The lithospheric magnetic field is an important component of the geomagnetic field,and the oceanic lithosphere exhibits distinct characteristics.Because of its formation mechanisms,evolutionary history,and geomagnetic...The lithospheric magnetic field is an important component of the geomagnetic field,and the oceanic lithosphere exhibits distinct characteristics.Because of its formation mechanisms,evolutionary history,and geomagnetic field polarity reversals,the oceanic lithosphere has significant remanent magnetization,which causes magnetic anomaly stripes parallel to the mid-ocean ridges.However,it is difficult to construct a high-resolution lithospheric magnetic field model in oceanic regions with relatively sparse data or no data.Using forward calculated lithospheric magnetic field data based on an oceanic remanent magnetization(ORM) model with physical and geological foundations as a supplement is a feasible approach.We first collect the latest available oceanic crust age grid,plate motion model,geomagnetic polarity timescale,and oceanic lithosphere thermal structure.Combining the assumptions that the paleo geomagnetic field is a geocentric axial dipole field and that the normal oceanic crust moves only in the horizontal direction,we construct a vertically integrated ORM model of the normal oceanic crust with a known age,including the intensity,inclination,and declination.Both the ORM model and the global induced magnetization(GIM) model are then scaled from two aspects between their forward calculated results and the lithospheric magnetic field model LCS-1.One aspect is the difference in their spherical harmonic power spectra,and the other is the misfit between the grid data over the oceans.We last compare the forward calculated lithospheric magnetic anomaly from the scaled ORM and GIM models with the Macao Science Satellite-1(MSS-1) observed data.The comparison results show that the magnetic anomalies over the normal oceanic crust regions at satellite altitude are mainly contributed by the high-intensity remanent magnetization corresponding to the Cretaceous magnetic quiet period.In these regions,the predicted and observed anomalies show good consistency in spatial distribution,whereas their amplitude differences vary across regions.This result suggests that regional ORM construction should be attempted in future work to address these amplitude discrepancies.展开更多
As a means of quantitative interpretation,forward calculations of the global lithospheric magnetic field in the Spherical Harmonic(SH)domain have been widely used to reveal geophysical,lithological,and geothermal vari...As a means of quantitative interpretation,forward calculations of the global lithospheric magnetic field in the Spherical Harmonic(SH)domain have been widely used to reveal geophysical,lithological,and geothermal variations in the lithosphere.Traditional approaches either do not consider the non-axial dipolar terms of the inducing field and its radial variation or do so by means of complicated formulae.Moreover,existing methods treat the magnetic lithosphere either as an infinitesimally thin layer or as a radially uniform spherical shell of constant thickness.Here,we present alternative forward formulae that account for an arbitrarily high maximum degree of the inducing field and for a magnetic lithosphere of variable thickness.Our simulations based on these formulae suggest that the satellite magnetic anomaly field is sensitive to the non-axial dipolar terms of the inducing field but not to its radial variation.Therefore,in forward and inverse calculations of satellite magnetic anomaly data,the non-axial dipolar terms of the inducing field should not be ignored.Furthermore,our results show that the satellite magnetic anomaly field is sensitive to variability in the lateral thickness of the magnetized shell.In particular,we show that for a given vertically integrated susceptibility distribution,underestimating the thickness of the magnetic layer overestimates the induced magnetic field.This discovery bridges the greatest part of the alleged gap between the susceptibility values measured from rock samples and the susceptibility values required to match the observed magnetic field signal.We expect the formulae and conclusions of this study to be a valuable tool for the quantitative interpretation of the Earth's global lithospheric magnetic field,through an inverse or forward modelling approach.展开更多
