The demand response(DR)market,as a vital complement to the electricity spot market,plays a key role in evoking user-side regulation capability to mitigate system-level supply‒demand imbalances during extreme events.Wh...The demand response(DR)market,as a vital complement to the electricity spot market,plays a key role in evoking user-side regulation capability to mitigate system-level supply‒demand imbalances during extreme events.While the DR market offers the load aggregator(LA)additional profitable opportunities beyond the electricity spot market,it also introduces new trading risks due to the significant uncertainty in users’behaviors.Dispatching energy storage systems(ESSs)is an effective means to enhance the risk management capabilities of LAs;however,coordinating ESS operations with dual-market trading strategies remains an urgent challenge.To this end,this paper proposes a novel systematic risk-aware coordinated trading model for the LA in concurrently participating in the day-ahead electricity spot market and DR market,which incorporates the capacity allocation mechanism of ESS based on market clearing rules to jointly formulate bidding and pricing decisions for the dual market.First,the intrinsic coupling characteristics of the LA participating in the dual market are analyzed,and a joint optimization framework for formulating bidding and pricing strategies that integrates ESS facilities is proposed.Second,an uncertain user response model is developed based on price‒response mechanisms,and actual market settlement rules accounting for under-and over-responses are employed to calculate trading revenues,where possible revenue losses are quantified via conditional value at risk.Third,by imposing these terms and the capacity allocation mechanism of ESS,the risk-aware stochastic coordinated trading model of the LA is built,where the bidding and pricing strategies in the dual model that trade off risk and profit are derived.The simulation results of a case study validate the effectiveness of the proposed trading strategy in controlling trading risk and improving the trading income of the LA.展开更多
Nonlinear variations in the coordinate time series of global navigation satellite system(GNSS) reference stations are strongly correlated with surface displacements caused by environmental loading effects,including at...Nonlinear variations in the coordinate time series of global navigation satellite system(GNSS) reference stations are strongly correlated with surface displacements caused by environmental loading effects,including atmospheric, hydrological, and nontidal ocean loading. Continuous improvements in the accuracy of surface mass loading products, performance of Earth models, and precise data-processing technologies have significantly advanced research on the effects of environmental loading on nonlinear variations in GNSS coordinate time series. However, owing to theoretical limitations, the lack of high spatiotemporal resolution surface mass observations, and the coupling of GNSS technology-related systematic errors, environmental loading and nonlinear GNSS reference station displacements remain inconsistent. The applicability and capability of these loading products across different regions also require further evaluation. This paper outlines methods for modeling environmental loading, surface mass loading products, and service organizations. In addition, it summarizes recent advances in applying environmental loading to address nonlinear variations in global and regional GNSS coordinate time series. Moreover, the scientific questions of existing studies are summarized, and insights into future research directions are provided. The complex nonlinear motion of reference stations is a major factor limiting the accuracy of the current terrestrial reference frame. Further refining the environmental load modeling method, establishing a surface mass distribution model with high spatiotemporal resolution and reliability, exploring other environmental load factors such as ice sheet and artificial mass-change effects, and developing an optimal data-processing model and strategy for reprocessing global reference station data consistently could contribute to the development of a millimeter-level nonlinear motion model for GNSS reference stations with actual physical significance and provide theoretical support for establishing a terrestrial reference frame with 1 mm accuracy by 2050.展开更多
This paper proposes a novel cargo loading algorithm applicable to automated conveyor-type loading systems.The algorithm offers improvements in computational efficiency and robustness by utilizing the concept of discre...This paper proposes a novel cargo loading algorithm applicable to automated conveyor-type loading systems.The algorithm offers improvements in computational efficiency and robustness by utilizing the concept of discrete derivatives and introducing logistics-related constraints.Optional consideration of the rotation of the cargoes was made to further enhance the optimality of the solutions,if possible to be physically implemented.Evaluation metrics were developed for accurate evaluation and enhancement of the algorithm’s ability to efficiently utilize the loading space and provide a high level of dynamic stability.Experimental results demonstrate the extensive robustness of the proposed algorithm to the diversity of cargoes present in Business-to-Consumer environments.This study contributes practical advancements in both cargo loading optimization and automation of the logistics industry,with potential applications in last-mile delivery services,warehousing,and supply chain management.展开更多
This paper establishes a method for identifying and locating dynamic loads in time-varying systems.The proposed method linearizes time-varying parameters within small time units and uses the Wilson-θ inverse analysis...This paper establishes a method for identifying and locating dynamic loads in time-varying systems.The proposed method linearizes time-varying parameters within small time units and uses the Wilson-θ inverse analysis method to solve modal loads of each order at each time step.It then uses an exhaustive method to determine the load position.Finally,it calculates the time history of the load.Simulation examples demonstrate how the number of measuring points and step size affect load identi-fication accuracy,verifying that this algorithm achieves good identification accuracy for loads under resonance conditions.Additionally,it explores how noise affects load position and recognition accuracy,while providing a solution.Simulation examples and experimental results demonstrate that the proposed method can identify both the time history and position of loads simultaneously with high identification accuracy.展开更多
