In this work,we proposed a strategy for the hydrolysis of native corn starch after the treatment of corn starch in an ionic liquid aqueous solution,and it is an awfully“green”and simple means to obtain starch with l...In this work,we proposed a strategy for the hydrolysis of native corn starch after the treatment of corn starch in an ionic liquid aqueous solution,and it is an awfully“green”and simple means to obtain starch with low molecular weight and amorphous state.X-ray diffraction results revealed that the natural starch crystalline region was largely disrupted by ionic liquid owing to the broken intermolecular and intramolecular hydrogen bonds.After hydrolysis,the morphology of starch changed from particles of native corn starch into little pieces,and their molecular weight could be effectively regulated during the hydrolysis process,and also the hydrolyzed starch samples exhibited decreased thermal stability with the extension of hydrolysis time.This work would counsel as a powerful tool for the development of native starch in realistic applications.展开更多
Pediatric cancers are particularly significant due to their uncommon occurrence in children,driven by a variety of underlying factors.Because of their distinct molecular and genetic makeup,which makes early detection ...Pediatric cancers are particularly significant due to their uncommon occurrence in children,driven by a variety of underlying factors.Because of their distinct molecular and genetic makeup,which makes early detection challenging,they are linked to problems.Diagnostic methods like imaging and tissue biopsy are only effective when the tumor has reached a size that can be identified.The liquid biopsy technique,the least intrusive and most convenient diagnostic method,is the subject of this review.It focuses on the significance of single cell analysis in examining uncommon cancer types.The many biomarkers found in bodily fluids and the cancer types they are linked to in children have been assessed,as has the potential route towards early detection and cancer recurrence forecasting.Combining the single cell liquid biopsy with the newest technologies,such as computational and multi-omics approaches,which have improved the efficiency of processing massive and unique genetic data,appears promising.This article discusses on a number of case reports for uncommon pediatric malignancies,such as Neuroblastoma,Medulloblastoma,Wilms Tumor,Rhabdomyosarcoma,Ewing Sarcoma,and Retinoblastoma,as well as their liquid biopsy profiles.Furthermore,the findings raise ethical questions regarding the therapeutic application of the technology as well as possible difficulties related to clinical translation.The likelihood that this single cell liquid biopsy will be clinically validated and eventually used as a routine diagnostic tool for uncommon pediatric cancers will rise with the realistic approach to sensitivity monitoring,specificity upgrading,and optimization.展开更多
While desalination is a key solution for global freshwater scarcity,its implementation faces environmental challenges due to concentrated brine byproducts mainly disposed of via coastal discharge systems.Solar interfa...While desalination is a key solution for global freshwater scarcity,its implementation faces environmental challenges due to concentrated brine byproducts mainly disposed of via coastal discharge systems.Solar interfacial evaporation offers sustainable management potential,yet inevitable salt nucleation at evaporation interfaces degrades photothermal conversion and operational stability via light scattering and pathway blockage.Inspired by the mangrove leaf,we propose a photothermal 3D polydopamine and polypyrrole polymerized spacer fabric(PPSF)-based upward hanging model evaporation configuration with a reverse water feeding mechanism.This design enables zero-liquiddischarge(ZLD)desalination through phase-separation crystallization.The interconnected porous architecture and the rough surface of the PPSF enable superior water transport,achieving excellent solar-absorbing efficiency of 97.8%.By adjusting the tilt angle(θ),the evaporator separates the evaporation and salt crystallization zones via controlled capillary-driven brine transport,minimizing heat dissipation from brine discharge.At an optimal tilt angle of 52°,the evaporator reaches an evaporation rate of 2.81 kg m^(−2) h^(−1) with minimal heat loss(0.366 W)under 1-sun illumination while treating a 7 wt%waste brine solution.Furthermore,it sustains an evaporation rate of 2.71 kg m^(−2) h^(−1) over 72 h while ensuring efficient salt recovery.These results highlight a scalable,energy-efficient approach for sustainable ZLD desalination.展开更多
The operational efficiency of membrane electrode assemblies in direct liquid fuel cells is critically dependent on the fuel purity in the anode compartment.To address the inherent challenge of fuel mixing problem in a...The operational efficiency of membrane electrode assemblies in direct liquid fuel cells is critically dependent on the fuel purity in the anode compartment.To address the inherent challenge of fuel mixing problem in alcohol systems,we propose a rational catalyst design strategy focusing on morphological and compositional optimization.Sodium borohydride-derived PtCuMo alloy aerogels(AA)exhibit abundant grain boundary defects,while solvothermally prepared nanowire arrays(NA)maintain excellent single-crystalline characteristics.Density functional theory calculations demonstrate that engineered grain boundaries can effectively broaden the adsorption energy window for key reaction intermediates,enabling superior adaptability to diverse catalytic pathways.By precisely controlling Cu content,we identified Pt_(3)Cu_(3)Mo_(0.5)AA as the optimal catalyst configuration,demonstrating 150% enhancement in methanol oxidation reaction activity compared to Pt_(3)Cu_(6)Mo_(0.5)NA(1.5 vs.0.6 A·mg_(Pt)^(-1))and 17% improvement in ethanol oxidation reaction performance versus Pt_(3)Cu_(1)Mo_(0.5)NA(0.82 vs.0.70 A·mg_(Pt)^(-1)).Practical application testing using gas diffusion electrodes(anode loading:0.85 mg_(Pt)·cm^(-2))achieved a mass-specific power density of 14.14 W·g_(Pt)^(-1)in 1:1 methanol/ethanol blends,representing a 3.5-fold improvement over commercial Pt/C benchmarks.This work establishes a fundamental framework for developing highperformance,broad-spectrum electrocatalysts in advanced fuel cell systems.展开更多
The inability to access brain tissue has greatly hindered our ability to study and care for individuals suffering from psychiatric and neurological conditions.Critics have questioned efforts to develop peripheral bloo...The inability to access brain tissue has greatly hindered our ability to study and care for individuals suffering from psychiatric and neurological conditions.Critics have questioned efforts to develop peripheral blood biomarkers in neurological and psychiatric disorders based on the assertion that disease pathology is limited to the brain.The discovery that all tissues,including the brain,release extracellular vesicles(Raposo and Stoorvogel,2013)and cell free DNAs(Chan et al.,2013)into various body fluids has provided a potential way to measure activity from inaccessible tissues like the central nervous system(CNS)and has given rise to the term“liquid biopsy.”The development of liquid biopsies that can diagnose and predict the course of psychiatric and neurological disorders would be transformative.The ability to predict episodic events such as mania,depression,and risk for suicide would be particularly useful for psychiatric care as it would enable the development of interventions that prevent mortality and improve outcomes.Additionally,biomarkers that are informative about drug response and aid in treatment decisions would be a significant advance in psychiatric care as it would prevent patients from having to endure multiple courses of ineffective treatments and side effects.展开更多