Subducting slabs transport carbon to deep mantle depths and release it into the overlying mantle wedge and lithospheric mantle through multiple mechanisms,including mechanical removal via diapirism,metamorphic decarbo...Subducting slabs transport carbon to deep mantle depths and release it into the overlying mantle wedge and lithospheric mantle through multiple mechanisms,including mechanical removal via diapirism,metamorphic decarbonization,carbonate dissolution and parting melting.Identifying the dominant carbon recycling mechanism responsible for carbonation of subcontinental lithospheric mantle(SCLM)remains challenging,yet it is critical for understanding the genesis of post-collisional carbonatites and associated rare earth element deposits.To address this issue,we investigate the Li isotopic systematics of typical post-collisional carbonatite-alkalic complexes from Mianning-Dechang(MD),Southeast Xizang.Our results show that the less-evolved magmas(lamprophyres)have mantle-like or slightly lowerδ^(7)Li values(0.3‰–3.6‰)with limited variability,contrasting sharply with the widerδ^(7)Li range observed in associated carbonatites and syenites.We interpret this dichotomy as reflecting distinct processes:while the variable and anomalousδ^(7)Li values in differentiated rocks(carbonatites and syenites)were caused by late-stage magmatic-hydrothermal processes(including biotite fractionation,fluid exsolution and hydrothermal alteration),the lamprophyres retain the primary Li isotopic signature of their mantle source.Together with their arc-like trace element and EM1-EM2-type Sr-Nd-Pb isotopic signatures,such mantle-like or slightly lowerδ^(7)Li values of the lamprophyres preclude carbon derivation from high-δ^(7)Li reservoirs(altered oceanic crust,serpentinites)and recycling of sedimentary carbon through metamorphic decarbonization or dissolution.Instead,these features indicate that the carbon was predominantly transported into the mantle source via partial melting of subducted carbonate-bearing sediments.This study demonstrates that Li isotopes can serve as a tracer for identifying the mechanism of carbon recycling in collision zones.展开更多
Geodynamic processes following the Indo-Eurasian plate collision remain a key research focus,and the Jinshajiang-Red River tectonic zone(JRTZ),situated along this collision boundary,provides critical insights into pos...Geodynamic processes following the Indo-Eurasian plate collision remain a key research focus,and the Jinshajiang-Red River tectonic zone(JRTZ),situated along this collision boundary,provides critical insights into post-collision tectonic evolution.In this study,we identify a lithological assemblage in the JRTZ,including amphibolite,granite gneiss,and migmatite.These rocks exhibit contrasting geochemical signatures,reflecting multiple source regions:asthenospheric mantle,lithospheric mantle,mafic lower and upper crust.Specifically,amphibolite(28.5 Ma)formed through the partial melting of OIB-like mantle source,whereas S-type granite gneiss(28.2 Ma)originated from the dehydration melting of metamorphosed sedimentary rocks.Amphibole monzonite(28.9 Ma)records the mixing of ancient crustal material with mantle-derived components,while migmatite(37.9 Ma)resulted from deep melting processes of metasedimentary rocks under shear conditions.We propose that the ongoing Indo-Eurasian convergence progressively thickened the crust,ultimately driving large-scale lithospheric delamination between the Eocene and Oligocene.This delamination triggered asthenospheric upwelling,which provided the thermal input required for widespread melting.This lithospheric delamination event started around 38-37 Ma and lasted at least until 28 Ma.展开更多
In the author list,the corresponding author indicator(*)was inadvertently omitted from HOU Zengqian’s name.This has now been corrected to:“HOU Zengqian¹,*”.The online version of this article was corrected.
