28%-21.11%and 17.64%-23.04%,respectively.The peak strain and crack initiation strain increase gradually,and the increases are 19.85%-44.53%and 19.15%-41.94%,respectively.The precracked rock with different water content is mainly characterized by tensile failure at different loading stages.However,with the increase of water content,the proportion of shear cracks gradually increases,while acoustic emission events gradually decrease,the dissipative energy and energy storage limits of the rock under peak load gradually decrease,and the charge signal increases significantly,which is because the lubrication effect of water reduces the friction coefficient between crack surfaces.展开更多
Preexisting cracks inside tight sandstones are one of the most important properties for controlling the mechanical and seepage behaviors.During the cyclic loading process,the rock generally exhibits obvious memorabili...Preexisting cracks inside tight sandstones are one of the most important properties for controlling the mechanical and seepage behaviors.During the cyclic loading process,the rock generally exhibits obvious memorability and irreversible plastic deformation,even in the linear elastic stage.The assessment of the evolution of preexisting cracks under hydrostatic pressure loading and unloading processes is helpful in understanding the mechanism of plastic deformation.In this study,ultrasonic measurements were conducted on two tight sandstone specimens with different bedding orientations subjected to hydrostatic loading and unloading processes.The P-wave velocity was characterized by a similar response with the volumetric strain to the hydrostatic pressure and showed different strain sensitivities at different loading and unloading stages.A numerical model based on the discrete element method(DEM)was proposed to quantitatively clarify the evolution of the crack distribution under different hydrostatic pressures.The numerical model was verified by comparing the evolution of the measured P-wave velocities on two anisotropic specimens.The irreversible plastic deformation that occurred during the hydrostatic unloading stage was mainly due to the permanent closure of plastic-controlled cracks.The closure and reopening of cracks with a small aspect ratio account for the major microstructure evolution during the hydrostatic loading and unloading processes.Such evolution of microcracks is highly dependent on the stress path.The anisotropy of the crack distribution plays an important role in the magnitude and strain sensitivity of the P-wave velocity under stress conditions.The study can provide insight into the microstructure evolution during cyclic loading and unloading processes.展开更多
Fissured coal mass under triaxial unloading condition exhibits higher burst potential than the triaxial loading condition,which poses challenge to safety and productivity of resources extraction and underground space ...Fissured coal mass under triaxial unloading condition exhibits higher burst potential than the triaxial loading condition,which poses challenge to safety and productivity of resources extraction and underground space utilization.To comprehensively understand the mechanism of unloading-induced burst during excavation process,this study investigated the fracture and energy evolution of samples with different fissure types such as single,two parallel,and two coplanar-parallel using PFC2D modelling.Triaxial loading tests were conducted to determine the compressive strengths and other parameters.With increase of fissure inclination angle,the triaxial compressive strength decreases forβ=0°-30°,and then increase forβ=30°-90°.The strength of samples with two coplanar-parallel fissures is the highest.Fissure can significantly change the distribution of fracture and elastic energy.Secondary cracks were generated starting from both ends of the fissure.Forβ=0°-60°,low elastic strain energy area was produced around the fissure along the loading direction.The elastic strain energy is transferred to the outside of fissures.Forβ=75°-90°,only a small amount of high elastic strain energy was generated on both sides of the fissure.The fracture expansion under unloading conditions occurred due to tensile stress T caused by unloading differential rebound deformation and the shear stress on the fissure surface.展开更多
Gas rapid unloading(GRU)is an innovative technology for ore comminution.Increasing the production of fine powder in each ore grinding cycle is vital for scaling up the GRU method to industrial applications.This study ...Gas rapid unloading(GRU)is an innovative technology for ore comminution.Increasing the production of fine powder in each ore grinding cycle is vital for scaling up the GRU method to industrial applications.This study utilizes laboratory experiments to demon-strate that moderately reducing the orifice size significantly enhances pulverization and increases fine particle yield.Numerical simulations suggest that smaller orifices improve pulverization by increasing jet speed,reducing pressure drop,and creating a larger pressure difference inside and outside the unloading orifice.The orifice size should be optimized based on feed size to ensure efficient ore discharge.Reducing the unloading orifice size improves GRU grinding efficiency and energy use,offering guidance for the design of ore discharge ports in future industrial-scale equipment.展开更多
