A new two-step synthetic method was successfully developed to simplify the recrystallization process of lithium difluoro(oxalate)borate(LiODFB).Meanwhile,the purity of LiODFB as-prepared was determined by NMR,ICP-AES ...A new two-step synthetic method was successfully developed to simplify the recrystallization process of lithium difluoro(oxalate)borate(LiODFB).Meanwhile,the purity of LiODFB as-prepared was determined by NMR,ICP-AES and Karl Fisher measurements,respectively.The as-prepared LiODFB presents a high purity up to 99.95%.Its metal ions and water contents are under good control as well.Besides,its structure information and thermal properties were confirmed by FTIR,Raman and DSC-TGA analyses,respectively.LiODFB exerts fine thermostability and hypo-water-sensitivity and its structure information agrees well with previous literature.Furthermore,a combination of phase diagram and Raman spectroscopy were utilized to study the thermal phase behavior and ions coordination of LiODFB-DMC binary system to optimize the synthesis and recrystallization process.Although there are three types of molecular interaction forms(CIPs,AGG-IIa,AGG-IIIb)in LiODFB-DMC binary system,LiODFB can only be isolated as large single crystal solvate as LiODFB·(DMC)3/2 by slowly cooling subjected to the nucleation kinetics.Therefore,the fundamental information of our work is helpful in accelerating the application of LiODFB in Li-ion secondary batteries.展开更多
The development of high-energy-density Li-ion batteries is hindered by the irreversible capacity loss during the initial charge-discharge process.Therefore,pre-lithiation technology has emerged in the past few decades...The development of high-energy-density Li-ion batteries is hindered by the irreversible capacity loss during the initial charge-discharge process.Therefore,pre-lithiation technology has emerged in the past few decades as a powerful method to supplement the undesired lithium loss,thereby maximizing the energy utilization of LIBs and extending their cycle life.Lithium oxalate(Li_(2)C_(2)O_(4)),with a high lithium content and excellent air stability,has been considered one of the most promising materials for lithium compensation.However,the sluggish electrochemical decomposition kinetics of the material severely hinders its further commercial application.Here,we introduce a recrystallization strategy combined with atomic Ni catalysts to modulate the mass transport and decomposition reaction kinetics.The decomposition potential of Li_(2)C_(2)O_(4)is significantly decreased from~4.90V to~4.30V with a high compatibility with the current battery systems.In compared to the bare NCM//Li cell,the Ni/N-rGO and Li_(2)C_(2)O_(4)composite(Ni-LCO)modified cell releases an extra capacity of~11.7%.Moreover,this ratio can be magnified in the NCM//SiOx full cell,resulting in a 30.4%higher reversible capacity.Overall,this work brings the catalytic paradigm into the pre-lithiation technology,which opens another window for the development of high-energy-density battery systems.展开更多
The energy density of commercial lithium(Li)ion batteries with graphite anode is reaching the limit.It is believed that directly utilizing Li metal as anode without a host could enhance the battery’s energy density t...The energy density of commercial lithium(Li)ion batteries with graphite anode is reaching the limit.It is believed that directly utilizing Li metal as anode without a host could enhance the battery’s energy density to the maximum extent.However,the poor reversibility and infinite volume change of Li metal hinder the realistic implementation of Li metal in battery community.Herein,a commercially viable hybrid Li-ion/metal battery is realized by a coordinated strategy of symbiotic anode and prelithiated cathode.To be specific,a scalable template-removal method is developed to fabricate the porous graphite layer(PGL),which acts as a symbiotic host for Li ion intercalation and subsequent Li metal deposition due to the enhanced lithiophilicity and sufficient ion-conducting pathways.A continuous dissolution-deintercalation mechanism during delithiation process further ensures the elimination of dead Li.As a result,when the excess plating Li reaches 30%,the PGL could deliver an ultrahigh average Coulombic efficiency of 99.5% for 180 cycles with a capacity of 2.48 m Ah cm^(-2) in traditional carbonate electrolyte.Meanwhile,an air-stable recrystallized lithium oxalate with high specific capacity(514.3 m Ah g^(-1))and moderate operating potential(4.7-5.0 V)is introduced as a sacrificial cathode to compensate the initial loss and provide Li source for subsequent cycles.Based on the prelithiated cathode and initial Li-free symbiotic anode,under a practical-level3 m Ah capacity,the assembled hybrid Li-ion/metal full cell with a P/N ratio(capacity ratio of Li Ni_(0.8)Co_(0.1)Mn_(0.1)O_(2) to graphite)of 1.3exhibits significantly improved capacity retention after 300 cycles,indicating its great potential for high-energy-density Li batteries.展开更多
