期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Synthesis of lithium difluoro(oxalate)borate(LiODFB), phase diagram and ions coordination of LiODFB in dimethyl carbonate 被引量:1
1
作者 ZHOU Hong-ming XIAO Kai-wen +2 位作者 LI Jian XIAO De-min JIANG Yi-xiong 《Journal of Central South University》 SCIE EI CAS CSCD 2018年第3期550-560,共11页
A new two-step synthetic method was successfully developed to simplify the recrystallization process of lithium difluoro(oxalate)borate(LiODFB).Meanwhile,the purity of LiODFB as-prepared was determined by NMR,ICP-AES ... A new two-step synthetic method was successfully developed to simplify the recrystallization process of lithium difluoro(oxalate)borate(LiODFB).Meanwhile,the purity of LiODFB as-prepared was determined by NMR,ICP-AES and Karl Fisher measurements,respectively.The as-prepared LiODFB presents a high purity up to 99.95%.Its metal ions and water contents are under good control as well.Besides,its structure information and thermal properties were confirmed by FTIR,Raman and DSC-TGA analyses,respectively.LiODFB exerts fine thermostability and hypo-water-sensitivity and its structure information agrees well with previous literature.Furthermore,a combination of phase diagram and Raman spectroscopy were utilized to study the thermal phase behavior and ions coordination of LiODFB-DMC binary system to optimize the synthesis and recrystallization process.Although there are three types of molecular interaction forms(CIPs,AGG-IIa,AGG-IIIb)in LiODFB-DMC binary system,LiODFB can only be isolated as large single crystal solvate as LiODFB·(DMC)3/2 by slowly cooling subjected to the nucleation kinetics.Therefore,the fundamental information of our work is helpful in accelerating the application of LiODFB in Li-ion secondary batteries. 展开更多
关键词 lithium difluoro(oxalate)borate two-step synthesis recrystallization phase diagram ions coordination
在线阅读 下载PDF
Unlocking the decomposition limitations of the Li2C2O4 for highly efficient cathode preliathiations 被引量:2
2
作者 Hongqiang Zhang Tiansheng Bai +13 位作者 Jun Cheng Fengjun Ji Zhen Zeng Yuanyuan Li Chenwu Zhang Jiaxian Wang Weihao Xia Naixuan Ci Yixuan Guo Dandan Gao Wei Zhai Jingyu Lu Lijie Ci Deping Li 《Advanced Powder Materials》 2024年第5期58-68,共11页
The development of high-energy-density Li-ion batteries is hindered by the irreversible capacity loss during the initial charge-discharge process.Therefore,pre-lithiation technology has emerged in the past few decades... The development of high-energy-density Li-ion batteries is hindered by the irreversible capacity loss during the initial charge-discharge process.Therefore,pre-lithiation technology has emerged in the past few decades as a powerful method to supplement the undesired lithium loss,thereby maximizing the energy utilization of LIBs and extending their cycle life.Lithium oxalate(Li_(2)C_(2)O_(4)),with a high lithium content and excellent air stability,has been considered one of the most promising materials for lithium compensation.However,the sluggish electrochemical decomposition kinetics of the material severely hinders its further commercial application.Here,we introduce a recrystallization strategy combined with atomic Ni catalysts to modulate the mass transport and decomposition reaction kinetics.The decomposition potential of Li_(2)C_(2)O_(4)is significantly decreased from~4.90V to~4.30V with a high compatibility with the current battery systems.In compared to the bare NCM//Li cell,the Ni/N-rGO and Li_(2)C_(2)O_(4)composite(Ni-LCO)modified cell releases an extra capacity of~11.7%.Moreover,this ratio can be magnified in the NCM//SiOx full cell,resulting in a 30.4%higher reversible capacity.Overall,this work brings the catalytic paradigm into the pre-lithiation technology,which opens another window for the development of high-energy-density battery systems. 展开更多
关键词 High-energy-density batteries Pre-lithiation technologies lithium oxalate(Li2C2O4) RECRYSTALLIZATION Single-atom catalyst
在线阅读 下载PDF