A subducted continental slab is sometimes torn during collision,yet the exact impact of slab-tearing on the overlying lithosphere remains unclear.Here,we image the structure and architecture of the Asian lithosphere a...A subducted continental slab is sometimes torn during collision,yet the exact impact of slab-tearing on the overlying lithosphere remains unclear.Here,we image the structure and architecture of the Asian lithosphere above the Indian slab in the eastern Tibetan Plateau using multiscale seismic tomography models and zircon Hf isotopic mapping,respectively.Our mantle V_(p)model shows that a large low-velocity anomaly extends laterally beneath the thinned Asian lithosphere above the tear zone roughly along the 26°N.The V_(s)images,magmatic records and Hf isotopic mapping indicate that this low-velocity anomaly recorded an asthenosphere flow eastward along the tear zone,which thermally eroded and refertilized the overlying Asian lithosphere,leading to the lithospheric melting,thinning and root delaminating.The vertical tear also generated a tectonic weak zone with associated Cenozoic potassic and carbonatitic magma suites.We argue that such a hot lithosphere discontinuity provided a reasonable mechanism for the abrupt change of crust thickness and the transformation of crust-mantle deformation from coupling to decoupling across the tear zone.展开更多
The South China Block(SCB)was formed through the Neoproterozoic amalgamation of the Yangtze Block(YB),the Cathaysia Block(CB),and the accreted components of the Jiangnan orogenic belt(JNO),it is bounded by the Jiangs...The South China Block(SCB)was formed through the Neoproterozoic amalgamation of the Yangtze Block(YB),the Cathaysia Block(CB),and the accreted components of the Jiangnan orogenic belt(JNO),it is bounded by the Jiangshan–Shaoxing–Pingxiang fault(JSPF)and the Jiujiang–Shitai–Jishou fault(JSJF)(Yao et al.,2019).The SCB has undergone a series of complex geological events,including Paleozoic orogeny,Mesozoic collisions with the North China Craton(NCC)and the Indochina Block,as well as the intracontinental orogeny,leading to extensive lithospheric modifications and magmatic activities(Zhang H J et al.,2023;Fig.1).展开更多
本文基于地面测量布格异常和EIGEN-6C4(European Improved Gravity model of the Earth by New techniques version 6C4)重力资料,以USTClitho2.0(Unified Seismic Tomography models for continental China lithosphere version 2.0)...本文基于地面测量布格异常和EIGEN-6C4(European Improved Gravity model of the Earth by New techniques version 6C4)重力资料,以USTClitho2.0(Unified Seismic Tomography models for continental China lithosphere version 2.0)岩石圈结构模型为约束,利用顾及地壳密度横向变化的布格改正、小波多尺度分解、均衡改正、Moho面重力反演和岩石圈有效弹性厚度(T_(e))反演等方法,计算了郯庐断裂带中南段布格异常及其多尺度分解结果、深部均衡异常、Moho面深度、岩石圈有效弹性厚度及荷载比,结合地震活动性和地球物理资料,综合分析了该地区重力异常构造背景及其与地震活动性的关系.结果表明,沿郯庐断裂带的重力异常在嘉山以南段、嘉山-新沂段和新沂-安丘段呈显著差异性3段式分布,且与地震活动性分段特征高度统一.地震活动性强的嘉山以南段和新沂-安丘段具有浅部布格异常线性条带、深部布格异常高梯度带、Moho面陡变带或上隆带、地壳重力不均衡、低岩石圈有效弹性厚度和高荷载比特征,表明其深部结构破坏程度高,岩石圈力学强度低,且存在均衡调整作用,有利于应力及时释放,因而地震活动频繁;地震活动性弱的嘉山-新沂段浅部布格异常散乱,深部布格异常高值区和低值正均衡异常区穿过郯庐断裂带,Moho面变化平缓,岩石圈有效弹性厚度值高,荷载比低,对应扬子地块俯冲于华北断块区之下的遗留深部构造,其深部结构破坏程度较低,岩石圈力学强度大,且均衡调整作用不强,岩石圈不易发生破裂,因而地震频率很低.郯城8.5级地震位于横穿郯庐断裂带的深部构造北缘附近,是最易于积累应力的部位,深部构造和岩石圈有效弹性厚度剧烈变化导致应力分布不均匀以及较强的均衡调整作用可能是地震的触发因素.嘉山-新沂段具备有利于应力长期积累的深部构造条件,应持续关注其应力积累状态和强震风险.展开更多
Mineralogical data are presented for the peridotite xenoliths from Miocene(~19 Ma)Qingyuan basalts in the eastern North China Craton(NCC),with the aim of constraining on property of the sub-continental lithospheric ma...Mineralogical data are presented for the peridotite xenoliths from Miocene(~19 Ma)Qingyuan basalts in the eastern North China Craton(NCC),with the aim of constraining on property of the sub-continental lithospheric mantle(SCLM)beneath the northern Tan-Lu fault zone(TLFZ)during the Cenozoic.The Qingyuan peridotites are dominated by spinel lherzolites with moderate-Mg^(#)olivines(89.4 to 91.2),suggesting that the regional SCLM is mainly transitional and fertile.Light rare earth element(LREE)-depleted,slightly depleted and enriched clinopyroxenes(Cpx)are identified in different peridotites.Chemical compositions of the LREE-enriched Cpx and the presence of phlogopite suggest that the Qingyuan SCLM has experienced silicate-related metasomatism.The synthesis of available mineral chemical data of the mantle xenoliths across the NCC confirms the SCLM beneath the NCC is highly heterogeneous in time and space.The Mesozoic–Cenozoic SCLM beneath the TLFZ and neighboring regions are more fertile and thinner than that beneath the region away from the fault zone.The fertile and refractory peridotite xenoliths experienced varying degrees of silicate and carbonatite metasomatism,respectively.The spatial-temporal lithospheric mantle heterogeneity in composition,age and thickness suggest that the trans-lithosphere fault zone played an important role in heterogeneous replacement of refractory cratonic lithospheric mantle.展开更多