This paper presents a new criterion for determining the unloading points quantitatively and consistently in a multi-stage triaxial test.The radial strain gradient(RSG)is first introduced as an arc tangent function of ...This paper presents a new criterion for determining the unloading points quantitatively and consistently in a multi-stage triaxial test.The radial strain gradient(RSG)is first introduced as an arc tangent function of the rate of change of radial strain to time.RSG is observed to correlate closely with the stress state of a compressed sample,and reaches a horizontal asymptote as approaching failure.For a given rock type,RSG value at peak stress is almost the same,irrespective of the porosity and permeability.These findings lead to the development of RSG criterion:Unloading points can be precisely determined at the time when RSG reaches a pre-determined value that is a little smaller than or equal to the RSG at peak stress.The RSG criterion is validated against other criteria and the single-stage triaxial test on various types of rocks.Failure envelopes from the RSG criterion match well with those from single-stage tests.A practical procedure is recommended to use the RSG criterion:an unconfined compression or single-stage test is first conducted to determine the RSG at peak stress for one sample,the unloading point is then selected to be a value close to the RSG at peak stress,and the multi-stage test is finally performed on another sample using the pre-selected RSG unloading criterion.Generally,the RSG criterion is applicable for any type of rocks,especially brittle rocks,where other criteria are not suitable.Further,it can be practically implemented on the most available rock mechanical testing instruments.展开更多
During the excavation of large-scale rock slopes and deep hard rock engineering,the induced rapid unloading serves as the primary cause of rock mass deformation and failure.The essence of this phenomenon lies in the o...During the excavation of large-scale rock slopes and deep hard rock engineering,the induced rapid unloading serves as the primary cause of rock mass deformation and failure.The essence of this phenomenon lies in the opening-shear failure process triggered by the normal stress unloading of fractured rock mass.In this study,we focus on local-scale rock fracture and conduct direct shear tests under different normal stress unloading rates on five types of non-persistent fractured hard rocks.The aim is to analyze the influence of normal stress unloading rates on the failure modes and shear mechanical characteristics of non-persistent fractured rocks.The results indicate that the normal unloading displacement decreases gradually with increasing normal stress unloading rate,while the influence of normal stress unloading rate on shear displacement is not significant.As the normal stress unloading rate increases,the rocks brittle failure process accelerates,and the degree of rocks damage decreases.Analysis of the stress state on rock fracture surfaces reveals that increasing the normal stress unloading rate enhances the compressive stress on rocks,leading to a transition in the failure mode from shear failure to tensile failure.A negative exponential strength formula was proposed,which effectively fits the relationship between failure normal stress and normal stress unloading rate.The findings enrich the theoretical foundation of unloading rock mechanics and provide theoretical support for disasters prevention and control in rock engineering excavations.展开更多
With the increase of underground engineering construction depth,the phenomenon of surrounding rock sudden failure caused by supporting structure failure occurs frequently.The conventional unloading con-fining pressure...With the increase of underground engineering construction depth,the phenomenon of surrounding rock sudden failure caused by supporting structure failure occurs frequently.The conventional unloading con-fining pressure(CUCP)test cannot simulate the plastic yielding and instantaneous unloading process of supporting structure to rock.Thus,a high stress loading-instantaneous unloading confining pressure(HSL-IUCP)test method was proposed and applied by considering bolt’s fracture under stress.The wall thickness of confining pressure plates and the material of bolts were changed to realize different confin-ing pressure loading stiffness(CPLS)and lateral maximum allowable deformation(LMAD).The superio-rity of HSL-ICPU method is verified compared with CUCP.The rock failure mechanism caused by sudden failure of supporting structure is obtained.The results show that when CPLS increases from 1.35 to 2.33 GN/m,rock’s peak strength and elastic modulus increase by 25.18%and 23.70%,respectively.The fracture characteristics change from tensile failure to tensile-shear mixed failure.When LMAD decreases from 0.40 to 0.16 mm,rock’s residual strength,peak strain,and residual strain decrease by 91.80%,16.94%,and 21.92%,respectively,and post-peak drop modulus increases by 140.47%.The test results obtained by this method are closer to rock’s real mechanical response characteristics compared with CUCP.展开更多
Rockburst are often encountered in tunnel construction due to the complex geological conditions.To study the influence of unloading rate on rockburst,gneiss rockburst experiments were conducted under three groups of u...Rockburst are often encountered in tunnel construction due to the complex geological conditions.To study the influence of unloading rate on rockburst,gneiss rockburst experiments were conducted under three groups of unloading rates.A high-speed photography system and acoustic emission(AE)system were used to monitor the entire process of rockburst process in real-time.The results show that the intensity of gneiss rockburst decreases with decrease of unloading rate,which is manifested as the reduction of AE energy and fragments ejection velocity.The mechanisms are proposed to explain this effect:(i)The reduction of unloading rate changes the crack propagation mechanism in the process of rockburst.This makes the rockbursts change from the tensile failure mechanism at high unloading rate to the tension-shear mixed failure mechanism at low unloading rate,and more energy released in the form of shear crack propagation.Then,less strain energy is converted into kinetic energy of fragments ejection.(ii)Less plate cracking degree of gneiss has taken shape due to decrease of unloading rate,resulting in the destruction of rockburst incubation process.The enlightenments of reducing the unloading rate for the project are also described quantitatively.The rockburst magnitude is reduced from the medium magnitude at the unloading rate of 0.1 MPa/s to the slight magnitude at the unloading rate of 0.025 MPa/s,which was judged by the ejection velocity.展开更多