Electrocatalytic CO_(2)reduction reaction(CO_(2)RR)into value-added products has been regarded as an effective way to achieve the goal of carbon neutrality.The intrinsic activity of electrocatalysts,as well as the rea...Electrocatalytic CO_(2)reduction reaction(CO_(2)RR)into value-added products has been regarded as an effective way to achieve the goal of carbon neutrality.The intrinsic activity of electrocatalysts,as well as the reaction microenvironment,play an important role in improving the conversion efficiency of CO_(2).Herein,we report an ionic liquidfunctionalized Au/Pd heterostructure as the electrocatalyst for CO_(2)RR via introducing 1-butyl-1-methylpyrrolidine bis(trifluoromethylsulfonyl)imide([BMPyrr][NTf_(2)])ionic liquid.Au nanoclusters are epitaxially confined on Pd nanosheets in heterostructure,resulting in abundant and well-defined heterointerfaces that work as highly active catalytic sites.Notably,the[BMPyrr][NTf_(2)]achieves charge redistribution at the Au-Pd heterointerfaces,which helps to stabilize*CO_(2)^(˙-)intermediate and further reduce the energy barrier of *COOH formation.Furthermore,the[BMPyrr][NTf_(2)]molecules with high CO_(2)adsorption ability is beneficial to construct a CO_(2)-rich reaction microenvironment at the gas-liquid-solid three-phase interface.The hybrid electrocatalyst exhibits greatly improved CO Faradaic efficiency in a broad potential range and CO partial current density.This work provides a novel strategy for designing robust CO_(2)RR electrocatalysts via ionic liquid-mediated surface modification.展开更多
Ionic Liquid Electrospray Thrusters(ILETs)are well suited for micro-nano satellite applications due to their small size,low power consumption,and high specific impulse.However,the limited thrust of a single-emitter IL...Ionic Liquid Electrospray Thrusters(ILETs)are well suited for micro-nano satellite applications due to their small size,low power consumption,and high specific impulse.However,the limited thrust of a single-emitter ILET restricts its use in space missions.To optimize the performance of ILETs and make them suitable for a wider range of space missions,we designed a Circular-emitter ILET(CILET)to convert a one-dimensional(point)emission into a twodimensional(line)emission.The CILET can self-organize multiple Taylor cones simultaneously.The cones were photographed and the axial emission currents were measured under different voltage and pressure difference conditions with a CILET experimental system.The emission can be divided into two stable states and one unstable state based on the flow and current characteristics.The current in Stable state Ⅰ increases non-linearly with the voltage,while that in Stable state Ⅱ is nearly linear with respect to the voltage.The number of cones increases with the voltage in stable states,while the cones become short and crowded under high-voltage conditions.The variation law of the number of cones can be explained with the self-organization theory.The variation in the current exhibits a good correlation with the number of cones.This study demonstrates the feasibility of circular emitters and experimentally indicates that the emission current is improved by approximately two orders of magnitude compared to that of a single capillary.展开更多
Due to the greenhouse effect caused by carbon dioxide(CO_(2))emission,much attention has been paid for the removal of CO_(2).Porous liquids(PLs),as new type of liquid materials,have obvious advantages in mass and heat...Due to the greenhouse effect caused by carbon dioxide(CO_(2))emission,much attention has been paid for the removal of CO_(2).Porous liquids(PLs),as new type of liquid materials,have obvious advantages in mass and heat transfer,which are widely used in gas adsorption and sep-aration.Metal–organic frameworks(MOFs)with merits like large surface area,inherent porous structure and adjustable topology have been considered as one of the best candidates for PLs construction.This review presents the state-of-the-art status on the fabrication strategy of MOFs-based PLs and their CO_(2) absorption and utilization performance,and the positive effects of porosity and functional modification on the absorption-desorption property,selectivity of target product,and regeneration ability are well summarized.Finally,the challenges and prospects for MOFs-based PLs in the optimization of preparation,the coupling of multiple removal techniques,the in situ characterization methods,the regeneration and cycle stability,the environmental impact as well as expansion of application are proposed.展开更多
Morphology and growth rate of carbon dioxide hydrate on the interface between liquid carbon dioxide and humic acid solutions were studied in this work.It was found that after the growth of the hydrate film at the inte...Morphology and growth rate of carbon dioxide hydrate on the interface between liquid carbon dioxide and humic acid solutions were studied in this work.It was found that after the growth of the hydrate film at the interface,further growth of hydrate due to the suction of water in the capillary system formed between the wall of the cuvette and the end boundary of the hydrate layer occurs.Most probably,substantial effects on the formation of this capillary system may be caused by variations in reactor wall properties,for example,hydrophobic-hydrophilic balance,roughness,etc.We found,that the rate of CO_(2) hydrate film growth on the surface of the humic acid aqueous solution is 4-fold to lower in comparison with the growth rate on the surface of pure water.We suppose that this is caused by the adsorption of humic acid associates on the surface of hydrate particles and,as a consequence,by the deceleration of the diffusion of dissolved carbon dioxide to the growing hydrate particle.展开更多
Liquid metals(LMs),because of their ability to remain in a liquid state at room temperature,render them highly versatile for applications in electronics,energy storage,medicine,and robotics.Among various LMs,Ga-based ...Liquid metals(LMs),because of their ability to remain in a liquid state at room temperature,render them highly versatile for applications in electronics,energy storage,medicine,and robotics.Among various LMs,Ga-based LMs exhibit minimal cytotoxicity,low viscosity,high thermal and electrical conductivities,and excellent wettability.Therefore,Ga-based LM composites(LMCs)have emerged as a recent research focus.Recent advancements have focused on novel fabrication techniques and applications spanning energy storage,flexible electronics,and biomedical devices.Particularly noteworthy are the developments in wearable sensors and electronic skins,which hold promise for healthcare monitoring and human-machine interfaces.Despite their potential,challenges,such as oxidative susceptibil-ity and biocompatibility,remain.Creating bio-based LMC materials is a promising approach to address these issues while exploring new avenues to optimize LMC performance and broaden its application domains.This review provides a concise overview of the recent trends in LMC research,highlights their transformative impacts,and outlines key directions for future investigation and development.展开更多