The equivalent source(ES)method in the spherical coordinate system has been widely applied to processing,reduction,field modeling,and geophysical and geological interpretation of satellite magnetic anomaly data.Howeve...The equivalent source(ES)method in the spherical coordinate system has been widely applied to processing,reduction,field modeling,and geophysical and geological interpretation of satellite magnetic anomaly data.However,the inversion for the ES model suffers from nonuniqueness and instability,which remain unresolved.To mitigate these issues,we introduce both the minimum and flattest models into the model objective function as an alternative regularization approach in the spherical ES method.We first present the methods,then analyze the accuracy of forward calculation and test the proposed ES method in this study by using synthetic data.The experimental results from simulation data indicate that our proposed regularization effectively suppresses the Backus effect and mitigates inversion instability in the low-latitude region.Finally,we apply the proposed method to magnetic anomaly data from China Seismo-Electromagnetic Satellite-1(CSES-1)and Macao Science Satellite-1(MSS-1)magnetic measurements over Africa by constructing an ES model of the large-scale lithospheric magnetic field.Compared with existing global lithospheric magnetic field models,our ES model demonstrates good consistency at high altitudes and predicts more stable fields at low altitudes.Furthermore,we derive the reduction to the pole(RTP)magnetic anomaly fields and the apparent susceptibility contrast distribution based on the ES model.The latter correlates well with the regional tectonic framework in Africa and surroundings.展开更多
基金supported by the National Natural Science Foundation of China (41804067, 42174090, 42250101, and 42250103)the Science Research Project of the Hebei Education Department (BJK2024107)+3 种基金the Hebei Natural Science Foundation (D2022403044)the Opening Fund of the Key Laboratory of Geological Survey and Evaluation of the Ministry of Education (GLAB2023ZR02)the MOST Special Fund from the State Key Laboratory of Geological Processes and Mineral Resources (MSFGPMR2022-4)the Excellent Young Scientist Fund of Hebei GEO University (YQ202403)。
文摘The lithospheric magnetic field is an important component of the geomagnetic field,and the oceanic lithosphere exhibits distinct characteristics.Because of its formation mechanisms,evolutionary history,and geomagnetic field polarity reversals,the oceanic lithosphere has significant remanent magnetization,which causes magnetic anomaly stripes parallel to the mid-ocean ridges.However,it is difficult to construct a high-resolution lithospheric magnetic field model in oceanic regions with relatively sparse data or no data.Using forward calculated lithospheric magnetic field data based on an oceanic remanent magnetization(ORM) model with physical and geological foundations as a supplement is a feasible approach.We first collect the latest available oceanic crust age grid,plate motion model,geomagnetic polarity timescale,and oceanic lithosphere thermal structure.Combining the assumptions that the paleo geomagnetic field is a geocentric axial dipole field and that the normal oceanic crust moves only in the horizontal direction,we construct a vertically integrated ORM model of the normal oceanic crust with a known age,including the intensity,inclination,and declination.Both the ORM model and the global induced magnetization(GIM) model are then scaled from two aspects between their forward calculated results and the lithospheric magnetic field model LCS-1.One aspect is the difference in their spherical harmonic power spectra,and the other is the misfit between the grid data over the oceans.We last compare the forward calculated lithospheric magnetic anomaly from the scaled ORM and GIM models with the Macao Science Satellite-1(MSS-1) observed data.The comparison results show that the magnetic anomalies over the normal oceanic crust regions at satellite altitude are mainly contributed by the high-intensity remanent magnetization corresponding to the Cretaceous magnetic quiet period.In these regions,the predicted and observed anomalies show good consistency in spatial distribution,whereas their amplitude differences vary across regions.This result suggests that regional ORM construction should be attempted in future work to address these amplitude discrepancies.