BACKGROUND With the development of percutaneous coronary intervention(PCI),the number of interventional procedures without implantation,such as bioresorbable stents(BRS)and drug-coated balloons,has increased annually....BACKGROUND With the development of percutaneous coronary intervention(PCI),the number of interventional procedures without implantation,such as bioresorbable stents(BRS)and drug-coated balloons,has increased annually.Metal drug-eluting stent unloading is one of the most common clinical complications.Comparatively,BRS detachment is more concealed and harmful,but has yet to be reported in clinical research.In this study,we report a case of BRS unloading and successful rescue.This is a case of a 59-year-old male with the following medical history:“Type 2 diabetes mellitus”for 2 years,maintained with metformin extended-release tablets,1 g PO BID;“hypertension”for 20 years,with long-term use of metoprolol sustained-release tablets,47.5 mg PO QD;“hyperlipidemia”for 20 years,without regular medication.He was admitted to the emergency department of our hospital due to intermittent chest pain lasting 18 hours,on February 20,2022 at 15:35.Electrocardiogram results showed sinus rhythm,ST-segment elevation in leads I and avL,and poor R-wave progression in leads V1–3.High-sensitivity troponin I level was 4.59 ng/mL,indicating an acute high lateral wall myocardial infarction.The patient’s family requested treatment with BRS,without implanta-tion.During PCI,the BRS became unloaded but was successfully rescued.The patient was followed up for 2 years;he had no episodes of angina pectoris and was in generally good condition.CONCLUSION We describe a case of a 59-year-old male experienced BRS unloading and successful rescue.By analyzing images,the causes of BRS unloading and the treatment plan are discussed to provide insights for BRS release operations.We discuss preventive measures for BRS unloading.展开更多
To further investigate the forming mechanism and springback characteristics of strips under multi-square punch forming (MSPF) considering partial-unloading effects, a series of concave form ing tests of strips are con...To further investigate the forming mechanism and springback characteristics of strips under multi-square punch forming (MSPF) considering partial-unloading effects, a series of concave form ing tests of strips are conducted on the MSPF machine. This paper aims to reveal the physical mecha nism of the elastic-plastic deformation in the MSPF process considering the effect of the forming ap proaches, and derive appropriate mathematical interpretations. The theoretical model is firstly estab lished to analyse the concave forming mechanism and springback characteristics of the strip, and its accuracy is then validated by experimental data. The forming history and load evolutions are depicted to explore the required forming capacity through the proposed analytical method. Besides, the paramet ric studies are carried out to discuss their effects on the springback of the strip. The results suggest that the deformation paths of the strip are influenced by the forming approach, and the springback of the strip in convex forming is larger than that in concave forming.展开更多
Rock has mechanical characteristics and a fracture damage mechanism that are closely related to its loading history and loading path. The mechanical properties, fracture damage features, acoustic emission(AE) characte...Rock has mechanical characteristics and a fracture damage mechanism that are closely related to its loading history and loading path. The mechanical properties, fracture damage features, acoustic emission(AE) characteristics, and strain energy evolution of the Beishan shallow-layer granite used in triaxial unloading tests were investigated in this study. Three groups of triaxial tests, namely, conventional triaxial compression test(Group Ⅰ), maintaining deviatoric stress synchronously unloading confining pressure test(Group Ⅱ), and loading axial pressure synchronously unloading confining pressure test(Group Ⅲ), were carried out for the cylindrical granite specimens. AE monitoring device was utilized in these tests to determine the degree to which the AE waves and AE events reflected the degree of rock damage. In addition, the crack stress thresholds of the specimens were determined by volumetric strain method and AE parameter method, and strain energy evolution of the rock was explored in different damage stages. The results show that the shallow-layer granite experiences brittle failure during the triaxial loading test and unloading test, and the rock has a greater damage degree during the unloading test. The crack stress thresholds of these samples vary greatly between tests, but the threshold ratios of all samples are similar in the same crack damage stage. The Mogi-Coulomb strength criterion can better describe the unloading failure strength of the rock. The evolution of the AE parameter characteristics and strain energy differs between the specimens used in different stress path tests. The dissipative strain energy is the largest in Group Ⅱ and the smallest in Group Ⅰ.展开更多
基金This project was sponsored by the National Natural Science Foundation, China
文摘The load/unload response ratio YQ with the geophysical parameter coda Q-1 of the crust as response is denned in this study.The variation in YQ-1 before and after the Northridge earthquake of January 17,1994(California)has been investigated by using the data of coda Q-1 with frequencies of 1.5,3.0,6.0,12.0,and 24.0 Hz in the Southern California from 1987 to 1994.It can be found that YQ-1 for coda waves with all frequencies,the frequency of 12.0 Hz excluded,ascended to a certain extent prior to the occurrence of the rnainshock and returned to normality after the main shock.