This paper presents an ultralow-frequency cyclic loading creep test system for rock salt.The system comprises five subsystems:a cyclic load generation system,a triaxial pressure chamber,a pressure and deformation moni...This paper presents an ultralow-frequency cyclic loading creep test system for rock salt.The system comprises five subsystems:a cyclic load generation system,a triaxial pressure chamber,a pressure and deformation monitoring system,a signal acquisition and load control integrated system,and an automatic oil replenishment and discharge system.This test system overcomes the limitations of traditional electrohydraulic servo creep testing machines and gravity loading creep testing machines when conducting low-frequency cyclic load creep tests.This allows for long-term(1-2 years)creep tests under extremely-low-frequency cyclic loading conditions,which simulate the actual operating conditions of salt cavern gas storage.The cyclic load generation system converted constant-weight loads into a continuously variable hydraulic oil pressure and amplified the oil pressure using a pressure intensifier,which provided a stable load source for the test system.Using this test system,creep tests were performed under low-frequency cyclic loading with periods of 1 d and 7 d.The results showed that the test system performed well,as evidenced by the validation of the loading capacity,loading stability,and temperature control stability.Comparing the creep deformation of rock salt samples with the cyclic periods of 1 d and 7 d,it was observed that,within this cyclic period range,the creep deformation of the sample increased with higher loading frequencies,provided that the cyclic loading waveform and stress remained constant.展开更多
Cranes used at sea have some shortcomings in terms of flexibility,efficiency,and safety.Therefore,a floating multi-robot coordinated towing system is planned to fulfill the offshore towing requirements.It is difficult...Cranes used at sea have some shortcomings in terms of flexibility,efficiency,and safety.Therefore,a floating multi-robot coordinated towing system is planned to fulfill the offshore towing requirements.It is difficult to study the stability of a floating multi-robot coordinated towing system by ancient strategies.First,the minimum tension of the rope and the minimum singular value of the stiffness matrix were separately used to analyze the load stability.The advantages and disadvantages of the two methods were discussed.Then,the two stability analysis methods were normalized and weighted to obtain the method based on minimum tension and minimum singular to comprehensively analyze the stability of the load.Finally,the effect of different weighting coefficients on the load stability was analyzed,which led to a reasonable weighting coefficient to evaluate the load stability by comparing with a single analysis method.The research results provide a basis for the motion planning and coordinated control of the towing system.展开更多
UAV geophysical surveys can adapt to complex ground exploration environments and greatly reduce the safety risk of operators, which may be applied in geophysical surveys, geological investigations, resource exploratio...UAV geophysical surveys can adapt to complex ground exploration environments and greatly reduce the safety risk of operators, which may be applied in geophysical surveys, geological investigations, resource exploration and other fields. Rotary-wing UAV is characterized by its flexible start-stop mode, high safety profile and night navigation. In this paper, according to the DY-115 rotary-wing UAV, an aeromagnetic measuring system with 115KG large load capacity was designed and integrated, and a magnetic compensation flight and test flight were successively carried out. The data satisfi ed the requirements of the technical specifi cations. By comparing and analyzing the test aeromagnetic anomaly data with the field magnetic data, the overall trend of the contour was observed to be basically the same as the shape. Accordingly, the aeromagnetic anomaly was found to be smoother and more continuous, which aligned with the interpretation and inversion of the anomaly, further verifying the stability, reliability and practicability of the large load rotary-wing UAV aeromagnetic measurement system.展开更多
This study develops a GWO-optimized cascaded fuzzy-PID controller with triangular membership functions for load frequency control in interconnected power systems.The controller’s effectiveness is demonstrated on ther...This study develops a GWO-optimized cascaded fuzzy-PID controller with triangular membership functions for load frequency control in interconnected power systems.The controller’s effectiveness is demonstrated on thermal–thermal and hybrid thermal–hydro–gas power systems.The controller parameters were tuned using the Integral Time Absolute Error(ITAE)objective function,which was also evaluated alongside other objective functions(IAE,ISE,and ITSE)to ensure high precision in frequency stabilization.To validate the effectiveness of the triangular membership function,comparisons were made with fuzzy-PID controllers employing trapezoidal and Gaussian membership functions.Performance metrics,including ITAE,settling time,overshoot,and undershoot of frequency deviation,as well as tie-line power deviation,were evaluated.Robustness was established through a comprehensive sensitivity analysis with T_(G),T_(T),andT_(R) parameter variations(±50%),a non-linearity analysis incorporating Generation Rate Constraint(GRC)and Governor Deadband(GDB),a random Step Load Perturbation(SLP)over 0–100 s,and also Stability analysis of the proposed scheme is conducted using multiple approaches,including frequency-domain analysis,Lyapunov stability theory,and eigenvalue analysis.Additionally,the system incorporating thermal,hydro,and gas turbines,along with advanced components like CES and HVDC links,was analysed.Comparisons were conducted against controllers optimized using Modified Grasshopper Optimization Algorithm(MGOA),Honey Badger Algorithm(HBA),Particle Swarm Optimization(PSO),Artificial Bee Colony(ABC),and Spider Monkey Optimization(SMO)algorithms.Results demonstrate that the GWO-based fuzzy-PID controller outperforms the alternatives,exhibiting superior performance across all evaluated metrics.This highlights the potential of the proposed approach as a robust solution for load frequency control in complex and dynamic power systems.展开更多