基金supported by the National Natural Science Foundation of China(Grant Nos.42250103 and 42174090)the Opening Fund of Key Laboratory of Geological Survey and Evaluation of Ministry of Education(Grant No.GLAB2023ZR02)the Ministry of Science and Technology(MOST)Special Fund from the State Key Laboratory of Geological Processes and Mineral Resources(Grant No.MSFGPMR2022-4)。
文摘As a means of quantitative interpretation,forward calculations of the global lithospheric magnetic field in the Spherical Harmonic(SH)domain have been widely used to reveal geophysical,lithological,and geothermal variations in the lithosphere.Traditional approaches either do not consider the non-axial dipolar terms of the inducing field and its radial variation or do so by means of complicated formulae.Moreover,existing methods treat the magnetic lithosphere either as an infinitesimally thin layer or as a radially uniform spherical shell of constant thickness.Here,we present alternative forward formulae that account for an arbitrarily high maximum degree of the inducing field and for a magnetic lithosphere of variable thickness.Our simulations based on these formulae suggest that the satellite magnetic anomaly field is sensitive to the non-axial dipolar terms of the inducing field but not to its radial variation.Therefore,in forward and inverse calculations of satellite magnetic anomaly data,the non-axial dipolar terms of the inducing field should not be ignored.Furthermore,our results show that the satellite magnetic anomaly field is sensitive to variability in the lateral thickness of the magnetized shell.In particular,we show that for a given vertically integrated susceptibility distribution,underestimating the thickness of the magnetic layer overestimates the induced magnetic field.This discovery bridges the greatest part of the alleged gap between the susceptibility values measured from rock samples and the susceptibility values required to match the observed magnetic field signal.We expect the formulae and conclusions of this study to be a valuable tool for the quantitative interpretation of the Earth's global lithospheric magnetic field,through an inverse or forward modelling approach.
基金funded by the National Natural Science Foundation of China(42263006)Open Fund from the Jiangxi Province,China(Grant No.20224ACB203011 and 2020101003)East China University of Technology(DHYC-202401 and 1410000874).
文摘Subducting slabs transport carbon to deep mantle depths and release it into the overlying mantle wedge and lithospheric mantle through multiple mechanisms,including mechanical removal via diapirism,metamorphic decarbonization,carbonate dissolution and parting melting.Identifying the dominant carbon recycling mechanism responsible for carbonation of subcontinental lithospheric mantle(SCLM)remains challenging,yet it is critical for understanding the genesis of post-collisional carbonatites and associated rare earth element deposits.To address this issue,we investigate the Li isotopic systematics of typical post-collisional carbonatite-alkalic complexes from Mianning-Dechang(MD),Southeast Xizang.Our results show that the less-evolved magmas(lamprophyres)have mantle-like or slightly lowerδ^(7)Li values(0.3‰–3.6‰)with limited variability,contrasting sharply with the widerδ^(7)Li range observed in associated carbonatites and syenites.We interpret this dichotomy as reflecting distinct processes:while the variable and anomalousδ^(7)Li values in differentiated rocks(carbonatites and syenites)were caused by late-stage magmatic-hydrothermal processes(including biotite fractionation,fluid exsolution and hydrothermal alteration),the lamprophyres retain the primary Li isotopic signature of their mantle source.Together with their arc-like trace element and EM1-EM2-type Sr-Nd-Pb isotopic signatures,such mantle-like or slightly lowerδ^(7)Li values of the lamprophyres preclude carbon derivation from high-δ^(7)Li reservoirs(altered oceanic crust,serpentinites)and recycling of sedimentary carbon through metamorphic decarbonization or dissolution.Instead,these features indicate that the carbon was predominantly transported into the mantle source via partial melting of subducted carbonate-bearing sediments.This study demonstrates that Li isotopes can serve as a tracer for identifying the mechanism of carbon recycling in collision zones.
基金supported by the National Natural Science Foundation of China(Grant No.42472181)the National Key Research and Development Program of China(Grant No.2021YFA0719000)CNPC Innovation Fund(Grant No.2021DQ02-0103).
