In data stream management systems (DSMSs), how to maintain the quality of queries is a difficult problem because both the processing cost and data arrival rates are highly unpredictable. When the system is overloaded,...In data stream management systems (DSMSs), how to maintain the quality of queries is a difficult problem because both the processing cost and data arrival rates are highly unpredictable. When the system is overloaded, quality degrades significantly and thus load shedding becomes necessary. Unlike processing overloading in the general way which is only by a feedback control (FB) loop to obtain a good and stable performance over data streams, a feedback plus feed-forward control (FFC) strategy is introduced in DSMSs, which have a good quality of service (QoS) in the aspects of miss ratio and processing delay. In this paper, a quality adaptation framework is proposed, in which the control-theory-based techniques are leveraged to adjust the application behavior with the considerations of the current system status. Compared to previous solutions, the FFC strategy achieves a good quality with a waste of fewer resources.展开更多
The boost converter feeding a constant power load (CPL) is a non-minimum phase system that is prone to the destabilizing effects of the negative incremental resistance of the CPL and presents a major challenge in the ...The boost converter feeding a constant power load (CPL) is a non-minimum phase system that is prone to the destabilizing effects of the negative incremental resistance of the CPL and presents a major challenge in the design of stabilizing controllers. A PWM-based current-sensorless robust sliding mode controller is developed that requires only the measurement of the output voltage. An extended state observer is developed to estimate a lumped uncertainty signal that comprises the uncertain load power and the input voltage, the converter parasitics, the component uncertainties and the estimation of the derivative of the output voltage needed in the implementation of the controller. A linear sliding surface is used to derive the controller, which is simple in its design and yet exhibits excellent features in terms of robustness to external disturbances, parameter uncertainties, and parasitics despite the absence of the inductor’s current feedback. The robustness of the controller is validated by computer simulations.展开更多
In deep drilling applications,such as those for geothermal energy,there are many challenges,such as those related to efficient operation of the drilling fluid(mud)pumping system.Legacy drilling rigs often use paired,p...In deep drilling applications,such as those for geothermal energy,there are many challenges,such as those related to efficient operation of the drilling fluid(mud)pumping system.Legacy drilling rigs often use paired,parallel-connected independent-excitation direct-current(DC)motors for mud pumps,that are supplied by a single power converter.This configuration results in electrical power imbalance,thus reducing its efficiency.This paper investigates this power imbalance issue in such legacy DC mud pump drive systems and offers an innovative solution in the form of a closed-loop control system for electrical load balancing.The paper first analyzes the drilling fluid circulation and electrical drive layout to develop an analytical model that can be used for electrical load balancing and related energy efficiency improvements.Based on this analysis,a feedback control system(so-called“current mirror”control system)is designed to balance the electrical load(i.e.,armature currents)of parallel-connected DC machines by adjusting the excitation current of one of the DC machines,thus mitigating the power imbalance of the electrical drive.Theproposed control systemeffectiveness has been validated,first through simulations,followed by experimental testing on a deep drilling rig during commissioning and field tests.The results demonstrate the practical viability of the proposed“current mirror”control system that can effectively and rather quickly equalize the armature currents of both DC machines in a parallel-connected electrical drive,and thus balance both the electrical and mechanical load of individual DC machines under realistic operating conditions of the mud pump electrical drive.展开更多