Ionic liquids(ILs)are promising electrolytes of supercapacitors for high voltage tolerance,zero vapor pressure,excellent thermal stability and environmental friendliness.However,the high viscosity and low ion mobility...Ionic liquids(ILs)are promising electrolytes of supercapacitors for high voltage tolerance,zero vapor pressure,excellent thermal stability and environmental friendliness.However,the high viscosity and low ion mobility of ILs limit the capacitance and high-rate performance of the devices.Rather than relying on black-box predictions and screening of advanced ILs for supercapacitors,machine learning models informed by experimentally derived physicochemical parameters can achieve significantly higher accuracy and relevance.According to the comprehensive experimental and data-driven investigation based on electrochemical characterization,nuclear magnetic resonance(NMR)dynamics,quantum and molecular dynamics simulations,we reveal an effective boosting of the specific capacity based on the water solvation mechanism in hydrophilic ILs.We then apply chemistry-informed machine learning to inverse screening and design ILs for supercapacitors based on the critical experimental parameters and morgan fingerprints.These findings elucidate the efficiency and mutual reinforcement of experimental and data-driven investigations in discovering promising materials for energy storage and conversion devices.展开更多
Capacitive pressure sensors have a promising application in the field of wearable electronic devices due to their excellent electrical properties.Owing to the complexity of the environment,capacitive sensors are susce...Capacitive pressure sensors have a promising application in the field of wearable electronic devices due to their excellent electrical properties.Owing to the complexity of the environment,capacitive sensors are susceptible to electromagnetic interference and changes in the surrounding medium,resulting in unstable signal acquisition.Capacitive sensor with excellent immunity to interference while maintaining flexibility is an urgent challenge.This study proposes an all-fiber anti-jamming capacitive pressure sensor that integrates liquid metal(LM)into a fiber-based dielectric layer.The combination of the LM and the fiber not only improves the dielectric properties of the dielectric layer but also reduces the Young's modulus of the fiber.The sensor has high interference immunity in various noise environments.Its all-fiber structure ensures lightweight,great air permeability and stretchability,whichmakes it a promising application in wearable electronic devices fields.展开更多
Sodium(Na)and magnesium(Mg)are becoming important for making energy-storage batteries and structural materials.Herein,we develop a liquid-metal-electrode-assisted electrolysis route to producing Na and Mg with low-car...Sodium(Na)and magnesium(Mg)are becoming important for making energy-storage batteries and structural materials.Herein,we develop a liquid-metal-electrode-assisted electrolysis route to producing Na and Mg with low-carbon emissions and no chlorine gas evolution.The clean production stems from the choice of a molten NaCl-Na_(2)CO_(3) electrolyte to prevent chlorine gas evolution,an inert nickel-based anode to produce oxygen,and a liquid metal cathode to make the cathodic product sit at the bottom of the electrolytic cell.We achieve a current efficiency of>90%for the electrolytic production of liquid Na-Sn alloy.Later,Mg-Sn alloy is prepared using the obtained Na-Sn alloy to displace Mg from molten NaCl-MgCl_(2) with a displacement efficiency of>96%.Further,Na and Mg are separated from the electrolytic Na-Sn and displaced Mg-Sn alloys by vacuum distillation with a recovery rate of>92%and Sn can be reused.Using this electrolysisdisplacement-distillation(EDD)approach,we prepare Mg from seawater.The CO_(2)emission of the EDD approach is~20.6 kg CO_(2)per kg Mg,which is less than that of the Australian Magnesium(AM)electrolysis process(~25.0 kg CO_(2)per kg Mg)and less than half that of the Pidgeon process(~45.2 kg CO_(2)per kg Mg).展开更多
The rising need for efficient and sustainable energy storage systems has led to increased interest in the use of advanced electrolytes consisting of deep eutectic solvents(DESs) and ionic liquids(ILs).These electrolyt...The rising need for efficient and sustainable energy storage systems has led to increased interest in the use of advanced electrolytes consisting of deep eutectic solvents(DESs) and ionic liquids(ILs).These electrolytes are appealing candidates for supercapacitors,next-generation lithium-ion batteries,and different energy storage systems because of their special features including non-flammability,low volatility,lowtoxicity,good electrochemical stability,and good thermal and chemical stability.This review explores the advantages of the proposed electrolytes by examining their potential to address the critical challenges in lithium battery technology,including safety concerns,energy density limitations,and operational stability.To achieve this,a comprehensive overview of the lithium salts commonly employed in rechargeable lithium battery electrolytes is presented.Moreover,key physicochemical and functional attributes of ILs and DESs,such as electrochemical stability,ionic conductivity,nonflammability,and viscosity are also discussed with a focus on how these features impact battery performance.The integration of lithium salts with ILs and DESs in modern lithium battery technologies,including lithium-ion(Li-ion) batteries,lithium-oxygen(Li-O_(2)) batteries,and lithium-sulfur(Li-S) batteries,are further examined in the study.Various electrochemical performance metrics including cycling stability,charge/discharge profiles,retention capacity and battery's couiombic efficiency(CE) are also analyzed for the above-mentioned systems.By summarizing recent advances and challenges,this review also highlights the potential of electrolytes consisting of DESs and ILs to enhance energy density,durability,and safety in future energy storage applications.Additionally future research directions,including the molecular optimization of ILs and DESs,optimizing lithium salt compositions,and developing scalable synthesis methods to accelerate their practical implementation in next-generation energy storage applications are also explored.展开更多