Background Interconnection of different power systems has a major effect on system stability.This study aims to design an optimal load frequency control(LFC)system based on a proportional-integral(PI)controller for a ...Background Interconnection of different power systems has a major effect on system stability.This study aims to design an optimal load frequency control(LFC)system based on a proportional-integral(PI)controller for a two-area power system.Methods Two areas were connected through an AC tie line in parallel with a DC link to stabilize the frequency of oscillations in both areas.The PI parameters were tuned using the cuckoo search algorithm(CSA)to minimize the integral absolute error(IAE).A state matrix was provided,and the stability of the system was verified by calculating the eigenvalues.The frequency response was investigated for load variation,changes in the generator rate constraint,the turbine time constant,and the governor time constant.Results The CSA was compared with particle swarm optimization algorithm(PSO)under identical conditions.The system was modeled based on a state-space mathematical representation and simulated using MATLAB.The results demonstrated the effectiveness of the proposed controller based on both algorithms and,it is clear that CSA is superior to PSO.Conclusion The CSA algorithm smoothens the system response,reduces ripples,decreases overshooting and settling time,and improves the overall system performance under different disturbances.展开更多
Under external disturbances,the shear mechanical responses and debonding failure mechanisms at anisotropic interfaces of anchoring system composed of multiphase media are inherently difficult to characterize due to th...Under external disturbances,the shear mechanical responses and debonding failure mechanisms at anisotropic interfaces of anchoring system composed of multiphase media are inherently difficult to characterize due to the concealment nature of interfacial interactions.This study establishes an equivalent shear model for a bolt-resin-rock anchoring system and conducts direct shear tests under dynamic normal load(DNL)boundary from both laboratory experiments and discrete element method(DEM)simulations.The research investigates the influence of normal dynamic load amplitude(An)and rock type on shear strength parameters,elucidating the evolutionary characteristics and underlying mechanisms of shear load and normal displacement fluctuations induced by cyclic normal loading,with maximum shear load decreasing by 36.81%to 46.94%as An increases from 10%to 70%when rock type varies from coal to limestone.Through analysis of strain field evolution,the critical impact of rock type on localization of shear failure surface is revealed,with systematic summarization of differentiated wear characteristics,failure modes,and key controlling factors associated with shear failure surface.Mesoscopic investigations enabled by DEM simulations uncover the nonuniform distribution of contact force chains within the material matrix and across the anisotropic interfaces under various DNL boundaries,clarify rock type dependent crack propagation pathways,and quantitatively assess the damage extent of shear failure surface,with the anisotropic interface damage factor increasing from 34.9%to 56.6%as An rises from 10%to 70%,and decreasing from 49.6%to 23.4%as rock type varies from coal to limestone.展开更多
In deep drilling applications,such as those for geothermal energy,there are many challenges,such as those related to efficient operation of the drilling fluid(mud)pumping system.Legacy drilling rigs often use paired,p...In deep drilling applications,such as those for geothermal energy,there are many challenges,such as those related to efficient operation of the drilling fluid(mud)pumping system.Legacy drilling rigs often use paired,parallel-connected independent-excitation direct-current(DC)motors for mud pumps,that are supplied by a single power converter.This configuration results in electrical power imbalance,thus reducing its efficiency.This paper investigates this power imbalance issue in such legacy DC mud pump drive systems and offers an innovative solution in the form of a closed-loop control system for electrical load balancing.The paper first analyzes the drilling fluid circulation and electrical drive layout to develop an analytical model that can be used for electrical load balancing and related energy efficiency improvements.Based on this analysis,a feedback control system(so-called“current mirror”control system)is designed to balance the electrical load(i.e.,armature currents)of parallel-connected DC machines by adjusting the excitation current of one of the DC machines,thus mitigating the power imbalance of the electrical drive.Theproposed control systemeffectiveness has been validated,first through simulations,followed by experimental testing on a deep drilling rig during commissioning and field tests.The results demonstrate the practical viability of the proposed“current mirror”control system that can effectively and rather quickly equalize the armature currents of both DC machines in a parallel-connected electrical drive,and thus balance both the electrical and mechanical load of individual DC machines under realistic operating conditions of the mud pump electrical drive.展开更多
Studies of wave-current interactions are vital for the safe design of structures.Regular waves in the presence of uniform,linear shear,and quadratic shear currents are explored by the High-Level Green-Naghdi model in ...Studies of wave-current interactions are vital for the safe design of structures.Regular waves in the presence of uniform,linear shear,and quadratic shear currents are explored by the High-Level Green-Naghdi model in this paper.The five-point central difference method is used for spatial discretization,and the fourth-order Adams predictor-corrector scheme is employed for marching in time.The domain-decomposition method is applied for the wave-current generation and absorption.The effects of currents on the wave profile and velocity field are examined under two conditions:the same velocity of currents at the still-water level and the constant flow volume of currents.Wave profiles and velocity fields demonstrate substantial differences in three types of currents owing to the diverse vertical distribution of current velocity and vorticity.Then,loads on small-scale vertical cylinders subjected to regular waves and three types of background currents with the same flow volume are investigated.The maximum load intensity and load fluctuation amplitude in uniform,linear shear,and quadratic shear currents increase sequentially.The stretched superposition method overestimates the maximum load intensity and load fluctuation amplitude in opposing currents and underestimates these values in following currents.The stretched superposition method obtains a poor approximation for strong nonlinear waves,particularly in the case of the opposing quadratic shear current.展开更多