文摘Geodynamic processes following the Indo-Eurasian plate collision remain a key research focus,and the Jinshajiang-Red River tectonic zone(JRTZ),situated along this collision boundary,provides critical insights into post-collision tectonic evolution.In this study,we identify a lithological assemblage in the JRTZ,including amphibolite,granite gneiss,and migmatite.These rocks exhibit contrasting geochemical signatures,reflecting multiple source regions:asthenospheric mantle,lithospheric mantle,mafic lower and upper crust.Specifically,amphibolite(28.5 Ma)formed through the partial melting of OIB-like mantle source,whereas S-type granite gneiss(28.2 Ma)originated from the dehydration melting of metamorphosed sedimentary rocks.Amphibole monzonite(28.9 Ma)records the mixing of ancient crustal material with mantle-derived components,while migmatite(37.9 Ma)resulted from deep melting processes of metasedimentary rocks under shear conditions.We propose that the ongoing Indo-Eurasian convergence progressively thickened the crust,ultimately driving large-scale lithospheric delamination between the Eocene and Oligocene.This delamination triggered asthenospheric upwelling,which provided the thermal input required for widespread melting.This lithospheric delamination event started around 38-37 Ma and lasted at least until 28 Ma.
文摘In the author list,the corresponding author indicator(*)was inadvertently omitted from HOU Zengqian’s name.This has now been corrected to:“HOU Zengqian¹,*”.The online version of this article was corrected.
基金supported by the National Natural Science Foundation of China(92462304)National Key Technologies R&D Program(2022YFF0800903)。
文摘A subducted continental slab is sometimes torn during collision,yet the exact impact of slab-tearing on the overlying lithosphere remains unclear.Here,we image the structure and architecture of the Asian lithosphere above the Indian slab in the eastern Tibetan Plateau using multiscale seismic tomography models and zircon Hf isotopic mapping,respectively.Our mantle V_(p)model shows that a large low-velocity anomaly extends laterally beneath the thinned Asian lithosphere above the tear zone roughly along the 26°N.The V_(s)images,magmatic records and Hf isotopic mapping indicate that this low-velocity anomaly recorded an asthenosphere flow eastward along the tear zone,which thermally eroded and refertilized the overlying Asian lithosphere,leading to the lithospheric melting,thinning and root delaminating.The vertical tear also generated a tectonic weak zone with associated Cenozoic potassic and carbonatitic magma suites.We argue that such a hot lithosphere discontinuity provided a reasonable mechanism for the abrupt change of crust thickness and the transformation of crust-mantle deformation from coupling to decoupling across the tear zone.
基金jointly sponsored by the Sinoprobe Laboratory of Chinese Academy of Geological Sciences(Grant No.JKYQN202303)National Natural Science Foundation of China(Grant No.U2344220)the China Geology Survey Project(Grant Nos.DD20230008,DD20240079)。
文摘The South China Block(SCB)was formed through the Neoproterozoic amalgamation of the Yangtze Block(YB),the Cathaysia Block(CB),and the accreted components of the Jiangnan orogenic belt(JNO),it is bounded by the Jiangshan–Shaoxing–Pingxiang fault(JSPF)and the Jiujiang–Shitai–Jishou fault(JSJF)(Yao et al.,2019).The SCB has undergone a series of complex geological events,including Paleozoic orogeny,Mesozoic collisions with the North China Craton(NCC)and the Indochina Block,as well as the intracontinental orogeny,leading to extensive lithospheric modifications and magmatic activities(Zhang H J et al.,2023;Fig.1).