Small-sized Cd_(x) Zn_(1-x) S solid solution nanomaterial is an important candidate for efficient photocatalytic hydrogen evolution(PHE),but it still suffers from easy agglomeration,severe photo corrosion,and fast pho...Small-sized Cd_(x) Zn_(1-x) S solid solution nanomaterial is an important candidate for efficient photocatalytic hydrogen evolution(PHE),but it still suffers from easy agglomeration,severe photo corrosion,and fast photogenerated electron-hole recombination.To tackle these issues,herein,we propose a new strategy to modify Cd_(x) Zn_(1-x) S nanoreactors by the simultaneous utilization of ionic-liquid-assisted morphology engineering and MXene-incorporating method.That is,we designed and synthesized a novel hierarchi-cal Cd_(0.8) Zn_(0.2) S/Ti_(3) C_(2) Schottky junction composite through the in-situ deposition of ultrathin Cd_(0.8) Zn_(0.2) S nanosheets on unique IL-modified Ti_(3) C_(2) MXenes by a one-pot solvothermal method for efficiently PHE.The unique construction strategy tailors the thickness of ultrathin Cd_(0.8) Zn_(0.2) S nanosheets and prevents them from stacking and agglomeration,and especially,optimizes their charge transfer pathways during the photocatalytic process.Compared with pristine Cd_(0.8) Zn_(0.2) S nanosheets,Cd_(0.8) Zn_(0.2) S/Ti_(3) C_(2) has abun-dant photogenerated electrons available on the Ti_(3) C_(2) surface for proton reduction reaction,owing to the absence of deep-trapped electrons,suppression of electron-hole recombination in Cd_(0.8) Zn_(0.2) S and high-efficiency charge separation at the Cd_(0.8) Zn_(0.2) S/Ti_(3) C_(2) Schottky junction interface.Moreover,the hy-drophilicity,electrical conductivity,visible-light absorption capacity,and surficial hydrogen desorption of Cd_(0.8) Zn_(0.2) S/Ti_(3) C_(2) heterostructure are significantly improved.As a result,the heterostructure exhibits out-standing photocatalytic stability and super high apparent quantum efficiency,being rendered as one of the best noble-metal-free Cd-Zn-S-based photocatalysts.This work illustrates the mechanisms of mor-phology control and heterojunction construction in controlling the catalytic behavior of photocatalysts and highlights the great potential of the IL-assisted route in the synthesis of high-performance MXene-based heterostructures for photocatalytic hydrogen evolution.展开更多
Combustion dynamics are a critical factor in determining the performance and reliabilityof a chemical propulsion engine.The underlying processes include liquid atomization,evaporation,mixing,and chemical reactions.Thi...Combustion dynamics are a critical factor in determining the performance and reliabilityof a chemical propulsion engine.The underlying processes include liquid atomization,evaporation,mixing,and chemical reactions.This paper presents a high-fidelity numerical study of liquidatomization and spray combustion under high-pressure conditions,emphasizing the effects of pres-sure oscillations on the flow evolution and combustion dynamics.The theoretical framework isbased on the three-dimensional conservation equations for multiphase flows and turbulent combus-tion.The numerical solution is achieved using a coupling method of volume-of-fluid and Lagran-gian particle tracking.The Zhuang-Kadota-Sutton(ZKS)high-pressure evaporation model andthe eddy breakup-Arrhenius combustion model are employed.Simulations are conducted for amodel combustion chamber with impinging-jet injectors using liquid oxygen and kerosene as pro-pellants.Both conditions with and without inlet and outlet pressure oscillations are considered.Thefindings reveal that pressure oscillations amplify flow fluctuations and can be characterized usingkey physical parameters such as droplet evaporation,chemical reaction,and chamber pressure.The spectral analysis uncovers the axial variations of the dominant and secondary frequenciesand their amplitudes in terms of the characteristic physical quantities.This research helps establisha methodology for exploring the coupling effect of liquid atomization and spray combustion.It alsoprovides practical insights into their responses to pressure oscillations during the occurrence ofcombustion instability.This information can be used to enhance the design and operation ofliquid-fueled propulsion engines.展开更多
Developing efficient and stable non-precious metal catalysts is essential for replacing platinum-based catalysts in polymer electrolyte membrane fuel cells(PEMFCs).The transition metal and nitrogen co-doped carbon ele...Developing efficient and stable non-precious metal catalysts is essential for replacing platinum-based catalysts in polymer electrolyte membrane fuel cells(PEMFCs).The transition metal and nitrogen co-doped carbon electrocatalyst(M-N-C)is considered an effective alternative to precious metal catalysts.However,its relatively poor performance in acidic environments has always been a problem plaguing its practical application in PEMFCs.This study presents a sequential deposition methodology for constructing a composite catalytic system of Fe-N-C and ionic liquid(IL),which exhibits improved performance at both half-cell and membrane electrode assembly scales.The presence of IL significantly inhibits H_(2)O_(2)production,preferentially promoting the 4e–O_(2)reduction reaction,resulting in improved electrocatalytic activity and stability.Additionally,the enhanced PEMFC performance of IL containing electrodes is a direct result of the improved ionic and reactant accessibility of the pore confined Fe-N-C catalysts where the IL minimizes local resistive transport losses.This study establishes a strategic foundation for the practical utilization of non-precious metal catalysts in PEMFCs and other energy converting technologies.展开更多
The stability of perovskite solar cells(PSCs)is adversely affected by nonradiative recombination resulting from buried interface defects.Herein,we synthesize a polyionic liquid,poly(p-vinylbenzyl trimethylam-monium he...The stability of perovskite solar cells(PSCs)is adversely affected by nonradiative recombination resulting from buried interface defects.Herein,we synthesize a polyionic liquid,poly(p-vinylbenzyl trimethylam-monium hexafluorophosphate)(PTA),and introduce it into the buried interface of PSCs.The quaternary ammonium cation(N(-CH_(3))^(3+))in PTA can fill the vacancies of organic cations within the perovskite structure and reduce shallow energy level defects.Additionally,the hexafluorophosphate(PF6−)in PTA forms a Lewis acid-base interaction with Pb^(2+)in the perovskite layer,effectively passivating deep en-ergy level defects.Furthermore,hydrogen bonding can be established between organic cations and the PF6−anion,preventing the formation of shallow energy level defects.Through this synergistic mecha-nism,the deep and shallow energy level defects are effectively mitigated,resulting in improved device performance.As a result,the resulting treated inverted PSC exhibits an impressive power conversion ef-ficiency(PCE)of 24.72%.Notably,the PTA-treated PSCs exhibit remarkable stability,with 88.5%of the original PCE retained after undergoing heat aging at 85℃ for 1078 h,and 89.1%of the initial PCE main-tained following continuous exposure to light for 1100 h at the maximum power point.Synergistically suppressing multiple defects at the buried interface through the use of polyionic liquids is a promising way to improve the commercial viability of PSCs.展开更多
文摘In this work,we proposed a strategy for the hydrolysis of native corn starch after the treatment of corn starch in an ionic liquid aqueous solution,and it is an awfully“green”and simple means to obtain starch with low molecular weight and amorphous state.X-ray diffraction results revealed that the natural starch crystalline region was largely disrupted by ionic liquid owing to the broken intermolecular and intramolecular hydrogen bonds.After hydrolysis,the morphology of starch changed from particles of native corn starch into little pieces,and their molecular weight could be effectively regulated during the hydrolysis process,and also the hydrolyzed starch samples exhibited decreased thermal stability with the extension of hydrolysis time.This work would counsel as a powerful tool for the development of native starch in realistic applications.