This study establishes and validates a method for the precise quantification of aquatic microbial loads using microbial diversity absolute quantitative sequencing.By adding synthetic spike-in DNA to water samples from...This study establishes and validates a method for the precise quantification of aquatic microbial loads using microbial diversity absolute quantitative sequencing.By adding synthetic spike-in DNA to water samples from the Dahei River prior to DNA extraction and 16S rRNA gene sequencing,it generates standard curves to convert sequencing data into absolute microbial copy numbers.The method,which is proved highly accurate(R^(2)>0.99),reveals a clear contrast between the river sites:the upstream community has not only a significantly higher total microbial load but also a completely different makeup of species compared to the downstream site.This approach effectively overcomes the limitations of relative abundance analysis,providing a powerful tool for environmental monitoring,and proposes key steps for future standardization to ensure data comparability and integration.展开更多
In this paper, a synthetic mathematical model of load flow for flexible AC transmission systems (FACTS) with unified power flow controller (UPFC) is presented based on the analysis of basic principle and operation sta...In this paper, a synthetic mathematical model of load flow for flexible AC transmission systems (FACTS) with unified power flow controller (UPFC) is presented based on the analysis of basic principle and operation state of UPFC. The model can use the fast P Q decoupled load flow method. Examples of test systems show that the proposed model and method have good convergence. An effective tool is provided by the load flow computer program to analyze the load flow and initial valve calculation of the dynamic state of FACTS.展开更多
Mobile edge computing (MEC) is a novel technique that can reduce mobiles' com- putational burden by tasks offioading, which emerges as a promising paradigm to provide computing capabilities in close proximity to mo...Mobile edge computing (MEC) is a novel technique that can reduce mobiles' com- putational burden by tasks offioading, which emerges as a promising paradigm to provide computing capabilities in close proximity to mobile users. In this paper, we will study the scenario where multiple mobiles upload tasks to a MEC server in a sing cell, and allocating the limited server resources and wireless chan- nels between mobiles becomes a challenge. We formulate the optimization problem for the energy saved on mobiles with the tasks being dividable, and utilize a greedy choice to solve the problem. A Select Maximum Saved Energy First (SMSEF) algorithm is proposed to realize the solving process. We examined the saved energy at different number of nodes and channels, and the results show that the proposed scheme can effectively help mobiles to save energy in the MEC system.展开更多
A dynamic marine propeller simulation system was developed, which is utilized for meeting the experimental requirement of theory research and engineering design of marine electric propulsion system. By applying an act...A dynamic marine propeller simulation system was developed, which is utilized for meeting the experimental requirement of theory research and engineering design of marine electric propulsion system. By applying an actual ship parameter and its accurate propeller J' -KT' and J' - Kp' curve data, functional experiments based on the simulation system were carried out. The experiment results showed that the system can correctly emulate the propeller characteristics, produce the dynamic and steady performances of the propeller under different navigation modes, and present actual load torque for electric propulsion motor.展开更多
The objective of this research is to study the dynamic response characteristics of a three-beam system with intermediate elastic connections under a moving load/mass-spring.In this study,the finite Sine-Fourier transf...The objective of this research is to study the dynamic response characteristics of a three-beam system with intermediate elastic connections under a moving load/mass-spring.In this study,the finite Sine-Fourier transform was performed for the dynamic partial differential equations of a simply supported three-beam system(SSTBS)under a moving load and a moving mass-spring,respectively.The dynamic partial differential equations were transformed into dynamic ordinary differential equations relative to the time coordinates,and the equations were solved and the displacement Fourier amplitude spectral expressions were obtained.Finally,based on finite Sine-Fourier inverse transform,the expressions for dynamic response of SSTBS under the moving load and moving mass-spring were obtained.The proposed method,along with ANSYS,was used to calculate the dynamic response of the SSTBS under a moving load/mass-spring at different speeds.The results obtained herein were consistent with the ANSYS numerical calculation results,verifying the accuracy of the proposed method.The influence of the load/mass-spring’s moving speed on the dynamic deflections of SSTBS were analyzed.SSTBS has several critical speeds under a moving load/mass-spring.The vertical acceleration incurred by a change in the vertical speed of SSTBS due to the movement of mass-spring and the centrifugal acceleration produced by the movement of massspring on the vertical curve generated by SSTBS vibration could not be neglected.展开更多
The paper proposes a novel H∞ load frequency control(LFC) design method for multi-area power systems based on an integral-based non-fragile distributed fixed-order dynamic output feedback(DOF) tracking-regulator cont...The paper proposes a novel H∞ load frequency control(LFC) design method for multi-area power systems based on an integral-based non-fragile distributed fixed-order dynamic output feedback(DOF) tracking-regulator control scheme. To this end, we consider a nonlinear interconnected model for multiarea power systems which also include uncertainties and timevarying communication delays. The design procedure is formulated using semi-definite programming and linear matrix inequality(LMI) method. The solution of the proposed LMIs returns necessary parameters for the tracking controllers such that the impact of model uncertainty and load disturbances are minimized. The proposed controllers are capable of receiving all or part of subsystems information, whereas the outputs of each controller are local. These controllers are designed such that the resilient stability of the overall closed-loop system is guaranteed. Simulation results are provided to verify the effectiveness of the proposed scheme. Simulation results quantify that the distributed(and decentralized) controlled system behaves well in presence of large parameter perturbations and random disturbances on the power system.展开更多
基金supported by National Natural Science Foundation of China(52407126).