Grid-connected reactive-load compensation and harmonic control are becoming a central topic as photovoltaic(PV)grid-connected systems diversified.This research aims to produce a high-performance inverter with a fast d...Grid-connected reactive-load compensation and harmonic control are becoming a central topic as photovoltaic(PV)grid-connected systems diversified.This research aims to produce a high-performance inverter with a fast dynamic response for accurate reference tracking and a low total har-monic distortion(THD)even under nonlinear load applications by improving its control scheme.The proposed system is expected to operate in both stand-alone mode and grid-connected mode.In stand-alone mode,the proposed controller supplies power to critical loads,alternatively during grid-connected mode provide excess energy to the utility.A modified variable step incremental conductance(VS-InCond)algorithm is designed to extract maximum power from PV.Whereas the proposed inverter controller is achieved by using a modified PQ theory with double-band hysteresis current controller(PQ-DBHCC)to produce a reference current based on a decomposition of a single-phase load current.The nonlinear rectifier loads often create significant distortion in the output voltage of single-phase inverters,due to excessive current harmonics in the grid.Therefore,the proposed method generates a close-loop reference current for the switching scheme,hence,minimizing the inverter voltage distortion caused by the excessive grid current harmonics.The simulation findings suggest the proposed control technique can effectively yield more than 97%of power conversion efficiency while suppressing the grid current THD by less than 2%and maintaining the unity power factor at the grid side.The efficacy of the proposed controller is simulated using MATLAB/Simulink.展开更多
【目的】为提高交流电力弹簧(AC electric spring,ACES)在负载投切和网侧电压波动场景下稳定关键性负载(critical load,CL)电压的能力,提出一种模型预测电流控制(model predictive current control,MPCC)策略。【方法】首先,针对可变负...【目的】为提高交流电力弹簧(AC electric spring,ACES)在负载投切和网侧电压波动场景下稳定关键性负载(critical load,CL)电压的能力,提出一种模型预测电流控制(model predictive current control,MPCC)策略。【方法】首先,针对可变负载工况,将关键性负载电流参考模型搭建为下一时刻关键性负载参考电压与当前时刻关键性负载等效阻抗值之比,通过可变的关键性负载电流参考值,提高了负载投切时ACES的动态响应能力。其次,针对关键性负载电压波动,控制策略通过ACES工作在不同的模式,使得关键性负载电流预测值追踪变化的电流参考值,从而使关键性负载电压追踪给定值。【结果】所提控制策略在负载投切和网侧电压波动的工况下,将关键性负载电压波动抑制在0.45%以内的同时兼顾了非关键性负载的电能质量,并且关键性负载电压的畸变率被控制在0.6%以下。【结论】该控制策略有效地提高了电力弹簧抑制负载电压波动的能力,为电力弹簧并入电网的工作提供了参考。展开更多
基金Supported by the National Key R&D Program of China(2016YFC1401900)the National Science Foundation of China(61173029,61672144)
文摘In data stream management systems (DSMSs), how to maintain the quality of queries is a difficult problem because both the processing cost and data arrival rates are highly unpredictable. When the system is overloaded, quality degrades significantly and thus load shedding becomes necessary. Unlike processing overloading in the general way which is only by a feedback control (FB) loop to obtain a good and stable performance over data streams, a feedback plus feed-forward control (FFC) strategy is introduced in DSMSs, which have a good quality of service (QoS) in the aspects of miss ratio and processing delay. In this paper, a quality adaptation framework is proposed, in which the control-theory-based techniques are leveraged to adjust the application behavior with the considerations of the current system status. Compared to previous solutions, the FFC strategy achieves a good quality with a waste of fewer resources.
文摘The boost converter feeding a constant power load (CPL) is a non-minimum phase system that is prone to the destabilizing effects of the negative incremental resistance of the CPL and presents a major challenge in the design of stabilizing controllers. A PWM-based current-sensorless robust sliding mode controller is developed that requires only the measurement of the output voltage. An extended state observer is developed to estimate a lumped uncertainty signal that comprises the uncertain load power and the input voltage, the converter parasitics, the component uncertainties and the estimation of the derivative of the output voltage needed in the implementation of the controller. A linear sliding surface is used to derive the controller, which is simple in its design and yet exhibits excellent features in terms of robustness to external disturbances, parameter uncertainties, and parasitics despite the absence of the inductor’s current feedback. The robustness of the controller is validated by computer simulations.