Lithium bis(fluorosulfonyl)imide(LiFSI) is a promising replacement for lithium hexafluorosphate due to its excellent properties. A solution to the corrosion of aluminum(Al) current collectors by LiFSI at elevated temp...Lithium bis(fluorosulfonyl)imide(LiFSI) is a promising replacement for lithium hexafluorosphate due to its excellent properties. A solution to the corrosion of aluminum(Al) current collectors by LiFSI at elevated temperatures is essential. The mechanisms of Al corrosion in LiFSI-based electrolyte at 45 ℃ were studied with density functional theory calculations and spectroscopic investigations. It is found that the irregular, loose and unprotected AlF3 materials caused by the dissolution of co-generated Al(FSI)3 can exacerbate Al corrosion with the increase of temperature. Lithium bis(oxalate)borate(LiBOB) can effectively inhibit the Al corrosion with a robust and protective interphase;this can be attributed to the interfacial interactions between the Al foil and electrolyte. Boron-containing compounds promote the change from AlF3 to LiF, which further reinforces interfacial stability. This work allows the design of an interface to Al foil using LiFSI salt in lithium-ion batteries.展开更多
基金Project(51371198)supported by the National Natural Science Foundation of ChinaProject(K1202039-11)supported by the Science and Technology Project of Changsha,China
文摘A new two-step synthetic method was successfully developed to simplify the recrystallization process of lithium difluoro(oxalate)borate(LiODFB).Meanwhile,the purity of LiODFB as-prepared was determined by NMR,ICP-AES and Karl Fisher measurements,respectively.The as-prepared LiODFB presents a high purity up to 99.95%.Its metal ions and water contents are under good control as well.Besides,its structure information and thermal properties were confirmed by FTIR,Raman and DSC-TGA analyses,respectively.LiODFB exerts fine thermostability and hypo-water-sensitivity and its structure information agrees well with previous literature.Furthermore,a combination of phase diagram and Raman spectroscopy were utilized to study the thermal phase behavior and ions coordination of LiODFB-DMC binary system to optimize the synthesis and recrystallization process.Although there are three types of molecular interaction forms(CIPs,AGG-IIa,AGG-IIIb)in LiODFB-DMC binary system,LiODFB can only be isolated as large single crystal solvate as LiODFB·(DMC)3/2 by slowly cooling subjected to the nucleation kinetics.Therefore,the fundamental information of our work is helpful in accelerating the application of LiODFB in Li-ion secondary batteries.
基金supported by National Natural Science Foundation of China(Grant No.52002094)Guangdong Basic and Applied Basic Research Foundation(Grant No.2019A1515110756)+2 种基金Shenzhen Science and Technology Program(Grant No.JCYJ20210324121411031,JSGG202108021253804014,RCBS20210706092218040)the Shenzhen Steady Support Plan(GXWD20221030205923001,GXWD20201230155427003-20200824103000001)School Research Startup Expenses of Harbin Institute of Technology(Shenzhen)(Grant No.DD29100027,DD45001022).
文摘The development of high-energy-density Li-ion batteries is hindered by the irreversible capacity loss during the initial charge-discharge process.Therefore,pre-lithiation technology has emerged in the past few decades as a powerful method to supplement the undesired lithium loss,thereby maximizing the energy utilization of LIBs and extending their cycle life.Lithium oxalate(Li_(2)C_(2)O_(4)),with a high lithium content and excellent air stability,has been considered one of the most promising materials for lithium compensation.However,the sluggish electrochemical decomposition kinetics of the material severely hinders its further commercial application.Here,we introduce a recrystallization strategy combined with atomic Ni catalysts to modulate the mass transport and decomposition reaction kinetics.The decomposition potential of Li_(2)C_(2)O_(4)is significantly decreased from~4.90V to~4.30V with a high compatibility with the current battery systems.In compared to the bare NCM//Li cell,the Ni/N-rGO and Li_(2)C_(2)O_(4)composite(Ni-LCO)modified cell releases an extra capacity of~11.7%.Moreover,this ratio can be magnified in the NCM//SiOx full cell,resulting in a 30.4%higher reversible capacity.Overall,this work brings the catalytic paradigm into the pre-lithiation technology,which opens another window for the development of high-energy-density battery systems.