文摘The demand response(DR)market,as a vital complement to the electricity spot market,plays a key role in evoking user-side regulation capability to mitigate system-level supply‒demand imbalances during extreme events.While the DR market offers the load aggregator(LA)additional profitable opportunities beyond the electricity spot market,it also introduces new trading risks due to the significant uncertainty in users’behaviors.Dispatching energy storage systems(ESSs)is an effective means to enhance the risk management capabilities of LAs;however,coordinating ESS operations with dual-market trading strategies remains an urgent challenge.To this end,this paper proposes a novel systematic risk-aware coordinated trading model for the LA in concurrently participating in the day-ahead electricity spot market and DR market,which incorporates the capacity allocation mechanism of ESS based on market clearing rules to jointly formulate bidding and pricing decisions for the dual market.First,the intrinsic coupling characteristics of the LA participating in the dual market are analyzed,and a joint optimization framework for formulating bidding and pricing strategies that integrates ESS facilities is proposed.Second,an uncertain user response model is developed based on price‒response mechanisms,and actual market settlement rules accounting for under-and over-responses are employed to calculate trading revenues,where possible revenue losses are quantified via conditional value at risk.Third,by imposing these terms and the capacity allocation mechanism of ESS,the risk-aware stochastic coordinated trading model of the LA is built,where the bidding and pricing strategies in the dual model that trade off risk and profit are derived.The simulation results of a case study validate the effectiveness of the proposed trading strategy in controlling trading risk and improving the trading income of the LA.
基金supported by the Basic Science Center Project of the National Natural Science Foundation of China(42388102)the National Natural Science Foundation of China(42174030)+2 种基金the Special Fund of Hubei Luojia Laboratory(220100020)the Major Science and Technology Program for Hubei Province(2022AAA002)the Fundamental Research Funds for the Central Universities of China(2042022dx0001 and 2042023kfyq01)。
文摘Nonlinear variations in the coordinate time series of global navigation satellite system(GNSS) reference stations are strongly correlated with surface displacements caused by environmental loading effects,including atmospheric, hydrological, and nontidal ocean loading. Continuous improvements in the accuracy of surface mass loading products, performance of Earth models, and precise data-processing technologies have significantly advanced research on the effects of environmental loading on nonlinear variations in GNSS coordinate time series. However, owing to theoretical limitations, the lack of high spatiotemporal resolution surface mass observations, and the coupling of GNSS technology-related systematic errors, environmental loading and nonlinear GNSS reference station displacements remain inconsistent. The applicability and capability of these loading products across different regions also require further evaluation. This paper outlines methods for modeling environmental loading, surface mass loading products, and service organizations. In addition, it summarizes recent advances in applying environmental loading to address nonlinear variations in global and regional GNSS coordinate time series. Moreover, the scientific questions of existing studies are summarized, and insights into future research directions are provided. The complex nonlinear motion of reference stations is a major factor limiting the accuracy of the current terrestrial reference frame. Further refining the environmental load modeling method, establishing a surface mass distribution model with high spatiotemporal resolution and reliability, exploring other environmental load factors such as ice sheet and artificial mass-change effects, and developing an optimal data-processing model and strategy for reprocessing global reference station data consistently could contribute to the development of a millimeter-level nonlinear motion model for GNSS reference stations with actual physical significance and provide theoretical support for establishing a terrestrial reference frame with 1 mm accuracy by 2050.
基金supported by the BK21 FOUR funded by the Ministry of Education of Korea and National Research Foundation of Korea,a Korea Agency for Infrastructure Technology Advancement(KAIA)grant funded by the Ministry of Land,Infrastructure,and Transport(Grant 1615013176)IITP(Institute of Information&Coummunications Technology Planning&Evaluation)-ICAN(ICT Challenge and Advanced Network of HRD)grant funded by the Korea government(Ministry of Science and ICT)(RS-2024-00438411).
文摘This paper proposes a novel cargo loading algorithm applicable to automated conveyor-type loading systems.The algorithm offers improvements in computational efficiency and robustness by utilizing the concept of discrete derivatives and introducing logistics-related constraints.Optional consideration of the rotation of the cargoes was made to further enhance the optimality of the solutions,if possible to be physically implemented.Evaluation metrics were developed for accurate evaluation and enhancement of the algorithm’s ability to efficiently utilize the loading space and provide a high level of dynamic stability.Experimental results demonstrate the extensive robustness of the proposed algorithm to the diversity of cargoes present in Business-to-Consumer environments.This study contributes practical advancements in both cargo loading optimization and automation of the logistics industry,with potential applications in last-mile delivery services,warehousing,and supply chain management.
基金supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions.
文摘This paper establishes a method for identifying and locating dynamic loads in time-varying systems.The proposed method linearizes time-varying parameters within small time units and uses the Wilson-θ inverse analysis method to solve modal loads of each order at each time step.It then uses an exhaustive method to determine the load position.Finally,it calculates the time history of the load.Simulation examples demonstrate how the number of measuring points and step size affect load identi-fication accuracy,verifying that this algorithm achieves good identification accuracy for loads under resonance conditions.Additionally,it explores how noise affects load position and recognition accuracy,while providing a solution.Simulation examples and experimental results demonstrate that the proposed method can identify both the time history and position of loads simultaneously with high identification accuracy.
基金funding support from the General Program of the National Natural Science Foundation of China(Grant No.52374069)the Excellent Young Scientists Fund Program of the National Natural Science Foundation of China(Grant No.52122403)the Youth Innovation Promotion Association CAS(Grant No.Y2023089).
