The corrosion behavior of 304LN austenitic stainless steel in supercritical CO_(2) at 650℃ was investigated.The results show that 304LN follows Wagner’s law kinetics,forming a protective oxide flm consisting of SiO_...The corrosion behavior of 304LN austenitic stainless steel in supercritical CO_(2) at 650℃ was investigated.The results show that 304LN follows Wagner’s law kinetics,forming a protective oxide flm consisting of SiO_(2),(Cr,Mn)3O_(4),and Cr2O_(3) from the inner to outer layers.A shallow carburization depth of approximately 130 nm indicates excellent resistance to carburization.The roles of key elements in 18/8 austenitic stainless steel represented by 304LN,such as Cr,Ni,and Si,were analyzed,highlighting their contributions to anti-carburization performance and corrosion resistance under harsh conditions.展开更多
LnVO_(4)(Ln=La,Ce,Pr,Nd,etc.)is an emerging photocatalyst for solving the energy and environmental crisis,due to its suitable band gap,special valence electronic structure,high thermal,and chemical sta-bility,as well ...LnVO_(4)(Ln=La,Ce,Pr,Nd,etc.)is an emerging photocatalyst for solving the energy and environmental crisis,due to its suitable band gap,special valence electronic structure,high thermal,and chemical sta-bility,as well as excellent photocatalytic performance.Although exhibiting great promise,the low solar power employment efficiency of LnVO_(4) materials has limited its further development and application.However,recent breakthroughs have been made in both heightening its photocatalysis efficiency and elu-cidating the essential photocatalytic mechanisms.Therefore,it is important to review and summarize recent research progress on LnVO_(4) nanomaterials and their applications.In this review,we systemat-ically report on and examine recent computational and experimental advances in the modification of LnVO_(4)-based photocatalysts through morphology adjustment,elemental doping,phase structure modula-tion,crystal facet modulation,defect modulation,heterostructure,and beyond.Thereafter,we outline cur-rent promising photocatalytic applications and discuss challenges/expected upcoming research aims for LnVO_(4)-based photocatalysts.Our goal is to furnish guidance for the reasonable design and preparation of highly efficient LnVO_(4)(Ln=La,Ce,Pr,Nd,etc.)-based photocatalytic materials for sundry applications.展开更多
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA0410000)the CAS Project for Young Scientists in Basic Research(No.YSBR-043)+1 种基金the CNNC Science Fund for Talented Young Scholars,the National Funding Program for Postdoctoral Researchers(GZC20232747)the Youth Innovation Promotion Association CAS(2022187).
文摘The corrosion behavior of 304LN austenitic stainless steel in supercritical CO_(2) at 650℃ was investigated.The results show that 304LN follows Wagner’s law kinetics,forming a protective oxide flm consisting of SiO_(2),(Cr,Mn)3O_(4),and Cr2O_(3) from the inner to outer layers.A shallow carburization depth of approximately 130 nm indicates excellent resistance to carburization.The roles of key elements in 18/8 austenitic stainless steel represented by 304LN,such as Cr,Ni,and Si,were analyzed,highlighting their contributions to anti-carburization performance and corrosion resistance under harsh conditions.
基金National Natural Science Foundation of China(Nos.22076068,8111310014)(China)Global Research Initiative for Sustainable Low-Carbon Unconventional Resources(Canada)University of Calgary’s Canada First Research Excellence Fund(CFREF)program(Canada).
文摘LnVO_(4)(Ln=La,Ce,Pr,Nd,etc.)is an emerging photocatalyst for solving the energy and environmental crisis,due to its suitable band gap,special valence electronic structure,high thermal,and chemical sta-bility,as well as excellent photocatalytic performance.Although exhibiting great promise,the low solar power employment efficiency of LnVO_(4) materials has limited its further development and application.However,recent breakthroughs have been made in both heightening its photocatalysis efficiency and elu-cidating the essential photocatalytic mechanisms.Therefore,it is important to review and summarize recent research progress on LnVO_(4) nanomaterials and their applications.In this review,we systemat-ically report on and examine recent computational and experimental advances in the modification of LnVO_(4)-based photocatalysts through morphology adjustment,elemental doping,phase structure modula-tion,crystal facet modulation,defect modulation,heterostructure,and beyond.Thereafter,we outline cur-rent promising photocatalytic applications and discuss challenges/expected upcoming research aims for LnVO_(4)-based photocatalysts.Our goal is to furnish guidance for the reasonable design and preparation of highly efficient LnVO_(4)(Ln=La,Ce,Pr,Nd,etc.)-based photocatalytic materials for sundry applications.