Commercially Viable Hybrid Li-Ion/Metal Batteries with High Energy Density Realized by Symbiotic Anode and Prelithiated Cathode 被引量:1
3
作者 Kui Lin Xiaofu Xu +8 位作者 Xianying Qin Ming Liu Liang Zhao Zijin Yang Qi Liu Yonghuang Ye Guohua Chen Feiyu Kang Baohua Li 《Nano-Micro Letters》 SCIE EI CAS CSCD 2022年第9期174-186,共13页
The energy density of commercial lithium(Li)ion batteries with graphite anode is reaching the limit.It is believed that directly utilizing Li metal as anode without a host could enhance the battery’s energy density t... The energy density of commercial lithium(Li)ion batteries with graphite anode is reaching the limit.It is believed that directly utilizing Li metal as anode without a host could enhance the battery’s energy density to the maximum extent.However,the poor reversibility and infinite volume change of Li metal hinder the realistic implementation of Li metal in battery community.Herein,a commercially viable hybrid Li-ion/metal battery is realized by a coordinated strategy of symbiotic anode and prelithiated cathode.To be specific,a scalable template-removal method is developed to fabricate the porous graphite layer(PGL),which acts as a symbiotic host for Li ion intercalation and subsequent Li metal deposition due to the enhanced lithiophilicity and sufficient ion-conducting pathways.A continuous dissolution-deintercalation mechanism during delithiation process further ensures the elimination of dead Li.As a result,when the excess plating Li reaches 30%,the PGL could deliver an ultrahigh average Coulombic efficiency of 99.5% for 180 cycles with a capacity of 2.48 m Ah cm^(-2) in traditional carbonate electrolyte.Meanwhile,an air-stable recrystallized lithium oxalate with high specific capacity(514.3 m Ah g^(-1))and moderate operating potential(4.7-5.0 V)is introduced as a sacrificial cathode to compensate the initial loss and provide Li source for subsequent cycles.Based on the prelithiated cathode and initial Li-free symbiotic anode,under a practical-level3 m Ah capacity,the assembled hybrid Li-ion/metal full cell with a P/N ratio(capacity ratio of Li Ni_(0.8)Co_(0.1)Mn_(0.1)O_(2) to graphite)of 1.3exhibits significantly improved capacity retention after 300 cycles,indicating its great potential for high-energy-density Li batteries. 展开更多
关键词 Hybrid lithium-ion/metal battery Symbiotic anode Porous graphite layer Cathode prelithiation lithium oxalate
在线阅读 下载PDF
Mechanism of aluminum corrosion in LiFSI-based electrolyte at elevated temperatures 被引量:4
4
作者 Chun-lei LI Shuang-wei ZENG +6 位作者 Peng WANG Zhao-juan LI Li YANG Dong-ni ZHAO Jie WANG Hai-ning LIU Shi-you LI 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2021年第5期1439-1451,共13页
Lithium bis(fluorosulfonyl)imide(LiFSI) is a promising replacement for lithium hexafluorosphate due to its excellent properties. A solution to the corrosion of aluminum(Al) current collectors by LiFSI at elevated temp... Lithium bis(fluorosulfonyl)imide(LiFSI) is a promising replacement for lithium hexafluorosphate due to its excellent properties. A solution to the corrosion of aluminum(Al) current collectors by LiFSI at elevated temperatures is essential. The mechanisms of Al corrosion in LiFSI-based electrolyte at 45 ℃ were studied with density functional theory calculations and spectroscopic investigations. It is found that the irregular, loose and unprotected AlF3 materials caused by the dissolution of co-generated Al(FSI)3 can exacerbate Al corrosion with the increase of temperature. Lithium bis(oxalate)borate(LiBOB) can effectively inhibit the Al corrosion with a robust and protective interphase;this can be attributed to the interfacial interactions between the Al foil and electrolyte. Boron-containing compounds promote the change from AlF3 to LiF, which further reinforces interfacial stability. This work allows the design of an interface to Al foil using LiFSI salt in lithium-ion batteries. 展开更多
关键词 lithium-ion batteries LiFSI-based electrolyte lithium bis(oxalate)borate(LiBOB) corrosion inhibition elevated temperatures interfacial film
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部