With the progression of photolithography processes,the present technology nodes have attained 3 nm and even 2 nm,necessitating a transition in the precision standards for displacement measurement and alignment methodo...With the progression of photolithography processes,the present technology nodes have attained 3 nm and even 2 nm,necessitating a transition in the precision standards for displacement measurement and alignment methodologies from the nanometer scale to the sub-nanometer scale.Metasurfaces,owing to their superior light field manipulation capabilities,exhibit significant promise in the domains of displacement measurement and positioning,and are anticipated to be applied in the advanced alignment systems of lithography machines.This paper primarily provides an overview of the contemporary alignment and precise displacement measurement technologies employed in photolithography stages,alongside the operational principles of metasurfaces in the context of precise displacement measurement and alignment.Furthermore,it explores the evolution of metasurface systems capable of achieving nano/sub-nano precision,and identifies the critical issues associated with sub-nanometer measurements using metasurfaces,as well as the principal obstacles encountered in their implementation within photolithography stages.The objective is to provide initial guidance for the advancement of photolithography technology.展开更多
Acoustic/ultrasonic sensors are devices that can convert mechanical energy into electrical signals.The Fabry–Perot cavity is processed on the end face of the double-clad fiber by a two-photon three-dimensional lithog...Acoustic/ultrasonic sensors are devices that can convert mechanical energy into electrical signals.The Fabry–Perot cavity is processed on the end face of the double-clad fiber by a two-photon three-dimensional lithography machine.In this study,the outer diameter of the core cladding was 250μm,the diameter of the core was 9μm,and the microcavity sensing unit was only 30μm.It could measure ultrasonic signals with high precision.The characteristics of the proposed ultrasonic sensor were investigated,and its feasibility was proven through experiments.Its design has a small size and can replace a larger ultrasonic detector device for photoacoustic signal detection.The sensor is applicable to the field of biomedical information technology,including medical diagnosis,photoacoustic endoscopy,and photoacoustic imaging.展开更多
基金supported by the National Natural Science Foundation of China(No.62222511)National Key Research and Devel-opment Program of China(No.2023YFF0613000)+1 种基金Natural Science Foundation of Zhejiang Province China(No.LR22F050006)STI 2030-Major Projects(No.2021ZD0200401).
文摘With the progression of photolithography processes,the present technology nodes have attained 3 nm and even 2 nm,necessitating a transition in the precision standards for displacement measurement and alignment methodologies from the nanometer scale to the sub-nanometer scale.Metasurfaces,owing to their superior light field manipulation capabilities,exhibit significant promise in the domains of displacement measurement and positioning,and are anticipated to be applied in the advanced alignment systems of lithography machines.This paper primarily provides an overview of the contemporary alignment and precise displacement measurement technologies employed in photolithography stages,alongside the operational principles of metasurfaces in the context of precise displacement measurement and alignment.Furthermore,it explores the evolution of metasurface systems capable of achieving nano/sub-nano precision,and identifies the critical issues associated with sub-nanometer measurements using metasurfaces,as well as the principal obstacles encountered in their implementation within photolithography stages.The objective is to provide initial guidance for the advancement of photolithography technology.
基金This work was supported in part by the Natural Science Foundation of Guangdong Province,No.2020A1515010958Key Project of Shenzhen Science and Technology Plan,No.JCYJ20200109113808048.
文摘Acoustic/ultrasonic sensors are devices that can convert mechanical energy into electrical signals.The Fabry–Perot cavity is processed on the end face of the double-clad fiber by a two-photon three-dimensional lithography machine.In this study,the outer diameter of the core cladding was 250μm,the diameter of the core was 9μm,and the microcavity sensing unit was only 30μm.It could measure ultrasonic signals with high precision.The characteristics of the proposed ultrasonic sensor were investigated,and its feasibility was proven through experiments.Its design has a small size and can replace a larger ultrasonic detector device for photoacoustic signal detection.The sensor is applicable to the field of biomedical information technology,including medical diagnosis,photoacoustic endoscopy,and photoacoustic imaging.