文摘Pediatric cancers are particularly significant due to their uncommon occurrence in children,driven by a variety of underlying factors.Because of their distinct molecular and genetic makeup,which makes early detection challenging,they are linked to problems.Diagnostic methods like imaging and tissue biopsy are only effective when the tumor has reached a size that can be identified.The liquid biopsy technique,the least intrusive and most convenient diagnostic method,is the subject of this review.It focuses on the significance of single cell analysis in examining uncommon cancer types.The many biomarkers found in bodily fluids and the cancer types they are linked to in children have been assessed,as has the potential route towards early detection and cancer recurrence forecasting.Combining the single cell liquid biopsy with the newest technologies,such as computational and multi-omics approaches,which have improved the efficiency of processing massive and unique genetic data,appears promising.This article discusses on a number of case reports for uncommon pediatric malignancies,such as Neuroblastoma,Medulloblastoma,Wilms Tumor,Rhabdomyosarcoma,Ewing Sarcoma,and Retinoblastoma,as well as their liquid biopsy profiles.Furthermore,the findings raise ethical questions regarding the therapeutic application of the technology as well as possible difficulties related to clinical translation.The likelihood that this single cell liquid biopsy will be clinically validated and eventually used as a routine diagnostic tool for uncommon pediatric cancers will rise with the realistic approach to sensitivity monitoring,specificity upgrading,and optimization.
基金supported by National Key Research and Development Program of China(2022YFB3804902,2022YFB3804900)the National Natural Science Foundation of China(52203226,52161145406,42376045)the Fundamental Research Funds for the Central Universities(2232024Y-01,2232025D-02).
文摘While desalination is a key solution for global freshwater scarcity,its implementation faces environmental challenges due to concentrated brine byproducts mainly disposed of via coastal discharge systems.Solar interfacial evaporation offers sustainable management potential,yet inevitable salt nucleation at evaporation interfaces degrades photothermal conversion and operational stability via light scattering and pathway blockage.Inspired by the mangrove leaf,we propose a photothermal 3D polydopamine and polypyrrole polymerized spacer fabric(PPSF)-based upward hanging model evaporation configuration with a reverse water feeding mechanism.This design enables zero-liquiddischarge(ZLD)desalination through phase-separation crystallization.The interconnected porous architecture and the rough surface of the PPSF enable superior water transport,achieving excellent solar-absorbing efficiency of 97.8%.By adjusting the tilt angle(θ),the evaporator separates the evaporation and salt crystallization zones via controlled capillary-driven brine transport,minimizing heat dissipation from brine discharge.At an optimal tilt angle of 52°,the evaporator reaches an evaporation rate of 2.81 kg m^(−2) h^(−1) with minimal heat loss(0.366 W)under 1-sun illumination while treating a 7 wt%waste brine solution.Furthermore,it sustains an evaporation rate of 2.71 kg m^(−2) h^(−1) over 72 h while ensuring efficient salt recovery.These results highlight a scalable,energy-efficient approach for sustainable ZLD desalination.
基金financially supported by the National Natural Science Foundation of China(No.52073214)Guangxi Natural Science Fund for Distinguished Young Scholars(No.2024GXNSFFA010008).
文摘The operational efficiency of membrane electrode assemblies in direct liquid fuel cells is critically dependent on the fuel purity in the anode compartment.To address the inherent challenge of fuel mixing problem in alcohol systems,we propose a rational catalyst design strategy focusing on morphological and compositional optimization.Sodium borohydride-derived PtCuMo alloy aerogels(AA)exhibit abundant grain boundary defects,while solvothermally prepared nanowire arrays(NA)maintain excellent single-crystalline characteristics.Density functional theory calculations demonstrate that engineered grain boundaries can effectively broaden the adsorption energy window for key reaction intermediates,enabling superior adaptability to diverse catalytic pathways.By precisely controlling Cu content,we identified Pt_(3)Cu_(3)Mo_(0.5)AA as the optimal catalyst configuration,demonstrating 150% enhancement in methanol oxidation reaction activity compared to Pt_(3)Cu_(6)Mo_(0.5)NA(1.5 vs.0.6 A·mg_(Pt)^(-1))and 17% improvement in ethanol oxidation reaction performance versus Pt_(3)Cu_(1)Mo_(0.5)NA(0.82 vs.0.70 A·mg_(Pt)^(-1)).Practical application testing using gas diffusion electrodes(anode loading:0.85 mg_(Pt)·cm^(-2))achieved a mass-specific power density of 14.14 W·g_(Pt)^(-1)in 1:1 methanol/ethanol blends,representing a 3.5-fold improvement over commercial Pt/C benchmarks.This work establishes a fundamental framework for developing highperformance,broad-spectrum electrocatalysts in advanced fuel cell systems.
基金supported by Department of Defense grant HT9425-24-1-0030 a grant from the Stanley Medical Research Institute(to SS).
文摘The inability to access brain tissue has greatly hindered our ability to study and care for individuals suffering from psychiatric and neurological conditions.Critics have questioned efforts to develop peripheral blood biomarkers in neurological and psychiatric disorders based on the assertion that disease pathology is limited to the brain.The discovery that all tissues,including the brain,release extracellular vesicles(Raposo and Stoorvogel,2013)and cell free DNAs(Chan et al.,2013)into various body fluids has provided a potential way to measure activity from inaccessible tissues like the central nervous system(CNS)and has given rise to the term“liquid biopsy.”The development of liquid biopsies that can diagnose and predict the course of psychiatric and neurological disorders would be transformative.The ability to predict episodic events such as mania,depression,and risk for suicide would be particularly useful for psychiatric care as it would enable the development of interventions that prevent mortality and improve outcomes.Additionally,biomarkers that are informative about drug response and aid in treatment decisions would be a significant advance in psychiatric care as it would prevent patients from having to endure multiple courses of ineffective treatments and side effects.