基金the support by the Key-Area Research and Development Program of Guangdong Province(No.2020B090919003)the National Nature Science Foundation of China(Nos.51872157 and 52072208)+4 种基金the Shenzhen Technical Plan Project(Nos.JCYJ20170817161753629 and JCYJ20170412170911187)the Special Fund Project for Strategic Emerging Industry Development of Shenzhen(No.20170428145209110)the Local Innovative and Research Teams Project of Guangdong Pearl River Talents Program(No.2017BT01N111)the Support Plan for Shenzhen Manufacturing Innovation Center(No.20200627215553988)the Key projects for core technology research of Dongguan(No.2019622119003)。
文摘The energy density of commercial lithium(Li)ion batteries with graphite anode is reaching the limit.It is believed that directly utilizing Li metal as anode without a host could enhance the battery’s energy density to the maximum extent.However,the poor reversibility and infinite volume change of Li metal hinder the realistic implementation of Li metal in battery community.Herein,a commercially viable hybrid Li-ion/metal battery is realized by a coordinated strategy of symbiotic anode and prelithiated cathode.To be specific,a scalable template-removal method is developed to fabricate the porous graphite layer(PGL),which acts as a symbiotic host for Li ion intercalation and subsequent Li metal deposition due to the enhanced lithiophilicity and sufficient ion-conducting pathways.A continuous dissolution-deintercalation mechanism during delithiation process further ensures the elimination of dead Li.As a result,when the excess plating Li reaches 30%,the PGL could deliver an ultrahigh average Coulombic efficiency of 99.5% for 180 cycles with a capacity of 2.48 m Ah cm^(-2) in traditional carbonate electrolyte.Meanwhile,an air-stable recrystallized lithium oxalate with high specific capacity(514.3 m Ah g^(-1))and moderate operating potential(4.7-5.0 V)is introduced as a sacrificial cathode to compensate the initial loss and provide Li source for subsequent cycles.Based on the prelithiated cathode and initial Li-free symbiotic anode,under a practical-level3 m Ah capacity,the assembled hybrid Li-ion/metal full cell with a P/N ratio(capacity ratio of Li Ni_(0.8)Co_(0.1)Mn_(0.1)O_(2) to graphite)of 1.3exhibits significantly improved capacity retention after 300 cycles,indicating its great potential for high-energy-density Li batteries.
基金the financial supports from the National Natural Science Foundation of China (Nos. 21766017, 51962019)the Major Science and Technology Projects of Gansu Province, China (No. 18ZD2FA012)+1 种基金the Chinese Academy of Sciences “Western Light” Young Scholars ProjectLanzhou University of Technology Hongliu First-class Discipline Construction Program, China
文摘Lithium bis(fluorosulfonyl)imide(LiFSI) is a promising replacement for lithium hexafluorosphate due to its excellent properties. A solution to the corrosion of aluminum(Al) current collectors by LiFSI at elevated temperatures is essential. The mechanisms of Al corrosion in LiFSI-based electrolyte at 45 ℃ were studied with density functional theory calculations and spectroscopic investigations. It is found that the irregular, loose and unprotected AlF3 materials caused by the dissolution of co-generated Al(FSI)3 can exacerbate Al corrosion with the increase of temperature. Lithium bis(oxalate)borate(LiBOB) can effectively inhibit the Al corrosion with a robust and protective interphase;this can be attributed to the interfacial interactions between the Al foil and electrolyte. Boron-containing compounds promote the change from AlF3 to LiF, which further reinforces interfacial stability. This work allows the design of an interface to Al foil using LiFSI salt in lithium-ion batteries.