文摘This paper presents an ultralow-frequency cyclic loading creep test system for rock salt.The system comprises five subsystems:a cyclic load generation system,a triaxial pressure chamber,a pressure and deformation monitoring system,a signal acquisition and load control integrated system,and an automatic oil replenishment and discharge system.This test system overcomes the limitations of traditional electrohydraulic servo creep testing machines and gravity loading creep testing machines when conducting low-frequency cyclic load creep tests.This allows for long-term(1-2 years)creep tests under extremely-low-frequency cyclic loading conditions,which simulate the actual operating conditions of salt cavern gas storage.The cyclic load generation system converted constant-weight loads into a continuously variable hydraulic oil pressure and amplified the oil pressure using a pressure intensifier,which provided a stable load source for the test system.Using this test system,creep tests were performed under low-frequency cyclic loading with periods of 1 d and 7 d.The results showed that the test system performed well,as evidenced by the validation of the loading capacity,loading stability,and temperature control stability.Comparing the creep deformation of rock salt samples with the cyclic periods of 1 d and 7 d,it was observed that,within this cyclic period range,the creep deformation of the sample increased with higher loading frequencies,provided that the cyclic loading waveform and stress remained constant.
基金the National Natural Science Foundation of China(No.51965032)the Natural Science Foundation of Gansu Province(No.22JR5RA319)+1 种基金the Science and Technology Foundation of Gansu Province(No.21YF5WA060)the Excellent Doctoral Student Foundation of Gansu Province(No.23JRRA842)。
文摘Cranes used at sea have some shortcomings in terms of flexibility,efficiency,and safety.Therefore,a floating multi-robot coordinated towing system is planned to fulfill the offshore towing requirements.It is difficult to study the stability of a floating multi-robot coordinated towing system by ancient strategies.First,the minimum tension of the rope and the minimum singular value of the stiffness matrix were separately used to analyze the load stability.The advantages and disadvantages of the two methods were discussed.Then,the two stability analysis methods were normalized and weighted to obtain the method based on minimum tension and minimum singular to comprehensively analyze the stability of the load.Finally,the effect of different weighting coefficients on the load stability was analyzed,which led to a reasonable weighting coefficient to evaluate the load stability by comparing with a single analysis method.The research results provide a basis for the motion planning and coordinated control of the towing system.
基金supported by the project "Development of High-Temperature Superconducting Aeromagnetic Full Tensor Gradient Measurement System and Research on Error Compensation Methods"(Grant No. XZ202501ZY0136)。
文摘UAV geophysical surveys can adapt to complex ground exploration environments and greatly reduce the safety risk of operators, which may be applied in geophysical surveys, geological investigations, resource exploration and other fields. Rotary-wing UAV is characterized by its flexible start-stop mode, high safety profile and night navigation. In this paper, according to the DY-115 rotary-wing UAV, an aeromagnetic measuring system with 115KG large load capacity was designed and integrated, and a magnetic compensation flight and test flight were successively carried out. The data satisfi ed the requirements of the technical specifi cations. By comparing and analyzing the test aeromagnetic anomaly data with the field magnetic data, the overall trend of the contour was observed to be basically the same as the shape. Accordingly, the aeromagnetic anomaly was found to be smoother and more continuous, which aligned with the interpretation and inversion of the anomaly, further verifying the stability, reliability and practicability of the large load rotary-wing UAV aeromagnetic measurement system.
文摘This study develops a GWO-optimized cascaded fuzzy-PID controller with triangular membership functions for load frequency control in interconnected power systems.The controller’s effectiveness is demonstrated on thermal–thermal and hybrid thermal–hydro–gas power systems.The controller parameters were tuned using the Integral Time Absolute Error(ITAE)objective function,which was also evaluated alongside other objective functions(IAE,ISE,and ITSE)to ensure high precision in frequency stabilization.To validate the effectiveness of the triangular membership function,comparisons were made with fuzzy-PID controllers employing trapezoidal and Gaussian membership functions.Performance metrics,including ITAE,settling time,overshoot,and undershoot of frequency deviation,as well as tie-line power deviation,were evaluated.Robustness was established through a comprehensive sensitivity analysis with T_(G),T_(T),andT_(R) parameter variations(±50%),a non-linearity analysis incorporating Generation Rate Constraint(GRC)and Governor Deadband(GDB),a random Step Load Perturbation(SLP)over 0–100 s,and also Stability analysis of the proposed scheme is conducted using multiple approaches,including frequency-domain analysis,Lyapunov stability theory,and eigenvalue analysis.Additionally,the system incorporating thermal,hydro,and gas turbines,along with advanced components like CES and HVDC links,was analysed.Comparisons were conducted against controllers optimized using Modified Grasshopper Optimization Algorithm(MGOA),Honey Badger Algorithm(HBA),Particle Swarm Optimization(PSO),Artificial Bee Colony(ABC),and Spider Monkey Optimization(SMO)algorithms.Results demonstrate that the GWO-based fuzzy-PID controller outperforms the alternatives,exhibiting superior performance across all evaluated metrics.This highlights the potential of the proposed approach as a robust solution for load frequency control in complex and dynamic power systems.
基金Supported by the Russian Science Foundation(Agreement 23-41-10001,https://rscf.ru/project/23-41-10001/).