基金supported by the National Natural Science Foundation Joint Fund Project(No.U24A2042)Basic Research Foundation of Zhejiang Provincial Universities(No.G23224161033)the National Natural Science Foundation of China(Nos.52072342 and 52377216).
文摘Electrocatalytic CO_(2)reduction reaction(CO_(2)RR)into value-added products has been regarded as an effective way to achieve the goal of carbon neutrality.The intrinsic activity of electrocatalysts,as well as the reaction microenvironment,play an important role in improving the conversion efficiency of CO_(2).Herein,we report an ionic liquidfunctionalized Au/Pd heterostructure as the electrocatalyst for CO_(2)RR via introducing 1-butyl-1-methylpyrrolidine bis(trifluoromethylsulfonyl)imide([BMPyrr][NTf_(2)])ionic liquid.Au nanoclusters are epitaxially confined on Pd nanosheets in heterostructure,resulting in abundant and well-defined heterointerfaces that work as highly active catalytic sites.Notably,the[BMPyrr][NTf_(2)]achieves charge redistribution at the Au-Pd heterointerfaces,which helps to stabilize*CO_(2)^(˙-)intermediate and further reduce the energy barrier of *COOH formation.Furthermore,the[BMPyrr][NTf_(2)]molecules with high CO_(2)adsorption ability is beneficial to construct a CO_(2)-rich reaction microenvironment at the gas-liquid-solid three-phase interface.The hybrid electrocatalyst exhibits greatly improved CO Faradaic efficiency in a broad potential range and CO partial current density.This work provides a novel strategy for designing robust CO_(2)RR electrocatalysts via ionic liquid-mediated surface modification.
基金co-supported by the National Key R&D Program of China(No.2020YFC2201001)the Shenzhen Science and Technology Program,China(No.20210623091808026)。
文摘Ionic Liquid Electrospray Thrusters(ILETs)are well suited for micro-nano satellite applications due to their small size,low power consumption,and high specific impulse.However,the limited thrust of a single-emitter ILET restricts its use in space missions.To optimize the performance of ILETs and make them suitable for a wider range of space missions,we designed a Circular-emitter ILET(CILET)to convert a one-dimensional(point)emission into a twodimensional(line)emission.The CILET can self-organize multiple Taylor cones simultaneously.The cones were photographed and the axial emission currents were measured under different voltage and pressure difference conditions with a CILET experimental system.The emission can be divided into two stable states and one unstable state based on the flow and current characteristics.The current in Stable state Ⅰ increases non-linearly with the voltage,while that in Stable state Ⅱ is nearly linear with respect to the voltage.The number of cones increases with the voltage in stable states,while the cones become short and crowded under high-voltage conditions.The variation law of the number of cones can be explained with the self-organization theory.The variation in the current exhibits a good correlation with the number of cones.This study demonstrates the feasibility of circular emitters and experimentally indicates that the emission current is improved by approximately two orders of magnitude compared to that of a single capillary.
基金supported by the Natural Science Foundation of China(22106007 and U23A20120)Beijing Natural Science Foundation(8244060)+2 种基金China Postdoctoral Science Foundation(2023M730143)R&D Program of BeijingMunicipal Education Commission(KZ202210005011)Natural Science Foundation of Hebei Province(B2021208033).
文摘Due to the greenhouse effect caused by carbon dioxide(CO_(2))emission,much attention has been paid for the removal of CO_(2).Porous liquids(PLs),as new type of liquid materials,have obvious advantages in mass and heat transfer,which are widely used in gas adsorption and sep-aration.Metal–organic frameworks(MOFs)with merits like large surface area,inherent porous structure and adjustable topology have been considered as one of the best candidates for PLs construction.This review presents the state-of-the-art status on the fabrication strategy of MOFs-based PLs and their CO_(2) absorption and utilization performance,and the positive effects of porosity and functional modification on the absorption-desorption property,selectivity of target product,and regeneration ability are well summarized.Finally,the challenges and prospects for MOFs-based PLs in the optimization of preparation,the coupling of multiple removal techniques,the in situ characterization methods,the regeneration and cycle stability,the environmental impact as well as expansion of application are proposed.
基金supported by the Russian Science Foundation(23-29-00830).
文摘Morphology and growth rate of carbon dioxide hydrate on the interface between liquid carbon dioxide and humic acid solutions were studied in this work.It was found that after the growth of the hydrate film at the interface,further growth of hydrate due to the suction of water in the capillary system formed between the wall of the cuvette and the end boundary of the hydrate layer occurs.Most probably,substantial effects on the formation of this capillary system may be caused by variations in reactor wall properties,for example,hydrophobic-hydrophilic balance,roughness,etc.We found,that the rate of CO_(2) hydrate film growth on the surface of the humic acid aqueous solution is 4-fold to lower in comparison with the growth rate on the surface of pure water.We suppose that this is caused by the adsorption of humic acid associates on the surface of hydrate particles and,as a consequence,by the deceleration of the diffusion of dissolved carbon dioxide to the growing hydrate particle.
基金supported by the GRDC(Global Research Development Center)Cooperative Hub Program through the National Research Foundation of Korea(NRF),funded by the Ministry of Science and ICT(MSIT)(No.RS-2023-00257595).
文摘Liquid metals(LMs),because of their ability to remain in a liquid state at room temperature,render them highly versatile for applications in electronics,energy storage,medicine,and robotics.Among various LMs,Ga-based LMs exhibit minimal cytotoxicity,low viscosity,high thermal and electrical conductivities,and excellent wettability.Therefore,Ga-based LM composites(LMCs)have emerged as a recent research focus.Recent advancements have focused on novel fabrication techniques and applications spanning energy storage,flexible electronics,and biomedical devices.Particularly noteworthy are the developments in wearable sensors and electronic skins,which hold promise for healthcare monitoring and human-machine interfaces.Despite their potential,challenges,such as oxidative susceptibil-ity and biocompatibility,remain.Creating bio-based LMC materials is a promising approach to address these issues while exploring new avenues to optimize LMC performance and broaden its application domains.This review provides a concise overview of the recent trends in LMC research,highlights their transformative impacts,and outlines key directions for future investigation and development.