文摘Implementing acoustic emission experiments with large rock samples, LURR (Load/Unload Response Ratio) theory was studied. The loading conditions in the experiments were designed to simulate the complicated loading process of underground rocks. The damages emerging inside the rock samples were recorded by the acoustic emission technique during the loading process. The experimental results were consistent with prediction by LURR theory. Integrating the changing processes of LURR value Y and the location process of acoustic emission events showed agreement between the variation of LURR value Y and the damage evolution inside the rocks. Furthermore, the high value of Y emerged before the complete breakdown of materials. Therefore, the damage evolution of rock specimen can be quantitatively analyzed with LURR theory, thus the failure of the rock materials and the earthquake occurrence may be predicted. The experimental results gave a further verification of LURR theory.
基金State Natural Science Foundation (19732006) and Beijing Natural Science Foundation (8992008).
文摘In this paper, the tempo-spatial evolution characteristics of the load/unload response ratio (namely LURR or Y value) before strong earthquakes with magnitude over 6 during 1976~1994 in California of America are studied in detail. The results show that there appear some high-Y regions cohering with the regional tectonic trend in a great area 3~4 years before strong earthquakes and these high-Y regions migrate from the periphery to the epicenter region at a speed of tens of kilometers per year. The load/unload response ratio (LURR) anomalies near the epicenter region characterizes a type of (ascend ? descend( and appear and increase steeply until one year or less before most earthquakes. (Positive( earthquakes form usually a concentration area; in and near which the main shock occurs. We have analyzed the different and same characters of earthquakes between California of American and the Chinese mainland. Basing on these results, we discuss the approach and method how to predict and estimate the three parameters (place, time and magnitude) of a strong earthquake in California of American by applying the characteristics of the LURR.
基金Key project from China Seismological Bureau (9691309020301) State Natural Sciences Foundation of China (19732060).
文摘Rock experiment results indicate that the load/unload response ratio (LURR) of rocks expressed via strain energy may have singular or negative value after the stress in the rock reaches its maximum before rock failure or when the rock goes into the strain-weakening phase. The universality of this phenomenon is discussed. Expressed via strain or strain energy and the travel time of P wave, the variation form of the reciprocal of LURR during the process of rock failure preparation is derived. The results show that after a sharp decrease the reciprocal of LURR reaches its minimum when the main fracture of the rock is about to appear. This feature can be taken as an indication that the rock main fracture is impending.
基金This project was sponsored by the Joint Earthquake Science Function and Natural Science Function, China.
文摘In this paper, the theory of the load/unload response ratio is applied to the prediction of the reservoir-induced earthquakes, and variation of the load/unload response ratio Y preceding the occurrence of main shocks of the reservoir-induced earthquakes in Xinfengjiang, Foziling, Danjiangkou, and Shenwo. The results show that the load/unload response ratio Y rises evidently prior to the main shocks.
文摘The variation in load/unload response ratio before some moderate earthquakes is analyzed based on the theory of the load/unload response ratio.The results show that the load-unload response ratio increases noticeably before moderate earthquakes,and there are three kinds of patterns in which the load/unload response ratio varies and the duration of noticeable increase in load/unload response ratio ranges from half a year to two years.
基金This project was sponsored by the National Natural Science Foundation (No. 19732006), China and Ninth Five-year Plan, China Seismological Bureau.
文摘The load/unload experiments on rock failure under pressure have been carried out in Material Test System (MTS) in the Laboratory for Non-linear Mechanics of Continuous Media (LNM), Institute of Mechanics, Chinese Academy of Sciences, and load/unload response ratio (LURR) values with strain as response (i.e. inverse elastic constant as response rate) have been obtained. The experimental results are in accordance with theoretical results and those in real earthquakes: LURR rises just before rock failure. So LURR can be used as the precursor of rock failure and earthquake prediction.