基金supported by National Natural Science Foundation of China(61533013,61273144)Scientific Technology Research and Development Plan Project of Tangshan(13130298B)Scientific Technology Research and Development Plan Project of Hebei(z2014070)
文摘In deep drilling applications,such as those for geothermal energy,there are many challenges,such as those related to efficient operation of the drilling fluid(mud)pumping system.Legacy drilling rigs often use paired,parallel-connected independent-excitation direct-current(DC)motors for mud pumps,that are supplied by a single power converter.This configuration results in electrical power imbalance,thus reducing its efficiency.This paper investigates this power imbalance issue in such legacy DC mud pump drive systems and offers an innovative solution in the form of a closed-loop control system for electrical load balancing.The paper first analyzes the drilling fluid circulation and electrical drive layout to develop an analytical model that can be used for electrical load balancing and related energy efficiency improvements.Based on this analysis,a feedback control system(so-called“current mirror”control system)is designed to balance the electrical load(i.e.,armature currents)of parallel-connected DC machines by adjusting the excitation current of one of the DC machines,thus mitigating the power imbalance of the electrical drive.Theproposed control systemeffectiveness has been validated,first through simulations,followed by experimental testing on a deep drilling rig during commissioning and field tests.The results demonstrate the practical viability of the proposed“current mirror”control system that can effectively and rather quickly equalize the armature currents of both DC machines in a parallel-connected electrical drive,and thus balance both the electrical and mechanical load of individual DC machines under realistic operating conditions of the mud pump electrical drive.
基金funded by Geran Galakan Penyelidik Muda GGPM-2020-004 Universiti Kebangsaan Malaysia.
文摘Grid-connected reactive-load compensation and harmonic control are becoming a central topic as photovoltaic(PV)grid-connected systems diversified.This research aims to produce a high-performance inverter with a fast dynamic response for accurate reference tracking and a low total har-monic distortion(THD)even under nonlinear load applications by improving its control scheme.The proposed system is expected to operate in both stand-alone mode and grid-connected mode.In stand-alone mode,the proposed controller supplies power to critical loads,alternatively during grid-connected mode provide excess energy to the utility.A modified variable step incremental conductance(VS-InCond)algorithm is designed to extract maximum power from PV.Whereas the proposed inverter controller is achieved by using a modified PQ theory with double-band hysteresis current controller(PQ-DBHCC)to produce a reference current based on a decomposition of a single-phase load current.The nonlinear rectifier loads often create significant distortion in the output voltage of single-phase inverters,due to excessive current harmonics in the grid.Therefore,the proposed method generates a close-loop reference current for the switching scheme,hence,minimizing the inverter voltage distortion caused by the excessive grid current harmonics.The simulation findings suggest the proposed control technique can effectively yield more than 97%of power conversion efficiency while suppressing the grid current THD by less than 2%and maintaining the unity power factor at the grid side.The efficacy of the proposed controller is simulated using MATLAB/Simulink.
文摘【目的】为提高交流电力弹簧(AC electric spring,ACES)在负载投切和网侧电压波动场景下稳定关键性负载(critical load,CL)电压的能力,提出一种模型预测电流控制(model predictive current control,MPCC)策略。【方法】首先,针对可变负载工况,将关键性负载电流参考模型搭建为下一时刻关键性负载参考电压与当前时刻关键性负载等效阻抗值之比,通过可变的关键性负载电流参考值,提高了负载投切时ACES的动态响应能力。其次,针对关键性负载电压波动,控制策略通过ACES工作在不同的模式,使得关键性负载电流预测值追踪变化的电流参考值,从而使关键性负载电压追踪给定值。【结果】所提控制策略在负载投切和网侧电压波动的工况下,将关键性负载电压波动抑制在0.45%以内的同时兼顾了非关键性负载的电能质量,并且关键性负载电压的畸变率被控制在0.6%以下。【结论】该控制策略有效地提高了电力弹簧抑制负载电压波动的能力,为电力弹簧并入电网的工作提供了参考。