文摘Background Interconnection of different power systems has a major effect on system stability.This study aims to design an optimal load frequency control(LFC)system based on a proportional-integral(PI)controller for a two-area power system.Methods Two areas were connected through an AC tie line in parallel with a DC link to stabilize the frequency of oscillations in both areas.The PI parameters were tuned using the cuckoo search algorithm(CSA)to minimize the integral absolute error(IAE).A state matrix was provided,and the stability of the system was verified by calculating the eigenvalues.The frequency response was investigated for load variation,changes in the generator rate constraint,the turbine time constant,and the governor time constant.Results The CSA was compared with particle swarm optimization algorithm(PSO)under identical conditions.The system was modeled based on a state-space mathematical representation and simulated using MATLAB.The results demonstrated the effectiveness of the proposed controller based on both algorithms and,it is clear that CSA is superior to PSO.Conclusion The CSA algorithm smoothens the system response,reduces ripples,decreases overshooting and settling time,and improves the overall system performance under different disturbances.
基金support from the National Natural Science Foundation of China(Nos.51504247,52174092,51904290,and 52074259)the Natural Science Foundation of Jiangsu Province,China(No.BK20220157)+1 种基金the Fundamental Research Funds for the Central Universities,China(No.2022YCPY0202)the China University of Mining and Technology(CUMT)Open Sharing Fund for Large-scale Instruments and Equipment(No.DYGX-2025-47)is gratefully acknowledged.
文摘Under external disturbances,the shear mechanical responses and debonding failure mechanisms at anisotropic interfaces of anchoring system composed of multiphase media are inherently difficult to characterize due to the concealment nature of interfacial interactions.This study establishes an equivalent shear model for a bolt-resin-rock anchoring system and conducts direct shear tests under dynamic normal load(DNL)boundary from both laboratory experiments and discrete element method(DEM)simulations.The research investigates the influence of normal dynamic load amplitude(An)and rock type on shear strength parameters,elucidating the evolutionary characteristics and underlying mechanisms of shear load and normal displacement fluctuations induced by cyclic normal loading,with maximum shear load decreasing by 36.81%to 46.94%as An increases from 10%to 70%when rock type varies from coal to limestone.Through analysis of strain field evolution,the critical impact of rock type on localization of shear failure surface is revealed,with systematic summarization of differentiated wear characteristics,failure modes,and key controlling factors associated with shear failure surface.Mesoscopic investigations enabled by DEM simulations uncover the nonuniform distribution of contact force chains within the material matrix and across the anisotropic interfaces under various DNL boundaries,clarify rock type dependent crack propagation pathways,and quantitatively assess the damage extent of shear failure surface,with the anisotropic interface damage factor increasing from 34.9%to 56.6%as An rises from 10%to 70%,and decreasing from 49.6%to 23.4%as rock type varies from coal to limestone.
文摘In deep drilling applications,such as those for geothermal energy,there are many challenges,such as those related to efficient operation of the drilling fluid(mud)pumping system.Legacy drilling rigs often use paired,parallel-connected independent-excitation direct-current(DC)motors for mud pumps,that are supplied by a single power converter.This configuration results in electrical power imbalance,thus reducing its efficiency.This paper investigates this power imbalance issue in such legacy DC mud pump drive systems and offers an innovative solution in the form of a closed-loop control system for electrical load balancing.The paper first analyzes the drilling fluid circulation and electrical drive layout to develop an analytical model that can be used for electrical load balancing and related energy efficiency improvements.Based on this analysis,a feedback control system(so-called“current mirror”control system)is designed to balance the electrical load(i.e.,armature currents)of parallel-connected DC machines by adjusting the excitation current of one of the DC machines,thus mitigating the power imbalance of the electrical drive.Theproposed control systemeffectiveness has been validated,first through simulations,followed by experimental testing on a deep drilling rig during commissioning and field tests.The results demonstrate the practical viability of the proposed“current mirror”control system that can effectively and rather quickly equalize the armature currents of both DC machines in a parallel-connected electrical drive,and thus balance both the electrical and mechanical load of individual DC machines under realistic operating conditions of the mud pump electrical drive.
基金Supported by the Development and Application Project of Ship CAE Software.
文摘Studies of wave-current interactions are vital for the safe design of structures.Regular waves in the presence of uniform,linear shear,and quadratic shear currents are explored by the High-Level Green-Naghdi model in this paper.The five-point central difference method is used for spatial discretization,and the fourth-order Adams predictor-corrector scheme is employed for marching in time.The domain-decomposition method is applied for the wave-current generation and absorption.The effects of currents on the wave profile and velocity field are examined under two conditions:the same velocity of currents at the still-water level and the constant flow volume of currents.Wave profiles and velocity fields demonstrate substantial differences in three types of currents owing to the diverse vertical distribution of current velocity and vorticity.Then,loads on small-scale vertical cylinders subjected to regular waves and three types of background currents with the same flow volume are investigated.The maximum load intensity and load fluctuation amplitude in uniform,linear shear,and quadratic shear currents increase sequentially.The stretched superposition method overestimates the maximum load intensity and load fluctuation amplitude in opposing currents and underestimates these values in following currents.The stretched superposition method obtains a poor approximation for strong nonlinear waves,particularly in the case of the opposing quadratic shear current.