基金We gratefully acknowledge the financial support from the Key Laboratory of Geological Safety of Coastal Urban Underground Space,Ministry of Natural Resources(BHKF2022Y03)Shandong Provincial Colleges and Universities Youth Innovation Technology Support Program,Education Department of Shandong Province(grant number 2023KJ092).
文摘The study focuses on the creep characteristics of significant yellow sandstone for water conservancy, hydropower, and other waterrelated slope excavation unloading rock-graded loading creep characteristics. It conducts a uniaxial graded loading creep test on yellow sandstone under different pre-peak unloading and wetting-drying cycles. The improved nonlinear Nishihara model was obtained by introducing a nonlinear viscous element with an accelerated creep threshold switch. The sensitivity characteristics of the parameters of the improved creep model were analyzed and a nonlinear creep constitutive model was established, considering the unloading-cyclic intrinsic damage induced by water intrusion. The research results show that:(1)With an increase in the unloading point, the porosity of the rock samples initially decreases and then increases. As the number of cyclic water intrusions rises, the porosity of the rock samples gradually increases, reaching a maximum of 9.58% at an unloading point of 70% uniaxial compression stress(0.7 Rc) after five cycles.(2) Total creep deformation increases with the number of cyclic water intrusions;however, with an increase in the unloading ratio, the original samples show an initial decrease, followed by an increase in creep deformation. With a higher unloading ratio and various instances of cyclic water intrusion, the total creep time of the rock samples,compared to the original samples, is reduced by 21.8%and 23.02%. The creep damage mode gradually changes from shear damage to tensile damage.(3) The sensitivity characteristics of the improved creep model parameters show that transient elasticity modulus E1 is affected by the coupling of unloading and cyclic water intrusion. The viscoelastic modulus E2 and viscous coefficient η1 are mainly affected by unloading and cyclic water intrusion.(4) Based on the strain equivalence principle of damage mechanics, the damage treatment of the parameters in the original model is improved to construct a nonlinear creep constitutive model that considers unloading-cyclic water intrusion damage. A parameter inversion and comparison to the traditional Nishihara model reveal an average relative standard deviation of 0.271%,significantly less than 1%, indicating a more accurate nonlinear creep constitutive model. The research results are crucial for analyzing the long-term stability of water-related steep rocky slopes post-excavation and unloading and for preventing and controlling creep-type landslide disasters.
基金supports from the National Natural Science Foundation of China (Grant Nos.52004143 and 52374095)the open fund for the Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines (Grant No.SKLMRDPC21KF06).
文摘A series of true triaxial unloading tests are conducted on sandstone specimens with a single structural plane to investigate their mechanical behaviors and failure characteristics under different in situ stress states.The experimental results indicate that the dip angle of structural plane(θ)and the intermediate principal stress(σ2)have an important influence on the peak strength,cracking mode,and rockburst severity.The peak strength exhibits a first increase and then decrease as a function ofσ2 for a constantθ.However,whenσ2 is constant,the maximum peak strength is obtained atθof 90°,and the minimum peak strength is obtained atθof 30°or 45°.For the case of an inclined structural plane,the crack type at the tips of structural plane transforms from a mix of wing and anti-wing cracks to wing cracks with an increase inσ2,while the crack type around the tips of structural plane is always anti-wing cracks for the vertical structural plane,accompanied by a series of tensile cracks besides.The specimens with structural plane do not undergo slabbing failure regardless ofθ,and always exhibit composite tensile-shear failure whatever theσ2 value is.With an increase inσ2 andθ,the intensity of the rockburst is consistent with the tendency of the peak strength.By analyzing the relationship between the cohesion(c),internal friction angle(φ),andθin sandstone specimens,we incorporateθinto the true triaxial unloading strength criterion,and propose a modified linear Mogi-Coulomb criterion.Moreover,the crack propagation mechanism at the tips of structural plane,and closure degree of the structural plane under true triaxial unloading conditions are also discussed and summarized.This study provides theoretical guidance for stability assessment of surrounding rocks containing geological structures in deep complex stress environments.
基金financially supported by National Natural Science Foundation of China(No.52304136)Young Talent of Lifting Engineering for Science and Technology in Shandong,China(No.SDAST2024QTA060)Key Project of Research and Development in Liaocheng(No.2023YD02)。
文摘It is important to analyze the damage evolution process of surrounding rock under different water content for the stability of engineering rock mass.Based on digital speckle correlation(DSCM),acoustic emission(AE)and electromagnetic radiation(EMR),uniaxial hierarchical cyclic loading and unloading tests were carried out on sandstones with different fracture numbers under dry,natural and saturated water content,to explore the fracture propagation,failure precursor characteristics and damage response mechanism under the influence of water content effect.The results show that with the increase of water content,the peak stress and crack initiation stress decrease gradually,and the decreases are 15.28%-21.11%and 17.64%-23.04%,respectively.The peak strain and crack initiation strain increase gradually,and the increases are 19.85%-44.53%and 19.15%-41.94%,respectively.The precracked rock with different water content is mainly characterized by tensile failure at different loading stages.However,with the increase of water content,the proportion of shear cracks gradually increases,while acoustic emission events gradually decrease,the dissipative energy and energy storage limits of the rock under peak load gradually decrease,and the charge signal increases significantly,which is because the lubrication effect of water reduces the friction coefficient between crack surfaces.