基金supported by the National Natural Science Foundation of China(92372126,52373203)the Excellent Young Scientists Fund Programthe AI for Science Foundation of Fudan University(FudanX24AI014)。
文摘Ionic liquids(ILs)are promising electrolytes of supercapacitors for high voltage tolerance,zero vapor pressure,excellent thermal stability and environmental friendliness.However,the high viscosity and low ion mobility of ILs limit the capacitance and high-rate performance of the devices.Rather than relying on black-box predictions and screening of advanced ILs for supercapacitors,machine learning models informed by experimentally derived physicochemical parameters can achieve significantly higher accuracy and relevance.According to the comprehensive experimental and data-driven investigation based on electrochemical characterization,nuclear magnetic resonance(NMR)dynamics,quantum and molecular dynamics simulations,we reveal an effective boosting of the specific capacity based on the water solvation mechanism in hydrophilic ILs.We then apply chemistry-informed machine learning to inverse screening and design ILs for supercapacitors based on the critical experimental parameters and morgan fingerprints.These findings elucidate the efficiency and mutual reinforcement of experimental and data-driven investigations in discovering promising materials for energy storage and conversion devices.
基金financially supported by the National Natural Science Foundation of China(Nos.U20A20166,52371202,52125205,52250398,52192614 and 52003101)the National Key R&D Program of China(No.2021YFB3200300)+2 种基金the Natural Science Foundation of Beijing Municipality(No.2222088)Shenzhen Science and Technology Program(No.KQTD20170810105439418)the Fundamental Research Funds for the Central Universities
文摘Capacitive pressure sensors have a promising application in the field of wearable electronic devices due to their excellent electrical properties.Owing to the complexity of the environment,capacitive sensors are susceptible to electromagnetic interference and changes in the surrounding medium,resulting in unstable signal acquisition.Capacitive sensor with excellent immunity to interference while maintaining flexibility is an urgent challenge.This study proposes an all-fiber anti-jamming capacitive pressure sensor that integrates liquid metal(LM)into a fiber-based dielectric layer.The combination of the LM and the fiber not only improves the dielectric properties of the dielectric layer but also reduces the Young's modulus of the fiber.The sensor has high interference immunity in various noise environments.Its all-fiber structure ensures lightweight,great air permeability and stretchability,whichmakes it a promising application in wearable electronic devices fields.
基金support from the National Natural Science Foundation of China(No’s.U22B2071,51874211,52031008)the Chilwee Group(CWDY-ZH-YJY-202101-001).
文摘Sodium(Na)and magnesium(Mg)are becoming important for making energy-storage batteries and structural materials.Herein,we develop a liquid-metal-electrode-assisted electrolysis route to producing Na and Mg with low-carbon emissions and no chlorine gas evolution.The clean production stems from the choice of a molten NaCl-Na_(2)CO_(3) electrolyte to prevent chlorine gas evolution,an inert nickel-based anode to produce oxygen,and a liquid metal cathode to make the cathodic product sit at the bottom of the electrolytic cell.We achieve a current efficiency of>90%for the electrolytic production of liquid Na-Sn alloy.Later,Mg-Sn alloy is prepared using the obtained Na-Sn alloy to displace Mg from molten NaCl-MgCl_(2) with a displacement efficiency of>96%.Further,Na and Mg are separated from the electrolytic Na-Sn and displaced Mg-Sn alloys by vacuum distillation with a recovery rate of>92%and Sn can be reused.Using this electrolysisdisplacement-distillation(EDD)approach,we prepare Mg from seawater.The CO_(2)emission of the EDD approach is~20.6 kg CO_(2)per kg Mg,which is less than that of the Australian Magnesium(AM)electrolysis process(~25.0 kg CO_(2)per kg Mg)and less than half that of the Pidgeon process(~45.2 kg CO_(2)per kg Mg).
文摘The rising need for efficient and sustainable energy storage systems has led to increased interest in the use of advanced electrolytes consisting of deep eutectic solvents(DESs) and ionic liquids(ILs).These electrolytes are appealing candidates for supercapacitors,next-generation lithium-ion batteries,and different energy storage systems because of their special features including non-flammability,low volatility,lowtoxicity,good electrochemical stability,and good thermal and chemical stability.This review explores the advantages of the proposed electrolytes by examining their potential to address the critical challenges in lithium battery technology,including safety concerns,energy density limitations,and operational stability.To achieve this,a comprehensive overview of the lithium salts commonly employed in rechargeable lithium battery electrolytes is presented.Moreover,key physicochemical and functional attributes of ILs and DESs,such as electrochemical stability,ionic conductivity,nonflammability,and viscosity are also discussed with a focus on how these features impact battery performance.The integration of lithium salts with ILs and DESs in modern lithium battery technologies,including lithium-ion(Li-ion) batteries,lithium-oxygen(Li-O_(2)) batteries,and lithium-sulfur(Li-S) batteries,are further examined in the study.Various electrochemical performance metrics including cycling stability,charge/discharge profiles,retention capacity and battery's couiombic efficiency(CE) are also analyzed for the above-mentioned systems.By summarizing recent advances and challenges,this review also highlights the potential of electrolytes consisting of DESs and ILs to enhance energy density,durability,and safety in future energy storage applications.Additionally future research directions,including the molecular optimization of ILs and DESs,optimizing lithium salt compositions,and developing scalable synthesis methods to accelerate their practical implementation in next-generation energy storage applications are also explored.
基金financial supports pro-vided by the National Natural Science Foundation of China(No.21905279)the Natural Science Foundation of Fujian Province(No.2020J05086).
