This work first investigated the detection of slags,slag pool liquid level,and slag accumulation height in laboratory scale based on acoustic emission(AE)detection,and further tried the feasibility of this method in a...This work first investigated the detection of slags,slag pool liquid level,and slag accumulation height in laboratory scale based on acoustic emission(AE)detection,and further tried the feasibility of this method in an industrial scale coal gasifier.Results show that the energy and variance of acoustic signals can realize the accurate detection of large slag(criterion:E>1.5 E0,S>1.2 S0),and the average relative error is only 0.28%.The acoustic energy in the frequency range of 20–40 k Hz is defined as the characteristic energy,which can realize the accurate detection of slag accumulation height and slag pool liquid level,and the average relative error is only 3.94%.Furthermore,AE detection also realize accurate detection of large slag in an industrial scale gasifier and the acoustic signals at slag screen can be used to realize the early warning of the slag collapse(5 h earlier).展开更多
The effect of TiO_(2) absorption into two different CaO-BaO-SiO_(2)-Al_(2)O_(3)-based mold slags from the steel plant on the viscosity,melting performance and microstructure of slags was investigated through the measu...The effect of TiO_(2) absorption into two different CaO-BaO-SiO_(2)-Al_(2)O_(3)-based mold slags from the steel plant on the viscosity,melting performance and microstructure of slags was investigated through the measurement of the viscosity-temperature relationship,melting temperature and Raman spectroscopy.The parameter of the number of non-bridging oxygen per tetrahedrally-coordinated atom(NBO/T)was also calculated to explain the microstructure variation of molten slags with different TiO_(2) absorption.The variation of the actual slag consumption and the depth of the liquid slag in mold was explained through the comparison of the viscosity and the melting temperature of two different slags.The viscosity of mold slags(basicity=0.6)decreased from 1.1 to 0.68 Pa s with the increase in the Ti0_(2) absorption from 0 to 10%,while that of slags(basicity=0.7)decreased from 0.76 to 0.56 Pa s with the Ti0_(2) absorption from 0 to 6%.The activation energy of both two groups of slags had the tendency to decrease with the increasing TiO_(2) absorption.The network structure of both two groups of slags measured by the Raman spectra showed that the fraction of complex structure units(Q^(1),Q^(2),Q^(3) and A1-O-Al)decreased and simple structure units(Al-O-and Q^(0))increased with the increase in TiO_(2) absorption.NBO/T also increased with the increase in the TiO2 absorption,indicating that the absorption of TiO_(2) into slags resulted in the destruction of silicate/aluminate structure.Hence,the absorption of TiO_(2) into the current CaO-BaO-SiO_(2)-Al_(2)O_(3) mold slags decreased the degree of polymerization of these slags and then led to the decrease of viscosity.展开更多
基金the support and encouragement of The National Science Fund for Distinguished Young(21525627)the Science Fund for Creative Research Groups of National Natural Science Foundation of China(61621002)。
文摘This work first investigated the detection of slags,slag pool liquid level,and slag accumulation height in laboratory scale based on acoustic emission(AE)detection,and further tried the feasibility of this method in an industrial scale coal gasifier.Results show that the energy and variance of acoustic signals can realize the accurate detection of large slag(criterion:E>1.5 E0,S>1.2 S0),and the average relative error is only 0.28%.The acoustic energy in the frequency range of 20–40 k Hz is defined as the characteristic energy,which can realize the accurate detection of slag accumulation height and slag pool liquid level,and the average relative error is only 3.94%.Furthermore,AE detection also realize accurate detection of large slag in an industrial scale gasifier and the acoustic signals at slag screen can be used to realize the early warning of the slag collapse(5 h earlier).
基金The authors are grateful for support from the National Natural Science Foundation China(Grant Nos.52274317,52074054,and 52004045)the Fundamental Research Funds for the Central Universities(Grant No.2023CDJXY-020)+1 种基金College of Materials Science and Engineering at Chongqing University,Chinathe Henan Tongyu Metallurgy Materials Group Co.Ltd.,Xixia,China.
文摘The effect of TiO_(2) absorption into two different CaO-BaO-SiO_(2)-Al_(2)O_(3)-based mold slags from the steel plant on the viscosity,melting performance and microstructure of slags was investigated through the measurement of the viscosity-temperature relationship,melting temperature and Raman spectroscopy.The parameter of the number of non-bridging oxygen per tetrahedrally-coordinated atom(NBO/T)was also calculated to explain the microstructure variation of molten slags with different TiO_(2) absorption.The variation of the actual slag consumption and the depth of the liquid slag in mold was explained through the comparison of the viscosity and the melting temperature of two different slags.The viscosity of mold slags(basicity=0.6)decreased from 1.1 to 0.68 Pa s with the increase in the Ti0_(2) absorption from 0 to 10%,while that of slags(basicity=0.7)decreased from 0.76 to 0.56 Pa s with the Ti0_(2) absorption from 0 to 6%.The activation energy of both two groups of slags had the tendency to decrease with the increasing TiO_(2) absorption.The network structure of both two groups of slags measured by the Raman spectra showed that the fraction of complex structure units(Q^(1),Q^(2),Q^(3) and A1-O-Al)decreased and simple structure units(Al-O-and Q^(0))increased with the increase in TiO_(2) absorption.NBO/T also increased with the increase in the TiO2 absorption,indicating that the absorption of TiO_(2) into slags resulted in the destruction of silicate/aluminate structure.Hence,the absorption of TiO_(2) into the current CaO-BaO-SiO_(2)-Al_(2)O_(3) mold slags decreased the degree of polymerization of these slags and then led to the decrease of viscosity.