基金supported by the National Natural Science Foundation of China(Grant No.U2244215)the Knowledge Innovation Program of Wuhan-Basic Research(Grant No.2022010801010159)the Major Project of Inner Mongolia Science and Technology(Grant No.2021ZD0034).
文摘Preexisting cracks inside tight sandstones are one of the most important properties for controlling the mechanical and seepage behaviors.During the cyclic loading process,the rock generally exhibits obvious memorability and irreversible plastic deformation,even in the linear elastic stage.The assessment of the evolution of preexisting cracks under hydrostatic pressure loading and unloading processes is helpful in understanding the mechanism of plastic deformation.In this study,ultrasonic measurements were conducted on two tight sandstone specimens with different bedding orientations subjected to hydrostatic loading and unloading processes.The P-wave velocity was characterized by a similar response with the volumetric strain to the hydrostatic pressure and showed different strain sensitivities at different loading and unloading stages.A numerical model based on the discrete element method(DEM)was proposed to quantitatively clarify the evolution of the crack distribution under different hydrostatic pressures.The numerical model was verified by comparing the evolution of the measured P-wave velocities on two anisotropic specimens.The irreversible plastic deformation that occurred during the hydrostatic unloading stage was mainly due to the permanent closure of plastic-controlled cracks.The closure and reopening of cracks with a small aspect ratio account for the major microstructure evolution during the hydrostatic loading and unloading processes.Such evolution of microcracks is highly dependent on the stress path.The anisotropy of the crack distribution plays an important role in the magnitude and strain sensitivity of the P-wave velocity under stress conditions.The study can provide insight into the microstructure evolution during cyclic loading and unloading processes.
基金supported by the National Science and Technology Major Project(2024ZD1000705)the Basic Research Project of Liaoning Provincial Department of Education-Key Project of Independent Topic Selection(LJ212410147007).
文摘Fissured coal mass under triaxial unloading condition exhibits higher burst potential than the triaxial loading condition,which poses challenge to safety and productivity of resources extraction and underground space utilization.To comprehensively understand the mechanism of unloading-induced burst during excavation process,this study investigated the fracture and energy evolution of samples with different fissure types such as single,two parallel,and two coplanar-parallel using PFC2D modelling.Triaxial loading tests were conducted to determine the compressive strengths and other parameters.With increase of fissure inclination angle,the triaxial compressive strength decreases forβ=0°-30°,and then increase forβ=30°-90°.The strength of samples with two coplanar-parallel fissures is the highest.Fissure can significantly change the distribution of fracture and elastic energy.Secondary cracks were generated starting from both ends of the fissure.Forβ=0°-60°,low elastic strain energy area was produced around the fissure along the loading direction.The elastic strain energy is transferred to the outside of fissures.Forβ=75°-90°,only a small amount of high elastic strain energy was generated on both sides of the fissure.The fracture expansion under unloading conditions occurred due to tensile stress T caused by unloading differential rebound deformation and the shear stress on the fissure surface.
基金financially supported by the National Natural Science Foundation of China(No.51934001)。
文摘Gas rapid unloading(GRU)is an innovative technology for ore comminution.Increasing the production of fine powder in each ore grinding cycle is vital for scaling up the GRU method to industrial applications.This study utilizes laboratory experiments to demon-strate that moderately reducing the orifice size significantly enhances pulverization and increases fine particle yield.Numerical simulations suggest that smaller orifices improve pulverization by increasing jet speed,reducing pressure drop,and creating a larger pressure difference inside and outside the unloading orifice.The orifice size should be optimized based on feed size to ensure efficient ore discharge.Reducing the unloading orifice size improves GRU grinding efficiency and energy use,offering guidance for the design of ore discharge ports in future industrial-scale equipment.