文摘Small-sized Cd_(x) Zn_(1-x) S solid solution nanomaterial is an important candidate for efficient photocatalytic hydrogen evolution(PHE),but it still suffers from easy agglomeration,severe photo corrosion,and fast photogenerated electron-hole recombination.To tackle these issues,herein,we propose a new strategy to modify Cd_(x) Zn_(1-x) S nanoreactors by the simultaneous utilization of ionic-liquid-assisted morphology engineering and MXene-incorporating method.That is,we designed and synthesized a novel hierarchi-cal Cd_(0.8) Zn_(0.2) S/Ti_(3) C_(2) Schottky junction composite through the in-situ deposition of ultrathin Cd_(0.8) Zn_(0.2) S nanosheets on unique IL-modified Ti_(3) C_(2) MXenes by a one-pot solvothermal method for efficiently PHE.The unique construction strategy tailors the thickness of ultrathin Cd_(0.8) Zn_(0.2) S nanosheets and prevents them from stacking and agglomeration,and especially,optimizes their charge transfer pathways during the photocatalytic process.Compared with pristine Cd_(0.8) Zn_(0.2) S nanosheets,Cd_(0.8) Zn_(0.2) S/Ti_(3) C_(2) has abun-dant photogenerated electrons available on the Ti_(3) C_(2) surface for proton reduction reaction,owing to the absence of deep-trapped electrons,suppression of electron-hole recombination in Cd_(0.8) Zn_(0.2) S and high-efficiency charge separation at the Cd_(0.8) Zn_(0.2) S/Ti_(3) C_(2) Schottky junction interface.Moreover,the hy-drophilicity,electrical conductivity,visible-light absorption capacity,and surficial hydrogen desorption of Cd_(0.8) Zn_(0.2) S/Ti_(3) C_(2) heterostructure are significantly improved.As a result,the heterostructure exhibits out-standing photocatalytic stability and super high apparent quantum efficiency,being rendered as one of the best noble-metal-free Cd-Zn-S-based photocatalysts.This work illustrates the mechanisms of mor-phology control and heterojunction construction in controlling the catalytic behavior of photocatalysts and highlights the great potential of the IL-assisted route in the synthesis of high-performance MXene-based heterostructures for photocatalytic hydrogen evolution.
基金supported by the National Natural Science Foundation of China(Nos.U23B6009 and 12272050)。
文摘Combustion dynamics are a critical factor in determining the performance and reliabilityof a chemical propulsion engine.The underlying processes include liquid atomization,evaporation,mixing,and chemical reactions.This paper presents a high-fidelity numerical study of liquidatomization and spray combustion under high-pressure conditions,emphasizing the effects of pres-sure oscillations on the flow evolution and combustion dynamics.The theoretical framework isbased on the three-dimensional conservation equations for multiphase flows and turbulent combus-tion.The numerical solution is achieved using a coupling method of volume-of-fluid and Lagran-gian particle tracking.The Zhuang-Kadota-Sutton(ZKS)high-pressure evaporation model andthe eddy breakup-Arrhenius combustion model are employed.Simulations are conducted for amodel combustion chamber with impinging-jet injectors using liquid oxygen and kerosene as pro-pellants.Both conditions with and without inlet and outlet pressure oscillations are considered.Thefindings reveal that pressure oscillations amplify flow fluctuations and can be characterized usingkey physical parameters such as droplet evaporation,chemical reaction,and chamber pressure.The spectral analysis uncovers the axial variations of the dominant and secondary frequenciesand their amplitudes in terms of the characteristic physical quantities.This research helps establisha methodology for exploring the coupling effect of liquid atomization and spray combustion.It alsoprovides practical insights into their responses to pressure oscillations during the occurrence ofcombustion instability.This information can be used to enhance the design and operation ofliquid-fueled propulsion engines.
基金国家自然科学基金(22202124,22208376)山西省科技创新团队专项资金(202304051001023)+3 种基金山西省重点研发计划(202302060301009)山西省国家留学基金委(2023-008,2023-009)山东省自然科学基金(ZR2023LFG005)青岛新能源山东实验室开放项目(QNESL OP 202303).
文摘Developing efficient and stable non-precious metal catalysts is essential for replacing platinum-based catalysts in polymer electrolyte membrane fuel cells(PEMFCs).The transition metal and nitrogen co-doped carbon electrocatalyst(M-N-C)is considered an effective alternative to precious metal catalysts.However,its relatively poor performance in acidic environments has always been a problem plaguing its practical application in PEMFCs.This study presents a sequential deposition methodology for constructing a composite catalytic system of Fe-N-C and ionic liquid(IL),which exhibits improved performance at both half-cell and membrane electrode assembly scales.The presence of IL significantly inhibits H_(2)O_(2)production,preferentially promoting the 4e–O_(2)reduction reaction,resulting in improved electrocatalytic activity and stability.Additionally,the enhanced PEMFC performance of IL containing electrodes is a direct result of the improved ionic and reactant accessibility of the pore confined Fe-N-C catalysts where the IL minimizes local resistive transport losses.This study establishes a strategic foundation for the practical utilization of non-precious metal catalysts in PEMFCs and other energy converting technologies.
基金supported by the Science,Technology,and Innovation Commission of Shenzhen Municipality(No.GJHZ20220913143204008)the Shccig-Qinling Program(No.SMYJY202300294C)+3 种基金National Natural Science Foundation of China(Nos.22261142666,52372225,52172237,22305191)the Shaanxi Science Fund for Distinguished Young Scholars(No.2022JC-21)the Research Fund of the State Key Laboratory of Solidification Processing(NPU)China(No.2021-QZ-02).
文摘The stability of perovskite solar cells(PSCs)is adversely affected by nonradiative recombination resulting from buried interface defects.Herein,we synthesize a polyionic liquid,poly(p-vinylbenzyl trimethylam-monium hexafluorophosphate)(PTA),and introduce it into the buried interface of PSCs.The quaternary ammonium cation(N(-CH_(3))^(3+))in PTA can fill the vacancies of organic cations within the perovskite structure and reduce shallow energy level defects.Additionally,the hexafluorophosphate(PF6−)in PTA forms a Lewis acid-base interaction with Pb^(2+)in the perovskite layer,effectively passivating deep en-ergy level defects.Furthermore,hydrogen bonding can be established between organic cations and the PF6−anion,preventing the formation of shallow energy level defects.Through this synergistic mecha-nism,the deep and shallow energy level defects are effectively mitigated,resulting in improved device performance.As a result,the resulting treated inverted PSC exhibits an impressive power conversion ef-ficiency(PCE)of 24.72%.Notably,the PTA-treated PSCs exhibit remarkable stability,with 88.5%of the original PCE retained after undergoing heat aging at 85℃ for 1078 h,and 89.1%of the initial PCE main-tained following continuous exposure to light for 1100 h at the maximum power point.Synergistically suppressing multiple defects at the buried interface through the use of polyionic liquids is a promising way to improve the commercial viability of PSCs.