基金supported by the National Natural Science Foundation of China(Grant No.32160172)the Key Science-Technology Project of Inner Mongolia(2023KYPT0010)+1 种基金the Natural Science Foundation of Inner Mongolia Autonomous Region of China(Grant No.2025QN03006)the 2023 Inner Mongolia Public Institution High-level Talent Introduction Scientific Research Support Project.
文摘This study establishes and validates a method for the precise quantification of aquatic microbial loads using microbial diversity absolute quantitative sequencing.By adding synthetic spike-in DNA to water samples from the Dahei River prior to DNA extraction and 16S rRNA gene sequencing,it generates standard curves to convert sequencing data into absolute microbial copy numbers.The method,which is proved highly accurate(R^(2)>0.99),reveals a clear contrast between the river sites:the upstream community has not only a significantly higher total microbial load but also a completely different makeup of species compared to the downstream site.This approach effectively overcomes the limitations of relative abundance analysis,providing a powerful tool for environmental monitoring,and proposes key steps for future standardization to ensure data comparability and integration.
文摘In this paper, a synthetic mathematical model of load flow for flexible AC transmission systems (FACTS) with unified power flow controller (UPFC) is presented based on the analysis of basic principle and operation state of UPFC. The model can use the fast P Q decoupled load flow method. Examples of test systems show that the proposed model and method have good convergence. An effective tool is provided by the load flow computer program to analyze the load flow and initial valve calculation of the dynamic state of FACTS.
基金supported by National Natural Science Foundation of China(61533013,61273144)Scientific Technology Research and Development Plan Project of Tangshan(13130298B)Scientific Technology Research and Development Plan Project of Hebei(z2014070)
基金supported by NSFC(No. 61571055)fund of SKL of MMW (No. K201815)Important National Science & Technology Specific Projects(2017ZX03001028)
文摘Mobile edge computing (MEC) is a novel technique that can reduce mobiles' com- putational burden by tasks offioading, which emerges as a promising paradigm to provide computing capabilities in close proximity to mobile users. In this paper, we will study the scenario where multiple mobiles upload tasks to a MEC server in a sing cell, and allocating the limited server resources and wireless chan- nels between mobiles becomes a challenge. We formulate the optimization problem for the energy saved on mobiles with the tasks being dividable, and utilize a greedy choice to solve the problem. A Select Maximum Saved Energy First (SMSEF) algorithm is proposed to realize the solving process. We examined the saved energy at different number of nodes and channels, and the results show that the proposed scheme can effectively help mobiles to save energy in the MEC system.
基金supported by the Fund of Shanghai Committee of Science and Technology(Grant No.11170501700)the International Cooperation and Exchange Projects of the Ministry of Science and Technology(Grant No.2012DFG71850)
文摘A dynamic marine propeller simulation system was developed, which is utilized for meeting the experimental requirement of theory research and engineering design of marine electric propulsion system. By applying an actual ship parameter and its accurate propeller J' -KT' and J' - Kp' curve data, functional experiments based on the simulation system were carried out. The experiment results showed that the system can correctly emulate the propeller characteristics, produce the dynamic and steady performances of the propeller under different navigation modes, and present actual load torque for electric propulsion motor.
基金The Fundamental Research Funds for the Central Universities of Central South University under Grant No.2018zzts189the National Natural Science Foundations of China under Grant Nos.51408449 and 51778630the Innovation-driven Plan in Central South University under Grant No.2015CX006。
文摘The objective of this research is to study the dynamic response characteristics of a three-beam system with intermediate elastic connections under a moving load/mass-spring.In this study,the finite Sine-Fourier transform was performed for the dynamic partial differential equations of a simply supported three-beam system(SSTBS)under a moving load and a moving mass-spring,respectively.The dynamic partial differential equations were transformed into dynamic ordinary differential equations relative to the time coordinates,and the equations were solved and the displacement Fourier amplitude spectral expressions were obtained.Finally,based on finite Sine-Fourier inverse transform,the expressions for dynamic response of SSTBS under the moving load and moving mass-spring were obtained.The proposed method,along with ANSYS,was used to calculate the dynamic response of the SSTBS under a moving load/mass-spring at different speeds.The results obtained herein were consistent with the ANSYS numerical calculation results,verifying the accuracy of the proposed method.The influence of the load/mass-spring’s moving speed on the dynamic deflections of SSTBS were analyzed.SSTBS has several critical speeds under a moving load/mass-spring.The vertical acceleration incurred by a change in the vertical speed of SSTBS due to the movement of mass-spring and the centrifugal acceleration produced by the movement of massspring on the vertical curve generated by SSTBS vibration could not be neglected.
文摘The paper proposes a novel H∞ load frequency control(LFC) design method for multi-area power systems based on an integral-based non-fragile distributed fixed-order dynamic output feedback(DOF) tracking-regulator control scheme. To this end, we consider a nonlinear interconnected model for multiarea power systems which also include uncertainties and timevarying communication delays. The design procedure is formulated using semi-definite programming and linear matrix inequality(LMI) method. The solution of the proposed LMIs returns necessary parameters for the tracking controllers such that the impact of model uncertainty and load disturbances are minimized. The proposed controllers are capable of receiving all or part of subsystems information, whereas the outputs of each controller are local. These controllers are designed such that the resilient stability of the overall closed-loop system is guaranteed. Simulation results are provided to verify the effectiveness of the proposed scheme. Simulation results quantify that the distributed(and decentralized) controlled system behaves well in presence of large parameter perturbations and random disturbances on the power system.