文摘This paper presents a new criterion for determining the unloading points quantitatively and consistently in a multi-stage triaxial test.The radial strain gradient(RSG)is first introduced as an arc tangent function of the rate of change of radial strain to time.RSG is observed to correlate closely with the stress state of a compressed sample,and reaches a horizontal asymptote as approaching failure.For a given rock type,RSG value at peak stress is almost the same,irrespective of the porosity and permeability.These findings lead to the development of RSG criterion:Unloading points can be precisely determined at the time when RSG reaches a pre-determined value that is a little smaller than or equal to the RSG at peak stress.The RSG criterion is validated against other criteria and the single-stage triaxial test on various types of rocks.Failure envelopes from the RSG criterion match well with those from single-stage tests.A practical procedure is recommended to use the RSG criterion:an unconfined compression or single-stage test is first conducted to determine the RSG at peak stress for one sample,the unloading point is then selected to be a value close to the RSG at peak stress,and the multi-stage test is finally performed on another sample using the pre-selected RSG unloading criterion.Generally,the RSG criterion is applicable for any type of rocks,especially brittle rocks,where other criteria are not suitable.Further,it can be practically implemented on the most available rock mechanical testing instruments.
基金supported by the National Natural Science Foundation of China(Grant Nos.42372326 and 42090054)supported by the State Key Laboratory of Geohazard Prevention and Geoenvironment Protection Independent Research Project(SKLGP2023Z015).
文摘During the excavation of large-scale rock slopes and deep hard rock engineering,the induced rapid unloading serves as the primary cause of rock mass deformation and failure.The essence of this phenomenon lies in the opening-shear failure process triggered by the normal stress unloading of fractured rock mass.In this study,we focus on local-scale rock fracture and conduct direct shear tests under different normal stress unloading rates on five types of non-persistent fractured hard rocks.The aim is to analyze the influence of normal stress unloading rates on the failure modes and shear mechanical characteristics of non-persistent fractured rocks.The results indicate that the normal unloading displacement decreases gradually with increasing normal stress unloading rate,while the influence of normal stress unloading rate on shear displacement is not significant.As the normal stress unloading rate increases,the rocks brittle failure process accelerates,and the degree of rocks damage decreases.Analysis of the stress state on rock fracture surfaces reveals that increasing the normal stress unloading rate enhances the compressive stress on rocks,leading to a transition in the failure mode from shear failure to tensile failure.A negative exponential strength formula was proposed,which effectively fits the relationship between failure normal stress and normal stress unloading rate.The findings enrich the theoretical foundation of unloading rock mechanics and provide theoretical support for disasters prevention and control in rock engineering excavations.
基金the National Natural Science Foundation of China(Nos.52374218,52174122 and 52374094)Outstanding Youth Fund of Shandong Natural Science Foundation(No.ZR2022YQ49)Taishan Scholar Project in Shandong Province(Nos.tspd20210313 and tsqn202211150).
文摘With the increase of underground engineering construction depth,the phenomenon of surrounding rock sudden failure caused by supporting structure failure occurs frequently.The conventional unloading con-fining pressure(CUCP)test cannot simulate the plastic yielding and instantaneous unloading process of supporting structure to rock.Thus,a high stress loading-instantaneous unloading confining pressure(HSL-IUCP)test method was proposed and applied by considering bolt’s fracture under stress.The wall thickness of confining pressure plates and the material of bolts were changed to realize different confin-ing pressure loading stiffness(CPLS)and lateral maximum allowable deformation(LMAD).The superio-rity of HSL-ICPU method is verified compared with CUCP.The rock failure mechanism caused by sudden failure of supporting structure is obtained.The results show that when CPLS increases from 1.35 to 2.33 GN/m,rock’s peak strength and elastic modulus increase by 25.18%and 23.70%,respectively.The fracture characteristics change from tensile failure to tensile-shear mixed failure.When LMAD decreases from 0.40 to 0.16 mm,rock’s residual strength,peak strain,and residual strain decrease by 91.80%,16.94%,and 21.92%,respectively,and post-peak drop modulus increases by 140.47%.The test results obtained by this method are closer to rock’s real mechanical response characteristics compared with CUCP.
基金The financial support from the National Natural Science Foundation of China(Grant Nos.41941018 and 52074299)the Fundamental Research Funds for the Central Universities of China(Grant No.2023JCCXSB02)。
文摘Rockburst are often encountered in tunnel construction due to the complex geological conditions.To study the influence of unloading rate on rockburst,gneiss rockburst experiments were conducted under three groups of unloading rates.A high-speed photography system and acoustic emission(AE)system were used to monitor the entire process of rockburst process in real-time.The results show that the intensity of gneiss rockburst decreases with decrease of unloading rate,which is manifested as the reduction of AE energy and fragments ejection velocity.The mechanisms are proposed to explain this effect:(i)The reduction of unloading rate changes the crack propagation mechanism in the process of rockburst.This makes the rockbursts change from the tensile failure mechanism at high unloading rate to the tension-shear mixed failure mechanism at low unloading rate,and more energy released in the form of shear crack propagation.Then,less strain energy is converted into kinetic energy of fragments ejection.(ii)Less plate cracking degree of gneiss has taken shape due to decrease of unloading rate,resulting in the destruction of rockburst incubation process.The enlightenments of reducing the unloading rate for the project are also described quantitatively.The rockburst magnitude is reduced from the medium magnitude at the unloading rate of 0.1 MPa/s to the slight magnitude at the unloading rate of 0.025 MPa/s,which was judged by the ejection velocity.