文摘本文基于地面测量布格异常和EIGEN-6C4(European Improved Gravity model of the Earth by New techniques version 6C4)重力资料,以USTClitho2.0(Unified Seismic Tomography models for continental China lithosphere version 2.0)岩石圈结构模型为约束,利用顾及地壳密度横向变化的布格改正、小波多尺度分解、均衡改正、Moho面重力反演和岩石圈有效弹性厚度(T_(e))反演等方法,计算了郯庐断裂带中南段布格异常及其多尺度分解结果、深部均衡异常、Moho面深度、岩石圈有效弹性厚度及荷载比,结合地震活动性和地球物理资料,综合分析了该地区重力异常构造背景及其与地震活动性的关系.结果表明,沿郯庐断裂带的重力异常在嘉山以南段、嘉山-新沂段和新沂-安丘段呈显著差异性3段式分布,且与地震活动性分段特征高度统一.地震活动性强的嘉山以南段和新沂-安丘段具有浅部布格异常线性条带、深部布格异常高梯度带、Moho面陡变带或上隆带、地壳重力不均衡、低岩石圈有效弹性厚度和高荷载比特征,表明其深部结构破坏程度高,岩石圈力学强度低,且存在均衡调整作用,有利于应力及时释放,因而地震活动频繁;地震活动性弱的嘉山-新沂段浅部布格异常散乱,深部布格异常高值区和低值正均衡异常区穿过郯庐断裂带,Moho面变化平缓,岩石圈有效弹性厚度值高,荷载比低,对应扬子地块俯冲于华北断块区之下的遗留深部构造,其深部结构破坏程度较低,岩石圈力学强度大,且均衡调整作用不强,岩石圈不易发生破裂,因而地震频率很低.郯城8.5级地震位于横穿郯庐断裂带的深部构造北缘附近,是最易于积累应力的部位,深部构造和岩石圈有效弹性厚度剧烈变化导致应力分布不均匀以及较强的均衡调整作用可能是地震的触发因素.嘉山-新沂段具备有利于应力长期积累的深部构造条件,应持续关注其应力积累状态和强震风险.
基金supported by funds from the Ministry of Science and Technology of the People's Republic of China(No.2019YFA0708603)NSFC(Nos.41973050,42288201,41930215)the Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory(Guangzhou)(No.GML2019ZD0202)。
文摘Mineralogical data are presented for the peridotite xenoliths from Miocene(~19 Ma)Qingyuan basalts in the eastern North China Craton(NCC),with the aim of constraining on property of the sub-continental lithospheric mantle(SCLM)beneath the northern Tan-Lu fault zone(TLFZ)during the Cenozoic.The Qingyuan peridotites are dominated by spinel lherzolites with moderate-Mg^(#)olivines(89.4 to 91.2),suggesting that the regional SCLM is mainly transitional and fertile.Light rare earth element(LREE)-depleted,slightly depleted and enriched clinopyroxenes(Cpx)are identified in different peridotites.Chemical compositions of the LREE-enriched Cpx and the presence of phlogopite suggest that the Qingyuan SCLM has experienced silicate-related metasomatism.The synthesis of available mineral chemical data of the mantle xenoliths across the NCC confirms the SCLM beneath the NCC is highly heterogeneous in time and space.The Mesozoic–Cenozoic SCLM beneath the TLFZ and neighboring regions are more fertile and thinner than that beneath the region away from the fault zone.The fertile and refractory peridotite xenoliths experienced varying degrees of silicate and carbonatite metasomatism,respectively.The spatial-temporal lithospheric mantle heterogeneity in composition,age and thickness suggest that the trans-lithosphere fault zone played an important role in heterogeneous replacement of refractory cratonic lithospheric mantle.
基金supported by the National Natural Science Foundation of China(Grant Nos.42250103 and 42174090)the Opening Fund of Key Laboratory of Geological Survey and Evaluation of Ministry of Education(Grant No.GLAB2023ZR02)the MOST Special Fund from the State Key Laboratory of Geological Processes and Mineral Resources(Grant No.MSFGPMR2022-4).
文摘The equivalent source(ES)method in the spherical coordinate system has been widely applied to processing,reduction,field modeling,and geophysical and geological interpretation of satellite magnetic anomaly data.However,the inversion for the ES model suffers from nonuniqueness and instability,which remain unresolved.To mitigate these issues,we introduce both the minimum and flattest models into the model objective function as an alternative regularization approach in the spherical ES method.We first present the methods,then analyze the accuracy of forward calculation and test the proposed ES method in this study by using synthetic data.The experimental results from simulation data indicate that our proposed regularization effectively suppresses the Backus effect and mitigates inversion instability in the low-latitude region.Finally,we apply the proposed method to magnetic anomaly data from China Seismo-Electromagnetic Satellite-1(CSES-1)and Macao Science Satellite-1(MSS-1)magnetic measurements over Africa by constructing an ES model of the large-scale lithospheric magnetic field.Compared with existing global lithospheric magnetic field models,our ES model demonstrates good consistency at high altitudes and predicts more stable fields at low altitudes.Furthermore,we derive the reduction to the pole(RTP)magnetic anomaly fields and the apparent susceptibility contrast distribution based on the ES model.The latter correlates well with the regional tectonic framework in Africa and surroundings.