基金Supported by Health Commission of Hunan Province,No.202203014389Chinese Medicine Research Project of Hunan Province,No.A2023051the Natural Science Foundation of Hunan Province,No.2024JJ9414.
文摘BACKGROUND With the development of percutaneous coronary intervention(PCI),the number of interventional procedures without implantation,such as bioresorbable stents(BRS)and drug-coated balloons,has increased annually.Metal drug-eluting stent unloading is one of the most common clinical complications.Comparatively,BRS detachment is more concealed and harmful,but has yet to be reported in clinical research.In this study,we report a case of BRS unloading and successful rescue.This is a case of a 59-year-old male with the following medical history:“Type 2 diabetes mellitus”for 2 years,maintained with metformin extended-release tablets,1 g PO BID;“hypertension”for 20 years,with long-term use of metoprolol sustained-release tablets,47.5 mg PO QD;“hyperlipidemia”for 20 years,without regular medication.He was admitted to the emergency department of our hospital due to intermittent chest pain lasting 18 hours,on February 20,2022 at 15:35.Electrocardiogram results showed sinus rhythm,ST-segment elevation in leads I and avL,and poor R-wave progression in leads V1–3.High-sensitivity troponin I level was 4.59 ng/mL,indicating an acute high lateral wall myocardial infarction.The patient’s family requested treatment with BRS,without implanta-tion.During PCI,the BRS became unloaded but was successfully rescued.The patient was followed up for 2 years;he had no episodes of angina pectoris and was in generally good condition.CONCLUSION We describe a case of a 59-year-old male experienced BRS unloading and successful rescue.By analyzing images,the causes of BRS unloading and the treatment plan are discussed to provide insights for BRS release operations.We discuss preventive measures for BRS unloading.
文摘To further investigate the forming mechanism and springback characteristics of strips under multi-square punch forming (MSPF) considering partial-unloading effects, a series of concave form ing tests of strips are conducted on the MSPF machine. This paper aims to reveal the physical mecha nism of the elastic-plastic deformation in the MSPF process considering the effect of the forming ap proaches, and derive appropriate mathematical interpretations. The theoretical model is firstly estab lished to analyse the concave forming mechanism and springback characteristics of the strip, and its accuracy is then validated by experimental data. The forming history and load evolutions are depicted to explore the required forming capacity through the proposed analytical method. Besides, the paramet ric studies are carried out to discuss their effects on the springback of the strip. The results suggest that the deformation paths of the strip are influenced by the forming approach, and the springback of the strip in convex forming is larger than that in concave forming.
基金supported by the National Natural Science Foundation of China (Grant No. 52278420)the China Atomic Energy Authority (CAEA) for China’s URL Development Program and the Geological Disposal Program。
文摘Rock has mechanical characteristics and a fracture damage mechanism that are closely related to its loading history and loading path. The mechanical properties, fracture damage features, acoustic emission(AE) characteristics, and strain energy evolution of the Beishan shallow-layer granite used in triaxial unloading tests were investigated in this study. Three groups of triaxial tests, namely, conventional triaxial compression test(Group Ⅰ), maintaining deviatoric stress synchronously unloading confining pressure test(Group Ⅱ), and loading axial pressure synchronously unloading confining pressure test(Group Ⅲ), were carried out for the cylindrical granite specimens. AE monitoring device was utilized in these tests to determine the degree to which the AE waves and AE events reflected the degree of rock damage. In addition, the crack stress thresholds of the specimens were determined by volumetric strain method and AE parameter method, and strain energy evolution of the rock was explored in different damage stages. The results show that the shallow-layer granite experiences brittle failure during the triaxial loading test and unloading test, and the rock has a greater damage degree during the unloading test. The crack stress thresholds of these samples vary greatly between tests, but the threshold ratios of all samples are similar in the same crack damage stage. The Mogi-Coulomb strength criterion can better describe the unloading failure strength of the rock. The evolution of the AE parameter characteristics and strain energy differs between the specimens used in different stress path tests. The dissipative strain energy is the largest in Group Ⅱ and the smallest in Group Ⅰ.